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Abstract: The population of the world is predicted to reach nine billion by 2050, implying that
agricultural output must continue to rise. To deal with population expansion, agricultural chores
must be mechanized and automated. Over the last decade, ground robots have been developed
for a variety of agricultural applications, with autonomous and safe navigation being one of the
most difficult hurdles in this development. When a mobile platform moves autonomously, it must
perform a variety of tasks, including localization, route planning, motion control, and mapping,
which is a critical stage in autonomous operations. This research examines several agricultural
applications as well as the path planning approach used. The purpose of this study is to investigate
the current literature on path/trajectory planning aspects of ground robots in agriculture using a
systematic literature review technique, to contribute to the goal of contributing new information in
the field. Coverage route planning appears to be less advanced in agriculture than point-to-point
path routing, according to the finding, which is due to the fact that covering activities are usually
required for agricultural applications, but precision agriculture necessitates point-to-point navigation.
In the recent era, precision agriculture is getting more attention. The conclusion presented here
demonstrates that both field coverage and point-to-point navigation have been applied successfully
in path planning for agricultural robots.

Keywords: path planning; agriculture; ground robot; automation; algorithms

1. Introduction

Every day, roughly 240,000 individuals join the global population, which is anticipated
to reach 8.18 billion by 2025 and 9.7 billion by 2050. Even though cultivated land is nearing
its limit, estimations suggest that food production would need to expand by 70% by 2050 if
global peace is to be maintained [1]. Producing enough food to fulfill the ever-increasing
need of this growing population is thus a tremendous issue for civilization. We must
construct more efficient—yet sustainable—food production technologies, farms, and infras-
tructures to achieve this critical goal. Precision agriculture (PA)—a collection of strategies
and techniques for precisely managing field fluctuations to boost crop yield, company
profitability, and ecosystem sustainability—has provided some astonishing solutions to
achieve that goal. Precision agriculture has already been recognized as a critical strategy
for optimizing crop management methods and improving field product quality while also
guaranteeing environmental safety [2]. Cropland monitoring and management may be a
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difficult process in particularly large fields and/or in fields located in mountainous terrain,
necessitating the use of automated devices [3]. As the number of agricultural laborers con-
tinues to diminish throughout the world, the use of multi-robots for agricultural activities
is becoming increasingly widespread on large-scale farms with fewer personnel [4]. For
successful and effective implementation of PA, unmanned ground vehicles (UGVs) play a
vital role. Many agricultural products are perishable in nature and require special consider-
ations throughout the supply chain operations to prevent their decay. Truck scheduling
for cross-docking of fresh products [5], intermodal freight network design for transport of
perishable products [6], optimized truck scheduling at a cold-chain cross-docking termi-
nals [7–9], and vessel scheduling in liner shipping [10] are some important research areas
of supply chain operations to prevent the decay of agricultural products. Through the
application of UGV in the agricultural field, the decay of agricultural products at the farm
field can be avoided to some extent. The path planning of UGV for the agricultural field is
the one of the most important areas in development of agricultural UGVs.

UGVs serve a critical role in boosting agricultural efficiency, such as optimizing
fertilizer usage or performing precise weed control [11,12]. The productivity of farming
families and the yield per unit area are improving as a result of job division and cooperation
among multi-robot systems (MRS). A growth in related research has boosted the possibility
for utilization, as tasks can be done more efficiently [13]. UGVs are now being used in
agriculture for mapping [14,15], seeding, sensing [16], and pesticide spraying, among other
things. To uninterruptedly execute the aforementioned tasks in the agricultural field, UGVs
should have a high level of automation with the least amount of human intervention [17].
Navigation, detection, action, and mapping are the four most significant automation
characteristics of autonomous agricultural robots [18]. Navigation is critical, and detection
and mapping are frequently used [19]. Path planning is the most important and integral
part for navigating UGVs. The vehicle/robot must construct a path between preset target
locations without colliding with obstacles in order to navigate autonomously [20]. The robot
then follows the course calculated by the path planning algorithm. Furthermore, the robot
must cope with unknowns and unanticipated scenarios that may occur in real-time, such
as unexpected impediments, unplanned tasks, and so on. Despite their widespread usage,
GPS systems have limits and downsides in situations where high precision navigation
is required or when the satellite signal is low, such as in covered areas, greenhouses, or
unusual mountainous locations [21]. Due to wheel slippage on sloping terrains, which is
common in various crops such as vineyards, UGV motion prediction via wheel odometry
has severe limits in agricultural applications [22].

Robotic platforms will increase farm efficiency, according to the strategic European
research agenda for robotics [23]. Even though this field is becoming more popular in
research [24], only a few commercial solutions are available [25]. Planting, harvesting,
monitoring, spraying, and trimming are just a few of the agricultural chores that have been
automated. Autonomous robot navigation is required for all of these procedures. This
stage, which is a crucial aspect of autonomous robot navigation: localization, mapping,
motion control, and path planning are the four prerequisites. Path planning for a robot
requires a series of calculations for the translation and rotational motions of the robot to
avoid obstacles from the initial point to the end point in the operating environment [26].
Agricultural areas provide a number of difficulties for robotic navigation. Agrarian fields,
unlike interior surroundings, are complex, unstructured, and unpredictable. Path planning
tactics that are well suited for indoor areas may not be suitable for agricultural needs,
necessitating the development of sophisticated agricultural path planning strategies. Path
planning for UGVs is drawing a lot of attention owing to the Industry 4.0 revolution and
exponential growth in machine learning. There are various publications on this topic
in the literature, with the first originating in 1989 when Palmer et al. [27] proposed a
problem with efficient field paths around an obstruction prompted by agricultural sector
concerns. Bochtis et al. [28] presented research on agricultural machinery improvements,
with path planning algorithms for farm area coverage being one of the topics covered. A
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smart farm should rely on autonomous decision-making to ensure (i) system efficiency,
(ii) better product quality, (iii) lower costs, (iv) improved product safety and environmental
sustainability, (v) reduced consumer delivery time, and (vi) increased market share and
profitability while stabilizing the labor force. When the robot detects an unexpected
obstacle, it is forced to change course. To safely avoid the barrier, the robot must either
design a short-term time-dependent trajectory and subsequently return to the original path
or compute a new path and follow it autonomously. In UGV navigation, route planning
is critical for finding the best path between destination sites while avoiding obstacles.
Based on the environmental data utilized to calculate an optimum path, this issue may be
divided into global route planning and local trajectory planning. The purpose of global
path planning is to find the most efficient route using a global geographical map. Local
trajectory planning, on the other hand, uses sensor data from the surrounding environment
to create a real-time, collision-free trajectory. As a result, to correctly complete various
activities and minimize obstructions, both global route planning and online local trajectory
planning are required [29].

To the best of our knowledge, path planning applications in agriculture do not receive a
systematic and detailed assessment. As a result, this research examines the many techniques
of path planning that have been used over time in various agricultural areas.

The methodology for this review is detailed in Section 2. The notion of path planning
and its many approaches are briefly explained in Section 3. In Section 4, we look at the
works that have been recognized as being related to agricultural path planning and Section 5
summarizes the revision’s findings.

2. Methodology

This study used a ‘systematic literature review’ method to examine the existing litera-
ture on the path/trajectory planning features of ground robots in agriculture, with the goal
of providing new information in the area [30]. To organize and assess the available literature
in an area, a systematic literature review necessitates a more rigorous and well-defined
technique [31]. Using the scientific search engine Google Scholar, a list of more relevant
literature was compiled. Number of publications and percent of review papers found in
Google Scholar for the last five years is presented in Figure 1, when searched with “path
planning for agricultural ground robots”.
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Figure 1. No of publications and % of review paper in a broad search.

Figure 1 shows that in the last five years the interest on the topic is increasing ex-
ponentially. While investigating in-depth about those literatures it was observed that
most of them focused on aerial vehicles instead of ground vehicles. It can also be seen
that the percentage of review papers on the field is increasing with time. A number of
important publications from peer-reviewed scientific journals were chosen, which assisted
in the identification of key authors and additional research pertinent to the issue of path
planning agricultural robots. In this paper, we use the word “locomotion planning” to
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refer to the phrases “motion planning,” “route planning,” and “path planning,” which
are commonly used interchangeably in the literature when it comes to robotics-assisted
automated activities. The level of abstraction of the solution domain can be used to make a
broad distinction between these words. The phrase “motion planning” refers to the process
of developing efficient trajectories for mobile robot systems, especially when kinematic
restrictions, dynamic constraints, object coordination, and other factors are present. Fur-
thermore, from a topological perspective, the term “route planning” refers to calculating
the optimal sequence (permutation) for visiting the nodes in a graph and is equivalent to
the problem of the complete traversal of a graph [32,33].

In contrast, “path planning” refers to the challenge of identifying a collision-free path
linking a predetermined start and a target point [34], whether in a topological, geometrical,
or a trajectory sense. Any route planning approach for ground robots in the agricultural
field was studied, and papers from a variety of agricultural fields were picked. The purpose
of this review of relevant work is to address the following questions:

1. What agricultural task is it performing?
2. Which path planning technique is used?
3. On-line capabilities?
4. Dynamic or static?
5. Path optimality?
6. Geometry characteristics?
7. Optimization criteria?
8. Constraints of the robot?
9. Limitations?
10. Computational complexity and processing time?
11. Field testing conditions?

3. Path Planning

Automatic ground vehicle guiding is now implemented using either local positioning
systems (vision or laser-based sensors) or global positioning systems (GPSs) as shown
in Figure 2.
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Figure 2. Guiding system of automatic ground vehicle.

Since the 1970s, local positioning systems have been employed in autonomous ap-
plications [35,36]. Although they are inexpensive to adopt, their primary downside has
been observed to be susceptibility to light conditions in outdoor locations [37]. Recent
advancements in satellite technology have resulted in a rise in the latter’s use, which
has progressively displaced the former, which was dominant in the 1990s [38,39]. The
use of real-time kinematic (RTK)-GPS with centimeter precision [40] has allowed for ex-
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tensive agricultural vehicle research. Agricultural vehicles with GPSs provide several
advantages, including relieving the driver of the arduous duty of precisely directing the
vehicle, improving trajectory tracking accuracy, and the ability to operate at night or in
foggy conditions.

The configuration space (C-space) technique is an important method for articulating
and finding a solution to the hindrance in path planning. It is a crucial notion to represent
the robot as a single point. The complications are expanded in proportion to the robot’s size
to compensate for the robot’s smaller size [41]. Potential fields, sampling-based techniques,
cell decomposition, and nature-inspired algorithms like the genetic algorithm (GA), particle
swarm optimization (PSO), and ant colony optimization (ACO) are all examples of path
planning approaches. It’s possible to divide path routing into two categories: path routing
based on point-to-point and coverage path routing.

3.1. Point-to-Point Routing

The goal of mobile robot point-to-point path planning is to discover a collision-free
path from a starting point to a destination point while minimizing time, distance, and
energy consumption. In this approach the robot behaves like a single particle in a potential
field, with the destination point representing an attraction point and the impediments
representing a repulsion point. The agricultural open space is divided into tiny areas known
as a cell by cell breakdown method [42] in this path planning approach. An approach for
calculating the restrictions on an object’s position caused by the existence of other objects is
provided in [42]. Their strategy is based on creating an object’s position and orientation as
a single point in a configuration space, where each coordinate denotes a degree of flexibility
in the object’s position or orientation. Local minima arises when the algebraic sum of all the
potentials is null, which is a common occurrence in this approach. This situation may make
it difficult for the robot to achieve its goal which has been addressed in [43]. Results from
the experiment conducted in [43], with research prototype rovers show that the planner
enables real-time performance while allowing exploitation of the complete vehicle mobility
envelope in difficult terrain.

When the outer perimeter of the obstacle zone is not utilized, the overall travel time
of a mobile robot is shortened. To reduce processing time, Goto et al. [44] suggested an
A* algorithm-based solution. The trip distance of the path and difficulty is used as the
objective functions by Castillo et al. [45] in the multi-objective genetic algorithm method.
RRT stands for “rapidly exploring random tree” and is a well-known sampling-oriented
method for randomly exploring pathways. RRT favors unexplored territory. The RRT’s
vertices have a uniform distribution. Even though there are few edges, the procedure is
rather straightforward, and RRTs always remain interconnected. These planners are simple,
but they are inefficient, and they prefer to create courses with sharp bends [46]. RRT-
Connect, also known as bi-directional RRTs, uses a heuristic to connect two RRTs—one at
the beginning point and the other at the target position. This method works well for issues
without differential constraints. One tree is enlarged during each iteration, and the new
vertex is linked to the nearby vertex of the other tree. The roles are then switched, with both
trees now exploring the open configuration space. For planning movements of a robotic
arm with several degrees of freedom, this approach is appropriate [47]. A road map of the
investigated region and an associated Safe Region (SR) are constructed in Sensor-based
Random Trees (SRTs) [48,49]. The sensors are able to identify the Local Safe Region (LSR).
Each node of the SRT is made up of a Local Safe Region and a free configuration. All Local
Safe Regions make up the Safe Region. It is a projection of the open area around the robot
in a certain configuration. The LSR’s form is determined by the robot’s sensor properties,
such as its angular resolution. A ball or a star are two possible LSR shapes. Experimental
evidence shows that the star shaped LSR exploration approach is more accurate [48].
Karaman et al. [50] introduced RRT*, a technique that converges to a near-optimal solution.
Masehian and Sedighizadeh [51] used PSO with a probability road map to achieve shortness
and smoothness as goals. Multi-objective PSO (MOPSO) algorithms, on the other hand,
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have been developed for over two decades and have made significant progress in solving
multi-objective optimization problems [52]. MOPSO’s suitability varies greatly depending
on the complexity and dimensionality of the issues under consideration. In path planning,
several of the researchers used the multi-objective decision-making (MODM) technique.
The analytic hierarchy process (AHP) was used by Kim and Langari [53] to create an ideal
path for a mobile robot. Buniyamin et al. developed the Point Bug method to reduce the
usage of an obstacle’s outside perimeter (obstacle border) by searching for a few key spots
on the obstacle’s outer perimeter that may be used as a turning point to the target, and then
generating a full path from source to target [54].

Masehian and Sedighizadeh [55] used particle swarm optimization with a probability
road map to achieve brevity and smoothness as goals. Ahmed and Deb [56] modified
the non-dominated sorting genetic algorithm to account for travel distance, safety, and
path smoothness all at the same time. Ahmed and Deb [56] improved the non-dominated
sorting genetic algorithm to account for travel distance, safety, and path smoothness at the
same time. MOPSO was used in [57] to design robot routes and create Pareto optimum
pathways. To limit the robot to its maximum turning rate, Fernandes et al. [58] employ
cell decomposition using A*. In the subject of path planning, nature-inspired algorithms
have gotten a lot of attention. In the literature, GA, PSO, and ACO are frequent study areas
with promising findings for robot path planning. These nature-inspired path planning
algorithms are described in detail and reviewed by Mac et al. [59]. GA is a natural genetics-
based optimization method that makes use of procedures including natural selection of
samples, crossover among them, and mutation [59]. For mobile robot motion planning, a
method combining the Voronoi diagram (VD) and the modified Ant Colony Optimization
(M-ACO) algorithm is proposed [60]. In the obstacle-filled space, the Voronoi diagram
generates edges and vertices, and M-ACO chooses the nodes to safely build the shortest
path using point to point motion planning. Elhoseny et al. [61] applied a modified GA in a
dynamic field, for a path planning approach. Ma et al. [62] proposed a dynamic augmented
multi-objective particle swarm optimization algorithm for the path planning problem of an
unmanned surface vehicle (USV), in which the goal was to find the shortest, smoothest,
most economical, and safest path in the presence of obstacles and currents, while keeping
collision avoidance, motion boundaries, and velocity constraints in mind.

Xiong et al. [63] recently employed an ACO algorithm to design numerous au-
tonomous maritime vehicles’ paths. By integrating the benefits of the A* algorithm and the
fuzzy analytic hierarchy process (FAHP), Kim et al. [64] proposed an optimum path plan-
ning module. Numerical simulations were used to test the performance of the suggested
motion control approach and path planning algorithm. By performing a point-to-point
movement task, circular route tracking job, and randomly moving target tracking task, it
was proven that the suggested motion controller outperforms current controllers such as
PID. Furthermore, A*–FAHP was used to assess the performance of the suggested route
planning algorithm on the omni-wheel mobile robot, and it was simulated utilizing static,
dynamic, and autonomous ballet parking circumstances. The results of the simulation
showed that the suggested method produces the best path in a short amount of time.
Although the suggested method contains qualities that make it acceptable for a dynamic
working environment, it must be verified and improved through tests on difficulties that
may arise in a real robot’s driving environment. Reference [65] also presented multi-
objective consideration path planning algorithms more recently. The purpose is to use the
vacant spaces in the cell graph to find a collision-free route. The availability of each cell
is indicated in each cell. The cell decomposition approach is frequently used with search
algorithms such as A* or Dijkstra to find a path [65]. When utilizing A*, the procedure
always creates the best path based on the criteria. This method, however, has increased the
computing difficulty.
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3.2. Coverage Routing

The job of establishing a path that travels through all points of an area or volume while
avoiding obstacles is known as coverage path planning (CPP). The following conditions for
a coverage operation were specified by Cao et al. [66]:

(1) The robot must be able to cover the entire region.
(2) The robot must completely occupy the area without any overlap.
(3) The processes must be continuous and sequential, with no pathways being repeated.
(4) All impediments must be avoided by the robot.
(5) Make use of basic motion trajectories.
(6) In the given circumstances, an “optimal” approach is sought.

In complicated situations, however, it is not always possible to meet all of these needs.
As a result, prioritization is essential. Depending on the assurance, these algorithms can
be characterized as heuristic or comprehensive, regardless of whether they are classified
on-line or off-line. Many coverage strategies, whether implicitly or explicitly, use cellular
breakdown to assure coverage. Approximate, semi-approximate, and accurate approaches
are all available [67].

Cell grid-based approaches, which split the map into a regular grid of cells and draws
a route across all of them, are another sort of coverage algorithm. To identify a coverage
path, Zelinsky et al. [68] used the standard wavefront approach. The wavefront algorithm
creates a wavefront from the goal to the start by defining a beginning and a goal cell.
Before approaching the target further, cells in equidistant level groups of these wave
fronts are visited. Although not ideal, randomization is a low-cost solution for tiny robots
functioning in constrained environments. The primary benefit of a random technique,
according to Choset et al. [69], is that no localization sensors or sophisticated path planning
algorithms are required. This is impossible in the case of agricultural field needs, as specific
agricultural activities involve specialized methods that cannot be provided by random
operations. Furthermore, the platform’s operating costs would be significantly higher.
Huang [70] recommended rotating the sweep line or cells for ideal boustrophedon patterns.
Methods of precise cellular breakdown split free space into distinct sections (cells). To cover
the free cells, simple movements are utilized. As specimen, all the vacant cells may be
covered by a pattern like zigzag. The widely used boustrophedon cell decomposition [71]
is a cell breakdown approach that uses a simple back-and-forth motion within the created
cells. Acar et al. [72] demonstrated path generation with flawless cellular breakdown.

The spanning tree approach [73] divides open space into mega cells and builds a
spanning tree that encompasses all of them. There are four smaller cells inside the mega
cells that may be reached by travelling the spanning tree. Both approaches ensure coverage,
although the movement patterns are rather unpredictable. Acar et al. [74] explore coverage
route design in demining applications. Two coverage methods are used in this study’s
omnidirectional vehicle: accurate cellular breakdown with back-and-forth mobility and a
probabilistic methodology. Yang et al. [75] proposed a neural network method for dealing
with path routing challenges in dynamic conditions, which might be useful in cleaning
robots. The neural network-based coverage route planner [75], which treats all cells as
neurons and determines which cell to visit next depending on the activation status of
surrounding cells in the network, is a biologically inspired approach for covering a cell
grid. Wong and MacDonald [76] extended the discovery of important cell breakdown
sites to any type of topological landmark. Chibin et al. [77] used the ACO method to
tackle a comprehensive coverage path planning problem. Galceran and Carreras [78] have
summarized and discussed the majority of the significant work in the topic of coverage
path planning.

Schafle et al. [79] developed an energy-optimized coverage path design utilizing GA.
Kouzehgar et al. [80] proposed a simple additive weighting (SAW)-based path planning
technique for a cleaning robot, with area coverage and energy consumption as consider-
ations. Zoto et al. [81] proposed a process that uses high-resolution pictures taken from
UAV to automatically develop a coverage path plan for a UGV. The experimental findings
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demonstrate that the work as a whole makes a substantial contribution to UGV coverage
path planning in difficult environments such as mountainous vineyards, which can help
farmers manage agricultural activities. However, when dealing with environments that
vary considerably from one vineyard area to another, there are certain flaws.

The traditional accurate cellular decomposition techniques [67,82,83], the Morse-based
cellular decomposition methods [72], and the landmark-based cell decomposition algo-
rithms [76] are among the ways that split the original map into smaller units that may be
covered by a simple motion pattern. Unlike traditional precise cellular decompositions,
which rely on polygonal structures and impediments, Morse-based decompositions do not
have this constraint.

4. Application of Routing in Agriculture

Applications of path planning in agriculture cover a wide range of topics and applica-
tions, as evidenced by the fact that we found a good number of publications for this study.
Some articles in this collection discuss point-to-point path planning techniques, while some
discuss coverage path planning issues. Agricultural applications include navigation in
vineyards, orchards, greenhouses, and wheat farms, among others. Monitoring, targeted
spraying, and harvesting are only some of the uses for navigation. Some authors, on the
other hand, propose a path planning algorithm that is tailored for agricultural areas and/or
machinery but does not apply to a specific purpose. For agriculture applications, there is
no widely used path planning algorithm, with different methods for each job, whether in
2D/3D surroundings. The works reviewed in this section are tabulated in Tables 1 and 2,
which includes a list of all the articles chosen and brief replies to the questions of Section 2.

The first paper listed in point-to-point route planning is from 1997 [84], and it provides
a GA for building a path for robots used in the agricultural field, while taking into account
the limits of the location. Linker et al. [85] released a paper in 2008 with a modified cell
decomposition utilizing the A* method for orchard navigation. They took into account
the limits that are unique to the vehicle and environment, such as a limited steering
angle, a restricted range of pitch and roll degrees, a preference for forward motion, and
reluctance for frequent turning. Although the claim by authors indicates that the path
they have devised is the best, some of the limitations may lead to a less-than-ideal path.
Santos et al. [86] employed a similar technique considering the center of mass of the robot,
for safe navigation in a steep slope vineyard, in which the algorithm limits roll, pitch,
and yaw angles. They took into account the limits that are unique to the vehicle and
environment in question, such as a limited steering angle, a restricted range of pitch and
roll degrees, a preference for forward motion, and reluctance for frequent turning. Other
characteristics, such as soil compaction and automated recharge systems, are taken into
account in certain variants of this technique. Another work uses D* cell decomposition, that
is built based on A* but incorporates robot dynamics. The goal of this work is to navigate
around an unknown oil palm plantation [87]. In an unstructured 3D terrain, an artificial
potential field planner is used for energy optimization [88], and Mai et al. [89] employs
multi-point measurement in potato cultivation using ACO. The authors differ on which
approach to employ for point-to-point path routing, despite the fact that cell decomposition
is marginally preferred. Point-to-point routing approach in agricultural field is tabulated
in Table 1.

An analysis of Table 1 shows that point-to-point path routing approach is mainly
tested in a static environment rather than the practical field condition of agricultural land
as shown in Figure 3.
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Table 1. Agricultural applications of point-to-point routing.

Ref. No. Year Application in
Agricultural Field

Path Planning
Approach

Dynamic or
Static

Environment

On-Line
or

Off-Line

Geometry
Features Optimization

Criteria
Robot

Restrictions
Limitations

Tested
in Real

Scenario

Computational
Complex-

ity/Processing
Time2D/3D Terrain

Configuration

[84] 1997

Create a suboptimal path for
a mobile agricultural robot
and use it to solve various
nonlinear agricultural
control issues.

GA Static Off-line 2D NA data

− Car-like vehicle
-maximum steer
angle of 40
degrees

− maximum steer
rating of 7
degrees per
second

− velocity range:
0.4–1.2 m per
second

NA No Complex/100 s

[85] 2008
For choosing the best routes
for car-like vehicles that
operate in orchards

Modified
Cell
Decomposition
with A*

3D
Parallel rows and
random generated
obstacles

Shortest path that

− Avoids
excessive roll
and pitch
angles;

− Prevents soil
compaction.

Car-like vehicle:
− limited steer

angle;
− limited pitch and

roll;
− forward motion

preferable;

Preference of
forward motion
may generate a
suboptimal path.
(Longer path and
processing time)

Medium
High/-average:
8.0 s; -best case:
1.39 s; -worst
case: 24.84 s

[87] 2017 Navigation through oil palm
plantation

Cell
Decomposition
with D* Lite

Partially
dynamic On-line 2D Unstructured tree

plantation Shortest path Differential robot
Robot can’t
exactly follow
the path

Yes Medium
High/NA

[90] 2018

A multilevel system is
suggested to keep track of a
vineyard robot’s autonomy,
plan the robot’s off-line
journey to the closest
charging station, and dock
the robot there while taking
into account visual tags.

Modified
Cell
Decomposition
with A* Static Off-line 3D

Irregular curved
vine rows with
high slopes at the
edges

Shortest path with
minimum energetic
cost

Differential robot

Algorithm may
need to run for
hours in the first
time execution

No

Medium
High/90 min. to
generate all the
possible paths

[88,91] 2018

An optimized path over
straight-line path has been
proposed for a field operated
agricultural rover to save
energy and prolong the
battery life.

Artificial
Potential Field

Unstructured 3D
simulated terrain
without obstacles

Optimize energy
consumption
avoiding uphill

NA NA No Simple/NA

[92] 2018
Navigation in steep slope
vineyards aware of soil
compaction

Modified
Cell
Decomposition
with A*

Irregular curved
vine rows with
high slopes at the
edges

Shortest path while
avoiding soil
compaction

Differential robot;
Tricycle robot;
Tracks robot;

Processing time
increases to
avoid the
compaction
when many
paths are
produced at the
same location

No

Medium
High/Differential:
[0.05, 0.6] s
Tricycle: [0.05,
0.4] s
Tracks: [0.1, 0.2] s
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Table 1. Cont.

Ref. No. Year Application in
Agricultural Field

Path Planning
Approach

Dynamic or
Static

Environment

On-Line
or

Off-Line

Geometry
Features Optimization

Criteria
Robot

Restrictions
Limitations

Tested
in Real

Scenario

Computational
Complex-

ity/Processing
Time2D/3D Terrain

Configuration

[93] 2019
Navigation in steep slope
vineyards aware of
vegetation wall distance

Irregular curved
vine rows with
high slopes at the
edges

Shortest path
maintaining the
distance to the
vegetation

data

It is impossible to
ensure an
accurate distance
over the entire
trip

No Medium
High/NA

[86] 2019
Navigation in steep slope
vineyards aware
robot’s center of mass

Partially
dynamic On-line

Irregular curved
vine rows with
high slopes at the
edges

Shortest safe path

− avoiding
excessive roll
and pitch
angles;

− Controlling
orientation
and limiting
maximum
robot turn
rate;

Differential Robot:
− limited pitch and

roll according
center of mass;

− limited
maximum turn
rate;

Heavy in terms
of computational
memory for big
dimension
terrains

Yes
Medium High
/
0.06 s to 0.26 s

[89] 2019 Multi-point measurement in
potato ridge cultivation ACO Static Off-line 2D

Parallel rows of
potatoes Shortest distance NA

No direct
application to
any real robot

No Complex/NA

[94] 2020

For automated tractor
steering control in greenfield
farming, an online path
planning algorithm is
suggested.

Model
proposed by
the authors

N/A On-line NA NA

Tractor with trailer:
− limited steer

angle;
− limited steer

rating;

The swath
distance from the
pickup center
approaches 1 m

Yes NA
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Table 2. Agricultural applications of Coverage routing.

Ref. No. Year Application in
Agricultural Field

Path Planning
Approach

Dynamic or
Static

Environment

On-Line
or

Off-Line

Geometry
Features Optimization Criteria Robot

Restrictions
Limitations

Tested
in Real

Scenario

Computational
Complex-

ity/Processing
Time2D/3D Terrain

Configuration

[95] 2006 Coverage field farm with
agricultural machines

Hamiltonian
Graph
exploration
based
approach

Static Off-line 2D Irregular shaped
polygons

Minimize overlapping
and number of
maneuvers

Farm Tractor:
− limited steer

angle;
− limited steer rate;

NA No NP-
complete/NA

[67] 2009

Coverage fields with
autonomous or
human-driven agricultural
machine

Greedy
algorithms for
division of
area into
sub-areas and
Heuristic
algorithm for
selection
driving
direction

Static Off-line 2D Complex shaped
fields

− Fuel refilling
path
consideration;
-Cost function
weighted with:
the relative
efficiency
(operated area
divided by total
time); the
normalized
distance
(travelled
distance in a
sub-area
excluding the
travelled
distance in the
headland area)
and the
normalized area
(the area of a
created sub-area
divided by the
remaining area)

NA

It is possible to
find cases in
where this
method fails to
offer a solution

No NP-hard/4 min

[96] 2014
Intelligent coverage for
agricultural robots and
autonomous machines

2D/3D
GA-based
approach

Static Off-line both
Complex and
irregular shaped
fields

Optimal driving
direction which
minimizes energy
consumption (fuel);

NA

Can result in
coverage plans
that require
increased
operational time

No Complex/NA

[99] 2016 Rural Postman Coverage in
steep slope vineyard

A* and
Dijkstra search
in graphs

Static Off-line 3D

Irregular curved
vine rows in
terraces with high
slopes at the edges

Find optimal
permutation of tracks
to ensure coverage;

Farm tractor is used for
testing, where U-turn
maneuvers not possible;

No. of wicker
may require for
repetition of a
specific path, and
that’s against the
principles of
most CPP
problems

Yes NP-hard/NA
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Table 2. Cont.

Ref. No. Year Application in
Agricultural Field

Path Planning
Approach

Dynamic or
Static

Environment

On-Line
or

Off-Line

Geometry
Features Optimization Criteria Robot

Restrictions
Limitations

Tested
in Real

Scenario

Computational
Complex-

ity/Processing
Time2D/3D Terrain

Configuration

[100] 2016 Side-to-side coverage for
agricultural robots

Grid-based 2D
coverage
projection on
3D terrain with
cylindrical
approach for
optimization
to the
topography

Static Off-line 3D
Accepts all
topographical
types os terrain

Minimize skip/overlap
areas between swaths NA

Cylindrical
approach cannot
differentiate
between skips
and overlaps

Yes NA

[101] 2016 Coverage for a fleet in an
agricultural environment

Mix-opt
(developed by
authors)—a
mix of various
permutation
operators

Static Off-line 2D Parallel Rows

A set of n tracks and m
vehicles are
predecided, determine
a set of routes such that
each track is covered
exactly once by any of
the involved vehicles
while minimizing the
total cost of covering
all the tracks

Farm Tractor: -limited
steer angle; -limited
steer rate;

It is presented
just as a route
planning tool; the
authors defend
the
implementation
using a more
concise
language.;

No NA

[102] 2016 UGV to measure ground p
properties of greenhouses

Back and forth
strategy Static Off-line 2D Parallel rows of

vegetation

The path must travel
through all of the
points in the shortest
feasible time and with
the shortest possible
longitude

Differential Robot NA Yes NA

[97] 2016 Agricultural robot swarm for
seeding task

Developed by
authors
(algorithm not
specified)

Dynamic On-line 2D
Irregular polygons
on plain
agricultural areas

− Find a path that
will allow you
to cover the full
sowing
area;—Find
uniform
workload
distribution
between
robots;—Find
optimized
overall path
length
considering
limited
availability of
energy and seed
on-boar;

Limited supply of
energy and seeds;

System tested
with a small
number of robots;
In the early
demonstrations,
switching from
large machines to
swarm robots
may not be well
accepted;

Yes NA



Sustainability 2022, 14, 9156 13 of 19

Table 2. Cont.

Ref. No. Year Application in
Agricultural Field

Path Planning
Approach

Dynamic or
Static

Environment

On-Line
or

Off-Line

Geometry
Features Optimization Criteria Robot

Restrictions
Limitations

Tested
in Real

Scenario

Computational
Complex-

ity/Processing
Time2D/3D Terrain

Configuration

[98] 2018 Precision pollination in
greenhouse

Voronoi
Graphs with
Dijkstra search
and Dynamic
windows
approach for
local obstacles

Dynamic On-line 2D
Parallel rows of
plants in
greenhouse

Cover all pollinization
points minimizing

Differential Robot with
arm manipulator

The problem has
to be
reformulated to
generate paths
which ensure
flowers near the
end of their
pollinization are
reached sooner

Yes Medium-
Low/N/A

[92] 2018
Coverage Path Planning for
ground robot with aerial
imagery

A* algorithm
search in
graphs with
gradient
Descent
optimization
for smoothing
the trajectory

Static Off-line 2D
Hilly Vineyards
with parallel vine
rows

Cover all of vineyards’
rows while minimizing
distance

NA

In UAV imagery,
there are
non-continuous
rows of path
labels.;—
Weakness as
environments
deviate
significantly
from one parcel
to another

Yes Medium/N/A

[103] 2019
Optimize harvesting area of
a robot combine harvester of
wheat or paddy

N-polygon
algorithm to
determine
optimum
harvesting
area
(Developed by
authors)

Static Off-line 2D
Convex and
concave polygon
fields

Cover area without
overlaps or skips in the

Big dimension
agricultural tracks
machine

NA No N/A/5 min

[104] 2020 Intelligent irrigation robot is
designed for multipurpose

ant colony
algorithm
based on
Bayesian
theory

Static Off-line 3D
rugged and
narrow
environment

capability of
expanding the working
area and reduction in
the water waste
− opts for the

shorter path
under the
premise where
more
information can
be obtained.

In the steering gear
control system, the
turning radius of the
mobile robot is 0.5 m
and the maximum
forward/backward
speed is 0.7 m/s.

The control
between software
and robots as
well as the
irrigation device
has not been fully
automated

Yes Complex/40 s
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The methods used in coverage path planning issues differ throughout the literature.
The total covering of irregularly shaped terrains is a typical objective in this field. In 2006,
the earliest selected study presented a Hamiltonian Graph exploration to cover irregular-
shaped areas with the least amount of overlaps and maneuvers [95]. In 2009, Oksanen
et al. [67] presented a greedy technique for covering curve-shaped fields that included a
heuristic algorithm. Hameed et al. [96] presented a GA-based technique for predicting the
best driving route for agricultural equipment to minimize fuel consumption five years later.

The authors say that their method is optimal or near-optimal or provides a sub-optimal
alternative. Only two point-to-point [86,87] and two coverage path planning [97,98] studies
offer an online solution in dynamic situations, showing that the majority of the approaches
are static off-line path planners. Only a few point-to-point techniques are included in this
category, hence fewer than half of the authors claim to have conducted experiments in a
genuine setting. Furthermore, some works do not even identify the qualities of the robot.
Coverage routing application in agricultural field is tabulated in Table 2.

An analysis of Table 2 indicates that in 83% of cases the coverage path planning
approach is tested in a static environment whereas in 17% of cases it has been tested in a
dynamic environment as shown in Figure 4.

The computational complexity was studied without any formal measurements because
most authors are unable to provide appropriate facts on this topic, including computational
requirements and temporal demands in some cases. Some articles characterize their cover-
age route planning approach as nondeterministic polynomial-time complexity, known as a
level of complexity used to classify decision-making challenges [105].

This review study concludes that route planning is commonly used in industry and
the interior environment, but it is rarely used in ground robotics in agricultural contexts.
Coverage route planning is substantially more sophisticated in farming since it is a common
problem. Point-to-point planners, on the other hand, are perfect for precision agricultural
tasks requiring an autonomous job to be performed on a certain number of plants. When
cutting plants, for example, the robot must just visit those that have been chosen, rather
than the entire field. To summarize, agricultural path routing research is essential for
implementing agricultural automation on the right “track”. Further research should focus
on validating and optimizing the suggested methodologies through extensive testing in
real-world agricultural settings.
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5. Conclusions

The current study provided a detailed analysis of a path routing approach in agricul-
tural for ground robots. It studied the application in the agricultural field and discussed
the constraints enforced by the robot setup or the terrain type in the agricultural field.
This work describes the path routing methodology, the kind of outdoor environment, the
terrain geometry characteristics, the optimization criteria, the method’s restriction, the
computation complexity, and the implementation of testing in an actual scenario.

• The study categorized path routing approaches into two classes: point-to-point and
coverage path routing.

• The analysis suggests that in agriculture, coverage path routing is less progressed
than point-to-point path routing. This is owed to the fact that coverage path routing is
commonly required for agricultural applications in broader view, while point-to-point
path routing is required for recently advancing precision agriculture.

• In 83% of cases the coverage path planning approach is tested in a static environment
whereas in 17% of cases it has been tested in a dynamic environment.

• Point-to-point path routing approach is tested in a static environment in 82% of cases
and has only been tested in a partially dynamic condition in 18% of cases.

The authors used a variety of path planning approaches in the review, therefore, it
can be concluded that the best path planning approach depends on the particular task of
the agricultural field. Only around half of the writers claimed to have used real-world
scenarios in their research. As a result, future research should focus on optimization
and validation through thorough testing in real-world agricultural settings, as well as
making new agricultural field data sets available to the research community, for effective
integration in the automation of agricultural activities. In this literature review only the
path planning approach required for UGVs used particularly for in field task at agricultural
land is focused. Application of UGVs for other farming tasks such as egg collection at farm,
phenotyping, sorting and packing at utility platforms can be considered as our future work.
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