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Abstract: The large concentration of the world’s population in cities, along with rapid urbanization, 

have brought numerous environmental and socioeconomic challenges to sustainable urban systems 

(SUS). However, current SUS studies focus heavily on ecological aspects, rely on SUS indicators that 

are not supported by available data, lack comprehensive analytical frameworks, and neglect SUS 

regional differences. This paper develops a novel approach to assessing urban sustainability from 

regional perspectives using commonly enumerated socioeconomic statistics. It integrates land use 

and land cover change data and ecosystem service values, applies data mining analytics to derive 

SUS indicators, and evaluates SUS states as trade-offs among relevant SUS indicators. This synthetic 

approach is called the integrated socioeconomic and land-use data mining–based multi-objective 

assessment (ISL-DM-MOA). The paper presents a case study of urban sustainability development 

in cities and counties in Inner Mongolia, China, which face many environmental and sustainable 

development problems. The case study identifies two SUS types: (1) several large cities that boast 

well-developed economies, diversified industrial sectors, vital transportation locations, good living 

conditions, and cleaner environments; and (2) a few small counties that have a small population, 

small urban construction areas, extensive natural grasslands, and primary grazing economies. The 

ISL-DM-MOA framework innovatively synthesizes currently available socioeconomic statistics and 

environmental data as a unified dataset to assess urban sustainability as a total socio-environmental 

system. ISL-DM-MOA deviates from the current indicator approach and advocates the notion of a 

data-mining-driven approach to derive urban sustainability dimensions. Furthermore, ISL-DM-

MOA diverges from the concept of a composite score for determining urban sustainability. Instead, 

it promotes the concept of Pareto Front as a choice set of sustainability candidates, because sustain-

ability varies among nations, regions, and locations and differs between political, economic, envi-

ronmental, and cultural systems. 

Keywords: sustainable urban system; urban sustainability indicators; ecosystem service values; 

land use and land cover changes; multi-objective optimization problems; total socio-environmental 

system 

 

1. Introduction 

Approximately 55 percent of the world’s population (4.2 billion inhabitants) lives in 

cities (World Bank Urban Development 2020 [1]), and the urban population could add 

another 2.5 billion people by 2050 (United Nations 2018 [2]). Continued rapid urban 
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expansion brings numerous challenges, such as accelerated demand for affordable hous-

ing, transport systems, basic services, and jobs. On the other hand, rapid and unplanned 

urbanization creates many environmental problems, including deterioration of natural re-

sources, accelerated air and water pollution, climate change, and excessive emission of 

greenhouse gases (Sarigai et al., 2021 [3]). As a result, the interest in and literature on sus-

tainable urban system (SUS) research have grown exponentially in recent years (Goodwin 

et al., 2021 [4]). 

Urban sustainability is a comparatively new research theme compared to the topic of 

ecosystem sustainability (Corredor-Ochoa et al., 2020 [5]), which has been at the front of 

scientific inquiries and societal discussions for decades. A common feature of urban sus-

tainability studies has stemmed from ecosystem or environmental sustainability studies 

(McPhearson et al., 2016 [6]). For instance, the three-pillar model of ecosystem sustaina-

bility consists of the environment, economy, and social system (Costanza, 1991 [7]). This 

concept of sustainability has been widely accepted in urban sustainability studies and ex-

panded in the context of urban systems. A new dimension of culture has been added and 

called the four-pillar model (Hawkes, 2001 [8]). Various concepts such as governance 

(Lozano, 2008 [9]), institutional function (Higgins, 2015 [10]), public health, and commu-

nity safety (Mapar et al., 2017 [11]) have been gradually added into the dimensions of 

urban sustainability. However, these cultural, economic, environmental, and social pillars 

of SUS are measured or modeled relatively independently, like silos (Gibson et al., 2005 

[12]; von Edmund, 2012 [13]). To a large degree, these sub-themes of urban sustainability 

are relatively loosely coupled rather than closely integrated as a whole system based on a 

conceptual model (Ali-Toudert and Ji, 2017 [14]). 

Urban sustainability is an emergent concept for designing inner city-built structures 

and managing broad urban environments (Batty, 2018) [15]. Architects, urban planners, 

and civil and environmental engineers have developed many well-known systems to rate 

and certify sustainable urban development. Good examples include Brandon and Lom-

bardi (2009) [16], Cole and Valdebenito (2013) [17], Benson and Bereitschaft (2019) [18], 

Sharifi and Murayama (2013) [19], and Ali-Toudert et al. (2020) [20]. Many of these SUS 

rating systems use multicriteria-based or indicator-based approaches (Chan and Lee, 

2019) [21] Chan, 2020) [22]. These green infrastructure-based SUS evaluation systems ju-

diciously select multicriteria in the context of sustainability goals. They focus on articulat-

ing the system conceptualization and illuminating the measurability of various system 

components. However, the final judgment often falls upon a summative score that has 

difficulty preserving the measurable complexity of SUS. This inner-city structure ap-

proach starts from building design and focuses on urban design and its surrounding com-

munities, which is excellent from a civil engineering point of view, but different from the 

perspectives of socio-ecological, socio-environmental, or coupled human–natural ap-

proaches. In addition, renewable energy, and energy efficiency have been added as critical 

urban sustainability elements in recent years (Lucchi and Buda, 2022 [23]; Razmjoo et al., 

2019a [24], 2019b [25], 2021 [26]; Tomoiagă et al., 2013 [27]). Furthermore, the concepts of 

sustainable development goals (SDGs) have been adopted to achieve a holistic approach 

for evaluating sustainable development, both for developing and developed countries 

(Griggs et al., 2013 [28]; Kumar et al., 2017 [29]). SDGs are the prioritized goals or targets 

for sustainable development at national scales; they include local conditions while com-

plying with internationally accepted norms (Le Blanck, 2015 [30]). For example, the United 

Nations proposed a large set of sustainable development goals consisting of 17 broad di-

mensions and 169 interconnected targets based on national priorities (UN-Habitat, 2015 

[31]). Most current urban sustainability dimensions and targets are selected or evaluated 

based on a large set of urban sustainability indicators. 

However, several deficiencies have been identified in this exploding volume of liter-

ature. First, the large body of current studies ignores major socioeconomic issues such as 

equity, justice, and public engagement (Sharifi, 2021 [32]). Second, most current SUS as-

sessments rely heavily on selecting and evaluating SUS indicators (Shen et al., 2011 [33]). 
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However, the selections of SUS indicators are often challenged by the limitation of avail-

able data, the ambiguity of SUS targets and thresholds, and the lack of a conceptual frame-

work for indicator selection (Verma and Raghubanshi, 2018 [34]). Third, there is general 

ignorance about national and regional differences in understanding the contextual mean-

ings and interpretations of the SUS assessment (Verma and Raghubanshi, 2018 [34]). 

This paper develops a novel and synthetic approach to assessing urban sustainabil-

ity—called integrated socioeconomic and land-use data mining–based multi-objective as-

sessment (ISL-DM-MOA)—from regional perspectives but with national (and interna-

tional) comparison considerations. First, this new approach examines SUS by analyzing 

commonly enumerated socioeconomic statistics and integrating them with land use and 

land cover data detected from remote sensing technologies. Second, this new method syn-

thesizes SUS dimensional indicators by applying current data mining analytics. Third, it 

also adopts the popular environmental approach of assessing urban sustainability based 

on ecosystem service values. Finally, the new approach advocates the notion that SUS 

should not be a precise quantity, but an evaluation framework that enables assessing the 

trade-offs of a set of indicators closely related to SUS. However, due to the limitation of 

data availability, the cultural dimension of urban sustainability was not examined in this 

study. 

The remainder of this paper is structured as follows. Section 2 introduces current 

urban sustainability measurement methods and related indexes. Section 3 describes our 

new measurement framework of ISL-DM-MOA. To verify the proposed framework, Sec-

tion 4 reports a case study applied to Inner Mongolia, China. In Section 5 we further dis-

cuss and speculate on the implications of the research. Finally, Section 6 draws conclu-

sions and points to future work. 

2. Urban Sustainability and Related Measuring Indexes 

From the perspective of evaluating or measuring urban sustainability, the critical ter-

minology in sustainable urban system studies is the notion of sustainability indicators 

(Huang et al., 2015 [35]; Liu et al., 2018 [36]; Michalina et al., 2021 [37]). Quantifiable indi-

cators are needed to measure progress towards sustainable development in the context of 

sustainable development goals and targets (Bai et al., 2016 [38]; Liu et al., 2015 [39]; Pup-

phachai et al., 2017 [40]). These quantifiable sustainable development indicators are called 

sustainability indicators (SIs) (Cutaia, 2016 [41]). SIs can be some simple socioeconomic 

indicators like gross domestic product (GDP) or highly complex quantities such as the 

genuine progress indicator (GPI) and the inclusive wealth index (IWI). GDP is extremely 

limited in terms of quantifying social welfare and environmental sustainability (Bagstad 

and Shammin, 2012 [42]). GPI is a national-level measure of economic growth and pros-

perity and accounts for externalities, such as environmental and carbon footprints, re-

source depletion, pollution, and long-term environmental damage (Kubiszewski et al., 

2013 [43]). IWI is developed as a synthetic indicator to supersede or complement the iconic 

Human Development Index (HDI) (Dasgupta, 2009 [44]). IWI measures the wealth of nations, 

including all of the assets from which human well-being is derived, including manufac-

tured, human, and natural capital (Roman and Thiry, 2016 [45]). 

Another good example is the City Prosperity Index (CPI) for measuring the overall 

achievement of a city (UN-HABITAT, 2015 [31]). The CPI is a composite index covering 

six dimensions of city prosperity: productivity, infrastructure, quality of life, equity and 

social inclusion, environmental sustainability, and governance and legislation. Each di-

mension consists of between two and four measurable indicators. CPI can be calculated 

at four scales: (1) global city ranking for global and regional monitoring; (2) basic CPI as 

an initial diagnosis that is internationally comparable; (3) extended CPI for in-depth diag-

nosis that is comparable within a specific country; and (4) contextual CPI that is policy 

implementation-oriented as an urban monitoring tool. CPI articulates a robust and flexible 

indicator framework that provides methodological and conceptual solutions for 
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developing a comprehensive index and connecting healthy cities’ indicators with the 

needs of policy and governance (Wong, 2015 [46]). 

The urban sustainability index (USI) is also a type of SI. Numerous indicators have 

been proposed to measure urban sustainability (Merino-Saum et al., 2020 [47]), and many 

methods have been developed to calculate USI (Kaur and Garg, 2019 [48]). One GIS re-

mote sensing-based calculation method estimates USI through dynamic ecosystem service 

values (DESVs) (Liang et al., 2020 [49]). Urban sustainability is the square root of the sum 

squares of DESVs, GDP, and per capita net income (PCNI) (Fu et al., 2016 [50]; Xue & Luo, 

2015 [51]). Although the estimation of DESVs is relatively sophisticated, the ecosystem 

service value (ESV)-based USI has firm roots in the concepts of ecosystem sustainability 

and ecological economics. The ESV-USI indicator represents a different perspective of in-

terpreting urban sustainability. 

In general, many SIs are based on the statistical data at the national scale and involve 

a large number of macroeconomic variables. The calculations or definitions of these SIs 

require much socioeconomic information, which is not enumerated at local and regional 

scales. As a result, it is hard to use SIs to quantitatively examine cities’ urban sustainability 

at a regional or provincial scale. On the other hand, ESV-USI describes urban sustainabil-

ity at a regional scale, prioritizing ecosystem sustainability. 

Analytically, there are three groups of analytical methods for examining sustainable 

urban systems (SUS). The first group consists of multivariate statistics (Verma and 

Raghubanshi, 2018 [34]). Factor analysis (Huang et al., 2015 [35]) and principal component 

analysis (Mascarenhas et al., 2015 [52]) are the most useful methodologies. Unfortunately, 

these statistical analyses are often ad hoc and do not support a coherent and proven meth-

odological design (Zhou et al., 2022 [53]). Many of these statistical methods, such as anal-

ysis of variance, principal component analysis, Pearson correlations, multiple regression 

analysis, and redundancy analysis (Chen and Lu, 2014 [54]) have been adopted. However, 

the unique insights provided by each analysis and the added values of integrating these 

analyses have not been addressed. 

The second group emphasizes geospatial technologies, including geographic infor-

mation science, remote sensing, and spatial statistics, which have been increasingly used 

to model and discern the coupled socio-environmental system (CSES) processes (Anselin 

and Rey, 2014 [55]; Lechner et al., 2019 [56]; Gupta et al., 2020 [57]). Recent developments 

in remotely sensed earth observation data are becoming increasingly advantageous in in-

dicator studies because these new data sources add new approaches to detect ecological 

conditions and land use and land cover changes to support CSES studies (Xie et al., 2008 

[58]; Salvati and Carlucci, 2014 [59]; Liang et al., 2020 [49]). These information and system 

approaches provide richer data and better analytical methods for describing, interpreting, 

and simulating feedback between subsystems and are less confined within traditional dis-

ciplinary domains (Turner and Robbins, 2008 [60]; Li, 2012 [61]). The indicator of ESV-USI 

is an excellent example of this approach. 

The third group focuses on big data analytics (Kong et al., 2020 [62]). Big data analyt-

ics includes many techniques, which are re-empowering traditional statistical techniques 

with big data. For instance, classification, clustering, regression, association rules analysis, 

and social network analysis are commonly used (Hassani et al., 2016 [63]). Different meth-

ods extract information for distinct perspectives and may produce different findings. A 

good review can be found in the recent work by Kong and his colleagues (2020). However, 

big data applications in SUS evaluation mainly focus on specific subsystem applications, 

such as environmental sustainability, public health and safety, social equity, resources, 

energy utilization, real estate, or retail planning. Many current discussions elaborate on 

potential advantages and possible future directions for using big data in SUS studies. 

Comprehensive assessments of SUS based on big data analytics are still missing. 
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3. The New Method—Integrated Socioeconomic and Environmental Data Mining–

Based Multi-Objective Assessment (ISL-DM-MOA) 

The ISL-DM-MOA analytical framework is designed based on an integrated socioec-

onomic and environmental database (Figure 1). Current sustainability indicators (like IWI, 

GPI and CPI) are computationally sophisticated, require too much data, and are only 

available at the national level. Data gaps exist between available socioeconomic statistics 

and the required information for calculating sustainability indicators proposed by the 

United Nations (Roman and Thiry, 2016 [45]). On the other hand, socioeconomic statistics 

throughout the world are collected for demographic and economic analyses, educational 

and human resource planning, and assessing progress toward national and regional ob-

jectives. They contain much information about the health and progress of urban develop-

ment. 

 

Figure 1. Integrated Socioeconomic and Land-use Data Mining–based Multi-objective Assessment 

(ISL-DM-MOA). 

On the other hand, the environmental data include land-use-land-cover (LULC) 

changes, ecosystem service values, and additional related environmental status infor-

mation, depending on availability. In particular, remote sensing technologies have pro-

vided much data about land use and land cover changes (LULC). The socioeconomic sta-

tistics in combination with LULC data can provide rich information revealing sustainable 

or unsustainable urban development. However, they are not collected for computing the 

sophisticated sustainability indicators advocated by the United Nations. More im-

portantly, the socioeconomic statistics have been collected over a long period, while re-

mote sensing–based LULC data can be traced back to the early 1970s (Xie et al., 2008 [58]). 

Therefore, socioeconomic statistics and LULC data compose a sizeable urban develop-

ment dataset and can support a long time-series examination of urban sustainability pro-

gress. The ISL-DM-MOA analytical framework deviates from the current indicator ap-

proach. ISL-DM-MOA does not recommend a pre-determined set of urban sustainability 

indicators. ISL-DM-MOA advocates the notion of a data-mining-driven approach to de-

rive urban sustainability dimensions. The availability, completeness, and fine administra-

tion or geographic scales of an integrated socioeconomic and environmental database de-

termines the granularity of urban sustainable dimensions. Moreover, ISL-DM-MOA di-

verges from the concept of a composite score for determining urban sustainability. In-

stead, ISL-DM-MOA promotes the concept of Pareto Front as a choice set of sustainability 

candidates because sustainability varies among nations, regions, and locations. The per-

ception and acceptance of urban sustainability differs between political, economic, 
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environmental, and cultural systems. Therefore, beyond the foundation of integrated 

data, ISL-DM-MOA provides three interconnected analytical functions to realize its im-

plementation. The inspirations, descriptions, and implementation of these functions are 

provided below. 

3.1. Identify Interaction Dimensions Embedded in Regional Integrated Environmental and 

Socioeconomic Data 

The ISL-DM-MOA framework supports assessing SUS over a region, province, or 

state as a whole. This procedure will apply the commonly used data mining technique of 

principal component analysis (PCA) to mine how the synthesized socioeconomic and en-

vironmental variables interact. PCA has long been an applicable statistical procedure in 

urban sustainability studies (Mascarenhas et al., 2015 [52]). Large datasets are increasingly 

common and are often difficult to interpret. PCA is commonly recognized as a technique 

for reducing the dimensionality of a large dataset and revealing associations between the 

dimensions and the variables in the large dataset with minimized information loss (Jolliffe 

and Cadima, 2016 [64]). These dimensions are the newly created factors (principal com-

ponents) that do not correlate among themselves. Each dimension includes a subset of 

variables in the original big dataset, while the variables in this subset interact with (or 

correlate with) this dimension. More importantly, the new dimensions are generated by 

the dataset in the study, but not a priori. Therefore, PCA is an adaptive data analysis 

method and an essential big data mining technique (Sarigai, et al., 2021 [3]). It is expected 

that these PCA-derived dimensions shall approximate the newly proposed indicators, 

such as genuine progress indicator (GPI), inclusive wealth index (IWI), and city prosperity 

index (CPI). The GPI, IWI, and CPI indices are built based on the national economic and 

environmental data that are usually not available at regional or provincial scales. The ad-

vantage of PCA is that it can overcome data limitations because it can be conducted with 

whatever variables are available in a study area. The PCA-generated dimensions or fac-

tors synthesize the interactions embedded in the available variables. These dimensions 

are called derived urban development indicators (DUDI) in the context of SYS studies. 

3.2. Ecosystem Service Values and Urban Sustainability Index 

As we discussed in the introduction section, evaluating the urban sustainability in-

dex (USI) from the perspective of ecosystem service values (ESV) has a long tradition in 

ecological and environmental studies of SUS. Therefore, the ISL-DM-MOA framework in-

corporates the concept of ESV-USI and uses remotely sensed land use and land cover data 

to compute ESV-USI as an ecological method for computing USI. The USI can be calcu-

lated in numerous ways (Sharifi and Murayama, 2013 [19]; Mapar et al., 2017 [11]; Ali-

Toudert et al., 2020 [20]). The present paper adopts the approach of computing USI based 

on ecosystem service value (ESV) to assess the integrated interactions and feedback be-

tween environmental and socioeconomic systems. It was confirmed that the use of ESV 

for computing USI is a comprehensive approach to examine the ecological consequences 

of urban expansion (Liang et al., 2020 [49]). 

3.3. Multi-Objective Optimization Analysis—Pareto Front 

When PCA generates the dimensions (principal components) in a dataset that in-

cludes variables of socioeconomics and LULC changes related to sustainable or unsus-

tainable urban development, all of these dimensions are related to urban development. 

Since the variables are both socioeconomic and environmental, these dimensions are 

called socio-environmental dimensions. It is difficult to differentiate which dimension is 

more important in terms of contributing to urban sustainability than any other dimension. 

Moreover, the USI based on ecosystem service values is a standard ecological method to 

estimate urban sustainability. ESV-USI is different from the dimensions reflecting urban 

socioeconomic development and environmental status generated by PCA. Similarly, it is 
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not appropriate to compare ESV-USI with the socio-environmental dimensions in terms 

of their contribution to or influence urban sustainability. Since all of these indicators are 

related to urban sustainability, there is a need for a new evaluation approach to evaluate 

how these indicators relate to urban sustainability. 

From the perspective of multi-objective optimization, the socioenvironmental dimen-

sions from PCA and ESV-USI consist of a vector of decision candidates affecting urban 

sustainability. These decision candidates usually complement or conflict with each other. 

Consequently, minimizing or optimizing each decision candidate could give a different 

solution. As a result, the answers to a set of decision candidates comprise a set of trade-

off solutions that are considered equally important or optimal. In other words, it could be 

the case that Solution A outperforms Solution B according to one criterion, but that Solu-

tion B is better than Solution A considering another criterion. Therefore, the outputs of 

multi-objective optimization include a set of optimal but non-dominant solutions, which 

are often called multi-objective optimization problems (MOOPs). As a result, MOOPs 

comprise a Pareto front that consists of a set of solutions. One solution outperforms all 

other solutions for at least one criterion, but will not surpass all other solutions for all 

criteria. 

Multi-objective optimization problems (MOOPs) are a technique specifically devel-

oped to find a vector of decision candidates that optimizes an objective function (Longo 

et al., 2019 [65]). MOOPs are widely adopted in scientific research and engineering appli-

cation projects, such as water resources utilization (Reed et al., 2013 [66]), gene selection 

(Rajapakse & Mundra, 2013 [67]), industrial scheduling (Han et al., 2017 [68]), and energy 

allocation (Tomoiagă et al., 2013 [27]). 

Many multi-objective evolutionary algorithms have been developed to solve MOOPs 

(Deb, 2011 [69]). A mathematical programming method was initially applied to transform 

MOOPs into single-objective problems. Typical scenarios include the weighted sum 

method, the Tchebycheff approach, and the boundary intersection method (Zadeh, 1963 

[70]; Geoffrion, 1968 [71]). Later, an evolutionary optimization algorithm was adopted to 

solve MOOPs. As a result, multi-objective optimization began to develop rapidly, result-

ing in many methods for solving MOOPs. These methods can be roughly divided into two 

categories. The first category mainly focuses on the Pareto-dominant individual selection 

and fitness value sharing. Good examples include the multi-objective genetic algorithm 

(MOGA) (Fonseca & Fleming, 1993 [72]), the non-dominated sorting genetic algorithm 

(NSGA) (Srinivas & De, 1994 [73]), and the Niched Pareto genetic algorithm (NPGA) 

(Horn et al., 1994 [74]). The other category mainly emphasizes the non-dominated solu-

tions or individuals in the evolution process to preserve the explicit diversity. Its typical 

samples include the Strength Pareto evolutionary algorithm II (SPEA-II) (Zitzler et al., 

2001 [75]), the non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002 

[76]), the non-dominated sorting genetic algorithm III (NSGA-III) (Deb & Jain, 2014 [77]), 

and the Pareto envelop-based selection algorithm-II (PESA-II) (Corne, 2001 [78]). 

The NSGA-III algorithm was adopted in the present study. Annual Pareto fronts 

were calculated with four PCA factors of GP (Figure 2)—AP, SLS, and GR and ESV-USI—

for 89 counties in Inner Mongolia from 2001 to 2017. GP, GR, and USI should be maxim-

ized in Pareto front analysis among the five vectors, while AP and SLS should be mini-

mized. Take the multi-objective problem of minimization as an example. The vector 

( ) ( ) ( ) ( )( )1 2, , , nf X f X f X f X= consists of n objective components ( )( )1, ,if X i n= , 

and two decision variables uX and vX are arbitrarily given. For  1, ,i n  , when 

( ) ( )i u i vf X f X , then uX dominates vX . For  1, ,i n  , when ( ) ( )i u i vf X f X , and 

there is at least one ( ) ( )  , 1, ,j u j vf X f X j n  at the same time, then uX weakly domi-

nates vX . Under the constraints of the above conditions, we screened 89 counties by years 

to obtain the corresponding city set (that is, the Pareto front) and then counted the 
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occurrences of each of 89 cities and counties in the Pareto front from 2001 to 2017. Based 

on the occurrences, these cities and counties’ urban sustainability status was assessed. 

  

Figure 2. General Progress (GP) scores of different Cities/Counties in IMAR. 

4. The Case Studies 

The Inner Mongolia Autonomous Region (IMAR) (37°24′~53°23′ N, 97°12′~126°04′ E) 

is located on the northern border of China and the southern portion of the Mongolia Plat-

eau, with a total area of about 1.18 million km2 (Figure 3). The average elevation of the 

study area was 1000–1200 m, and it is predominantly covered by the temperate steppe. 

The terrain is flat, with the Greater Khingan Range in the east and Yinshan and Henan 

Mountains in the south. The climate in the steppe area is a typical temperate continental 

climate, with an annual precipitation of 50–450 mm and an annual average temperature 

ranging from −1 °C to 10 °C. The weather gradually transitions from humid and semi-

humid in the east to semi-arid and arid in the west. The average precipitation decreases 

from the northeast to the southwest, but the temperature increases. The whole area ex-

tends diagonally from the northeast to the southwest in a long and narrow shape. The 

IMAR temperate grasslands account for about 67 percent of the region’s total area and 22 

percent of the grassland area of China. 
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Figure 3. The Study Area and the Cities/Counties in the Pareto Front. 

Together, IMAR and Mongolia comprise one of the most extensive remaining grass-

lands in the world. The study area covers all 89 banners (counties) in IMAR. IMAR grass-

land has witnessed severe degradation due to excessive population growth and economic 

development in recent decades. For example, IMAR witnessed dramatic economic growth 

from 2000 to 2017. Although the total population increased by almost 9.35 percent during 

this period, from 23.10 million to 25.26 million, the GDP increased 1040.87 percent, from 

14.26 billion Chinese Yuan in 2000 to 16.28 trillion Chinese Yuan in 2017 (IMAR Statistical 

Bureau, 2001–2018 [79]). Livestock numbers increased by 127.9 percent, from 49.36 million 

sheep units in 2000 to 112.50 million units in 2017. The urban construction area increased 

114.23 percent from 2000 to 2017. The excessive socioeconomic activities and urban expan-

sion have threatened the grassland ecological security and urban sustainability develop-

ment. Therefore, IMAR is one of the best sites in which to study coupled human and nat-

ural systems due to its fragile semi-arid environment and excessive human activities 

(Brown, et al. 2013 [80]). 

The data of LULC primarily came from the NASA MCD12Q1 Data Product 

(https://lPCAac.usgs.gov/products/mcd12q1v006/, 15 January 2022) at 500 m resolution. 

Sixteen out of the 17 International Geosphere-Biosphere Program LULC types were found 

in the study area (the exception was “Evergreen Broadleaf Forest”) (http://www.igbp.net/, 

15 January 2022). However, the urban land areas in the NASA MCD12Q1 Data Product 

were the values in 2000, and no further updates were provided. Therefore, we replaced 

the urban land data in the NASA MCD12Q1 Data Product with the yearly urban and 

build-up impervious surface data (Gong, et al., 2019 [81]). This dataset is open-source and 

can be downloaded from http://data.ess.tsinghua.edu.cn, 15 January 2022. 

The socioeconomic variables were extracted from the statistic yearbooks of the IMAR 

from 2000 to 2017 (IMAR Statistical Bureau, 2001–2018 [79]). The variables included total 

area, population, rural population, arable and grazable area, grain production, livestock, 

length of highway, farming income, GDP, local government revenue, governmental in-

vestment, retail, infrastructure, and social capitals. There are 31 variables in total, and the 

explanations of these variables are provided in Table 1. The z-scores are applied to stand-

ardize these variables for statistical analysis. (Note: The classification of population is 
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based on the head/tail breaks (Jiang 2013 [82]) in order to show the inherent hierarchy or 

living structure of the cities.) 

Table 1. The list of variables. 

Abbreviation Explanation Unit 

POP Population (PP) 10,000 people 

GDP Gross Domestic Product (GDP) 2016 10,000 yuan 

GOVA 
Gross Output Value of Farming, Forestry, Animal Husbandry and Fishery 

(Agriculture) GOVA-2016 
10,000 yuan 

AA Arable Area (AA) Hectare 

GRAIN Grain Production (GP) Ton 

LIVESTOCK The amount of the livestock by the end of the year (ls) 10,000 head 

FAI Fixed Assets Investment (FAI)—2014 10,000 yuan 

LGR Local Government Revenue (LGR)—2014 10,000 yuan 

IOFP Per capita net income of farmers and pastoralists (IOFP) Yuan 

LOH The total length of highways (LOH) Kilometer 

RPOP Rural Population—RPOP 10,000 people 

TCRV Total consumer retail value 10,000 

PTE Number of professional and technical workers Person 

MHT Number of middle and high school teachers Person 

HPB Number of hospital beds One 

HMP Number of health and medical professionals  Person 

PCURDI The per capita disposable income of urban permanent residents Yuan 

PIO Total Output Value—Primary Industry (10,000 yuan) 10,000 

SIO Total Output Value—Secondary Industry (10,000 yuan) 10,000 

TIO Total Output Value—Tertiary Industry (10,000 yuan) 10,000 

LandArea Total Land Area  Sq. kilometers 

Water Water Area Sq. kilometers 

Forest Forestland Area Sq. kilometers 

Shrub Shrubland Area Sq. kilometers 

Grass Grassland Area Sq. kilometers 

Wetland Wetland Area Sq. kilometers 

Crop Crop Area without Planted Grassland for Harvest Sq. kilometers 

ACrop Crop Area + Planted Grassland for Harvest Sq. kilometers 

Urban Urban Land Area Sq. kilometers 

Snow Snow Covered Area Sq. kilometers 

Sand Sandy Land Area Sq. kilometers 

The analytical method proposed in the paper is a synthetic approach consisting of 

three analytical methods: (1) principal component analysis to identify interaction dimen-

sions embedded in the regional integrated environmental and socioeconomic data; (2) 

ecosystem service value-based urban sustainability assessment for a precise accounting of 

ecosystem functionalities for urban sustainability; and (3) a multi-objective optimization 

problems (MOOPs) solution to evaluate how socioeconomic interactions and ecosystem 

service functions impact regional urban sustainability. 

4.1. PCA and Four Derived Urban Development Indicators (DUDI) 

PCA generated four dimensions (factors) with the eigenvalues larger than 1.0, which 

is the common criterion for determining how many dimensions are chosen to explain the 



Sustainability 2022, 14, 9142 11 of 21 
 

total variance in the original data. Four dimensions had >1.0 eigenvalues and cumula-

tively explained 81.26 percent total variance (Table 2). 

Table 2. Total Variance Explained. 

Factor Eigenvalues % of Variance Cumulative % 

1 10.289 46.768 46.768 

2 5.230 23.773 70.541 

3 1.330 6.045 76.586 

4 1.028 4.673 81.259 

5 0.816 3.708 84.967 

Factors 6–21 were deleted because of their Eigenvalues < 1.0  

22 0.005 0.024 100.000 

Furthermore, the PCA rotated component matrix exhibited how the variables in the 

original data interacted in each dimension (factor) (Table 3). Eleven variables interrelated 

with Dimension 1 (D1) and explained almost half (46.77 percent) of the total variance. The 

variables included gross domestic production (zgdp), tertiary industrial output (zTIO), 

secondary industrial output (zSIO), fixed assets investment (zfai), local government reve-

nue (zlgr), per capita disposable income of permanent urban residents (zPCUREI), total 

consumer retail value (zTCRV), number of health and medical professionals (zHMP), 

number of professional and technical employment positions (zPTE), number of middle 

and high school teachers (zMHT), and total population (zPP). Obviously, D1 represented 

the development progress in production, wealth, commerce, health, technology, educa-

tion, and human resources. Therefore, D1 was analogous to the genuine progress indica-

tor (GPI) and was named “General Progress” in this paper. 

Table 3. PCA Rotated Component Matrix a. 

 General Progress 
Agricultural 

Progress 

Stress on Land 

Supply 

Grassland 

Resource 

zgdp 0.974 b 0.086 −0.032 0.024 

zfai 0.962 0.055 −0.009 0.035 

zlgr 0.961 −0.015 −0.038 0.019 

zTCRV 0.955 0.089 −0.095 0.020 

zTIO 0.947 −0.023 −0.066 0.015 

zHMP 0.929 0.154 −0.121 −0.084 

zPCUREI 0.927 −0.072 −0.013 −0.006 

zPTE 0.908 0.142 0.021 −0.043 

zSIO 0.902 −0.071 0.074 0.036 

zMHT 0.888 0.368 −0.100 −0.017 

zpp 0.816 0.496 −0.060 0.062 

ziofp 0.433 −0.126 −0.281 −0.052 

zPIO 0.225 0.909 0.169 −0.069 

zgova 0.214 0.895 0.163 −0.048 

zrpop 0.207 0.851 0.084 0.208 

zaa −0.065 0.814 0.180 −0.142 

zgp −0.174 0.792 0.215 −0.189 

zACrop 0.025 0.738 −0.077 −0.491 

zloh 0.162 0.236 0.821 −0.180 

zUrban 0.335 −0.141 −0.579 −0.066 

zls −0.068 0.511 0.568 0.142 
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zGrass 0.010 −0.190 −0.035 0.944 

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normal-

ization. a Rotation converged in 6 iterations. b the bold numbers indicate these variables closely cor-

relate with this factor. 

Six variables interacted with Dimension 2 (D2), and all of them were various indica-

tors reflecting agricultural growth. Thus, D2 indicated the agricultural growth dimension. 

Three variables (the total length of highway—zloh, urban land percentage—zUrban, and 

the amount of livestock—zls) reflected the stress or consumption of natural land supplies. 

They were interrelated with Dimension 3 (D3), which revealed the land resource con-

sumption. Dimension 4 (D4) related to a single variable, grassland percentage (zGrass), 

and thus represented the grassland resource dimension. 

4.2. Ecosystem Service Value-based Urban Sustainability Index (ESV-USI) 

The values of USI by years and banners (counties) were calculated based on the for-

mulas and parameters developed for assessing sustainable urban development in the 

same study area by Liang and colleagues (2020) [49] and using the yearly land-use data 

compiled for this paper (Table 4). 

Table 4. The equations and parameters used to compute USI. 

Calculation 

Steps 
Equations Explanation 

1 

unit price per hectare (2219.48) = average actual food 

production of cropland (4415) × 1/7 × average price 

for grain (3.519) 

4415 kg/ha2 is the average value from 2005 to 2016; 

3.519 Yuan/kg is the grain price of 2005. 

2 
VCkf = unit price per hectare (2219.48) × total 

equivalent weight factor 

VCkf is the value coefficient for category k and 

service function type f. Total equivalent weight 

factors include 7 land-use types: Forest, Grass, 

Shrub, Crop, Wetland, Water, and Urban; Forest 

replaced woodland and Urban replaced built-up.  

3 ESV A VCS k kfk f
=    

ESVS refer to the total static ecosystem value. Ak

represents the area of LULC category k. 

4 

ESV
ESV E

E

S

c an
avg

=   

E E m

an m i n i==    

Eavg, Ean, Em are economic values of one weight 

factor, while Eavg is the average value and Ean is 

calculated by the Em in current year m during the 

study period, n refers to the start year. i is GDP 

index.  

5 

ESV ESV Ad c c=   

( )A 1 1 exp( )c t= + −  

( )1 3nt E= −  

nE indicates Engel coefficient of cities and towns of 

entire Inner Mongolia. 

6 ( )2 2 2USI GDP PCNI ESV 3d= + +  IOFP was used to replace PCNI. 

The parameters and calculations were based on Jianyuan Liang, Yichun Xie, Zongyao Sha, and Al-

icia Zhou, Modeling urban growth sustainability in the cloud by augmenting Google Earth Engine 

(GEE), Computers, Environment and Urban Systems 84 (2020) 101542 [49]. 

4.3. The Results of Multi-Objective Optimization Problems Solution—Pareto Front Analysis 

The PCA and the USI analyses generated five composite indicators that were closely 

related to the sustainable conditions of urban growth: general progress (GP), agricultural 

progress (AP), stress on land supply (SLS), grassland resource (GR), and urban sustaina-

bility index (USI). These indicators interacted in different ways with sustainable urban 
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states. For instance, GP reflected the general socioeconomic health of urban development 

and was a positive sign of sustainable urban development. Thus, GP is a maximization 

function in PFA. AP, in general, had negative feedback with sustainable urban growth in 

IMAR because grazing was the primary economic activity that fitted with the grassland 

ecosystem (Li and Xie, 2013 [83]). AP consisted of a minimizing function in PFA, and SLS 

negated sustainable urban growth and was a minimizing function. 

On the contrary, GR was the most important natural resource in IMR and should be 

preserved toward ecosystem sustainability. Therefore, GR comprised a maximization 

function in PFA. Furthermore, USI was an eco-economic indicator of urban sustainability 

with joint consideration of urban economic development and LULC consumption. Hence, 

USI should be a maximization function in PFA. The discussions above further confirmed 

no absolute solutions concerning which of the five composite indicators was more deci-

sive in determining sustainable urban growth. They were a set of trade-off solutions in 

which no one was dominant, but merely consisted of a trade-off included in PFA. 

Eighty-nine cities and counties in IMAR were evaluated from 2001 to 2017 through 

PFA with five functions of GP, AP, SLS, GR, and USI. We report the positions of 89 cities 

and counties falling within the Pareto Front for 17 years in Table 5 and Figure 3. 

Table 5. The list of cities and banners in the Pareto Fronts by years. 

City/County Name 
Occurrenc

e in PFA 
Occurrence Year 

Baotou City 14 
2001,2002,2003,2004,2005,2006,2008,2009,2010,2011,20

12,2014,2015,2016 

Chifeng City 13 
2001,2003,2004,2005,2006,2007,2008,2009,2010,2011,20

12,2013,2016 

Jining District 9 2003,2004,2005,2006,2009,2010,2011,2013,2014 

Ejinna Banner 9 2002,2003,2004,2006,2010,2014,2015,2016,2017 

East Ujimqin Banner 7 2001,2002,2003,2004,2006,2007,2008 

Wuhai City 5 2004,2005,2010,2013,2014 

Otog Banner 5 2001,2002,2003,2006,2007 

Hohhot City 4 2001,2002,2003,2011 

Jarud Banner 4 2003,2004,2005,2007 

Yakeshi City 4 2001,2002,2003,2005 

Genhe City 3 2001,2002,2003 

Manzhouli City 3 2004,2005,2006 

Ergun City 3 2001,2002,2003 

Dongsheng District 2 2009,2011 

Jungar Banner 2 2001,2002 

Horqin Right Front 

Banner 
2 2001,2003 

Oroqin Autonomous 

Banner 
2 2001,2002 

Xilinhot City 2 2001,2004 

Erenhot City 1 2001 

Hexigten Banner 1 2005 

Zhalantun City 1 2001 

Ongniud Banner 1 2001 

Dalad Banner 1 2001 

Ar Horqin Banner 1 2005 
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Overall, the urban sustainability states in IMAR gradually worsened. A good number 

of cities and counties were within the Pareto Fronts (PFs) before 2010. However, the num-

ber of the PFs entries decreased sharply after 2010. In particular, some traditional large 

pastoral banners and cities, such as East Ujumqin Banner, Jarut Banner, and Xilinhot City 

were no longer in PFs. After 2010, only a few cities, such as Baotou, Chifeng, and Jining, 

remained in PFS because they were large cities with rich ecological resources, comprehen-

sive and robust economic foundations, and balanced urban economic development. The 

inaugural year of China’s ecological compensation policy launched in IMAR was 2010 

(Chen et al., 2017 [84]; Deng et al., 2017 [85]). However, it was surprising that this year 

marked a turning point of deteriorating urban sustainability. In other words, this policy 

did not promote healthy recovery of regional ecology and balanced economic develop-

ment in traditional animal husbandry banners. These traditional grazing banners were 

known for their rich mineral resources. In economic transformation, industrial develop-

ment and mining activities were the main streams. The newly established industrial and 

mining parks and subsequent expansion of cities and towns further damaged grassland 

resources. They generated a severe negative impact on the sustainable utilization of grass-

land and other natural resources (Liu et al., 2021 [86]). Over the past three decades, but 

especially in the past 10 years, the development of coal mines in the Inner Mongolia Au-

tonomous Region has contributed to economic growth, grassland destruction, and eco-

logical deterioration. 

The top five cities and banners that often fell within PFs are analyzed below to illus-

trate sustainable urban growth in IMAR. The most frequent city in PFs is Baotou City, 

located in the western part of the Inner Mongolia Autonomous Region, bordering Mon-

golia to the north, the Yellow River to the south, the Tumochuan Plain to the east, and the 

Hetao Plain to the west. In 2005, Baotou became the first batch of civilized cities in China. 

Baotou is an important hub connecting North China and Northwest China, a key devel-

opment area for the country and Inner Mongolia to open up to the outside world. Along 

with Hohhot and Ordos, Baotou constitutes the most vigorous development area in Inner 

Mongolia. Baotou has won many awards and titles, including the United Nations Habitat 

Award, the Chinese Living Environment Model Award, the National Forest City, the Na-

tional Garden City, the National Sanitary City, the Third China Environment Award, the 

National Soil and Water Conservation and Ecological Environment Construction Demon-

stration City, and the China Excellent Tourism City. Baotou has the largest steel, alumi-

num, equipment manufacturing, and rare earth processing enterprises in Inner Mongolia. 

It is a vital energy, raw material, rare earth, new coal chemical and equipment manufac-

turing base in the country and Inner Mongolia. It is also one of the 20 most suitable cities 

for industrial development and one of the 50 best cities in the national investment priori-

ties. Baotou is the leader in sustainable urban development in IMAR, because Baotou is 

notable in terms of industrial development, environmental governance, and per capita 

income. 

The second most frequent city in PFs is Chifeng City. Since 2000, GP, AP, and USI 

have displayed continuous increases. However, GR declined, and as a result, SLS in-

creased. Chifeng City is the most populous city in IMAR. The grassland reclamation areas 

in Chifeng from 2000 to 2009 were the largest in the region. The number of livestock has 

also shown an increasing trend since 2000; urban expansion was dramatic, and industrial 

development was at the autonomous region’s forefront. Clearly, GP was the primary func-

tion that placed Chifeng City in PFs numerous years since 2001. On the other hand, ac-

cording to the indicators of GR and SLS, there are questions regarding the urban sustain-

ability in Chifeng, which will be discussed below. 

Jining District, the third most frequent city in PFs, is the capital city of Wulanchabu 

League. It is located in “the Golden Triangle” junction between the Bohai Rim Economic 

Circle, the “Hubao’e” Economic Zone, and the “Wudazhang” Great Wall Economic Belt. 

Among the 12 league cities of IMAR, Jining is the closest one to the national capital Beijing. 

As a result, Jining is the transportation hub that connects the three major economic zones 
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of North China, Northeast China, and Northwest China. It is also an essential passage to 

Mongolia, Russia, and Eastern European countries. Thus, it is an important node city of 

the national “Belt and Road” strategic planning initiative and the China-Russia-Mongolia 

Economic Corridor. Jining has made rigorous progress in sustainable urban development. 

It has been described variously as a “National Greening Model County (District)”, “Na-

tional Garden City”, and “National Sanitary City”. It is also known as the “Beautiful Gar-

den City Built on Basalt”. In particular, with the strategic opportunity of the integrated 

development of Beijing-Tianjin-Hebei and the active construction of the inland port by 

connecting the Tianjin Port, Jining has reached the forefront of undertaking industrial 

transfer from developed areas such as Beijing-Tianjin-Hebei to China’s hinterland. There-

fore, Jining enjoys the preferential policies of the development of the western region, re-

gional autonomy for ethnic minorities, and support for the development of deeply impov-

erished areas. Jinin City was constantly ranked high in the Urban Sustainability Index 

(USI), which was the most important driving function to place it in PFs. 

Ejinna Banner is the fourth most frequent county in PFs. However, Ejinna is a small 

banner with a permanent population of 20,000–30,000 people and therefore has a small 

urban area. Ejinna has a mixed agriculture and grazing economy. Its natural grassland 

area is about 120 million mu, which is the largest grassland area among the three banners 

in the Alxa League. Agriculture is mainly concentrated in the areas with irrigation, and 

the main products are cantaloupe and cotton. In addition, Ejinna has a border port, called 

Ceke. This port is the third largest inland port between China and Mongolia and also plays 

a positive role in promoting its economic development. In recent years, tourism around 

the “Euphrates Forest, Juyanhai Lake, and Black City” has flourished, which has pro-

moted the popularity of Ejinna and driven the development of the surrounding economy. 

The entry of Ejinna into PFs were mainly driven by its good values in GR and USI. 

The East Ujimqin Banner boasts a large natural grassland area of 59.41 million mu. 

Grassland vegetation cover there is better than the adjacent West Wuzhu Muqin Banner 

(many open-pit coal mines, including the famous Baiyinhua Coal Mine). East Ujimqin is 

a premium animal husbandry banner that manages its natural grasslands well. The num-

ber of livestock in the stock has consistently ranked among the top five banners in IMAR. 

In recent years, the number of horses raised has gradually increased. The per capita net 

income of farmers and herders has been on the top banner in IMAR. On the other hand, 

urban expansion in East Ujimqin is not apparent overall. At the same time, the economic 

growth rate is relatively stable compared with other banners in IMAR, which have sought 

fast economic growth rates. GR has been the factor contributing most to its entry into PFs. 

5. Implications of the Study 

The study area of IMAR is located on the southern portion of the Mongolian Plateau, 

which faces many problems in terms of the environment and sustainable development. 

For example, rapid urbanization, fast population growth, grassland degradation and des-

ertification, over-grazing, unplanned and uncontrolled mining, soil erosion, and water 

pollution have caused severe environmental and social consequences in IMAR (Brown et 

al. 2013 [80]; Wu et al. 2015 [87]). IMAR has faced a constant increase in urban construc-

tion, cultivated land, and rural residential land and a decrease in grasslands and water 

bodies (Xie et al., 2021 [88]). Therefore, IMAR is an excellent site for measuring SUS. Our 

case study confirmed this finding. Especially since 2010, the SUS status has dramatically 

worsened. Ironically, 2010 marked a significant policy change in the study area, as the 

ecological compensation policy was enacted (Deng et al., 2017 [85]). Unfortunately, be-

tween 1987 and 2015, water resource use in IMAR increased four-fold, energy consump-

tion increased approximately seven-fold, and large areas of natural grasslands were con-

verted to agricultural, industrial, and urban land use (Shang et al.,2019 [89]). These trends 

have continued, even after implementation of the eco-compensation policy in 2010. 

Moreover, the IMAR case study identified two types of SUS systems. The first group 

includes large cities such as Baotou, Chifeng, Jining, Wuhai, and Hohhot. They boast 
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certain common characteristics, including a well-developed economy, diversified indus-

trial sectors, vital transportation location, good living conditions, and a clean environ-

ment. They represent successful modern urban growth and development. The second 

group consists of small counties such as Ejinna Banner and East Ujimqin Banner. These 

counties have a small population, small urban construction area, large natural grassland 

stretches, and a primary grazing economy. They are largely traditional rural economic 

counties with little industrial growth. This type of sustainable urban development aligns 

well with the conservation point view of sustainable urban development (Kowarik et al., 

2020 [90]). In short, the integrated ISL-DM-MOA framework identifies what cities and 

counties display sustainable urban growth and can examine comprehensive trade-offs 

among several critical sustainability dimensions that available data can support. There-

fore, this analytical framework can analyze SUS involving many integrated ecological, 

environmental, and socioeconomic variables. ISL-DM-MOA strongly recommends that 

urban sustainability should be assessed based on local or regional conditions (Tanguay et 

al., 2010 [91]). Only at a fine geographical scale is the SUS assessment meaningful to guide 

policy decisions. 

As shown above, the analytical framework is shown to be of value for effectively 

assessing SUS, as it involves many variables from the perspectives of ecology, he environ-

ment, and even socioeconomics. What are the next steps? Logically, we would like to see 

our cities or communities become more sustainable or more livable. So far, this study has 

not offered a solution or direction regarding how the cities should be developed, despite 

its effectiveness in assessing SUS. This observation adds a potential limitation of the study 

or this kind of analytical study in general. This kind of analytical study is developed ac-

cording to the present sustainable paradigm, the one-sided technical notion of sustaina-

bility, which may sound technically good on one hand but is very one-sided on the other, 

according to Alexander (2004) [92]. There is an alternative, perhaps better, sustainable 

paradigm based on morphogenesis or living structure (Alexander 2004 [92], Alexander 

2002–2005 [93]) under which our interaction with the land or the Earth’s surface is treated 

as a sacrament. 

Living structure is a physical phenomenon that exists pervasively in surroundings 

such as rooms, buildings, gardens, streets, and cities. It consists of numerous recursively 

defined substructures with an inherent hierarchy. Across different levels of the hierarchy, 

there are far more small substructures than large ones, yet on each level of the hierarchy, 

substructures are more or less similar in size. Living structure is conceived under the third 

view of space: space is neither lifeless nor neutral, but a living structure capable of being 

more living or less living (Alexander 2002–2005 [93]). Seen from the perspective of a living 

structure, sustainability is about making the Earth’s surface living or more living. Note 

that the notion of livingness can be objectively or structurally measured and quantified 

(Jiang and de Rijke 2022 [94]), assessed from a holistic point of view of space. Under the 

notion of living structure, many urban issues, such as sprawl, traffic, and social segrega-

tion, are inevitable outcomes of the underlying living structure. In other words, the un-

derlying living structure needs to be developed further. Under the notion of living struc-

ture or the third view of space, we no longer fragmentedly consider individual issues or 

parameters but holistically make and remake the Earth’s surface living or more living. 

This is a new kind of city science (Jiang 2022 [95]), a sort of generative science that deals 

with not only the understanding of city structure and dynamics, but also—probably more 

importantly—sustainable urban planning and design towards a sustainable society. This 

speculation points to our future work on urban sustainability. 

6. Conclusions 

The new urban sustainability framework, ISL-DM-MOA, innovatively synthesizes 

currently available socioeconomic statistics and environmental data as a unified dataset 

to assess urban sustainability as a coupled human–nature system or a total socio-environ-

mental system (Xie et al., 2019 [96]). ISL-DM-MOA uses socioeconomic statistics that are 
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officially published annually by census bureaus or statistical bureaus and integrates them 

with environmental data extracted from remotely sensed images. ISL-DM-MOA breaks 

the strict definitions of current comprehensive SUS indicators. It acknowledges that urban 

sustainability is not a universal measurement; it varies at different geographical scales. It 

varies between continents, nations, regions, and communities. The ISL-DM-MOA frame-

work adopts PCA’s data mining technique to derive underlying urban sustainable devel-

opment or economic growth dimensions based on available coupled regional economic-

environmental dataset. These PCA-derived dimensions approximate the current compre-

hensive SUS indicators and add additional aspects of sustainable urban growth. In addi-

tion, this framework integrates two dominant SUS research approaches: the comprehen-

sive indicators and the ecosystem services. Therefore, this framework extends the current 

evaluation of SUS from the national scale to a regional scale by bridging the data gaps 

required to calculate SUS indicators. 

Furthermore, the ISL-DM-MOA framework promotes a new vision of urban sustain-

ability. Urban sustainability is a complex and dynamic state of urban development (Batty, 

2013 [97]). Urban systems as complex human-natural systems consist of numerous demo-

graphic, ecological, environmental, socioeconomic, and political (policy) processes that 

form various levels of reaction chains. These interconnected chains determine why some 

subsystems correspond to other subsystem changes, because these subsystems coexist and 

interact together to create causal structures to determine positive or negative trade-offs 

between them. Therefore, the SUS measurement is neither a precise value nor a single 

modeling function. A meaningful SUS evaluation involves assessing trade-offs among a 

set of urban sustainability factors, goals, or targets. In other words, urban sustainability 

involves a set of choice candidates that are derived from an integrated socioeconomic and 

environmental dataset, which is available in a study area. As a result, ISL-DM-MOA ad-

vocates that the perception and acceptance of urban sustainability differs among different 

political, administrative, historical, and cultural systems. The paper has made an excellent 

empirical case study of the ISL-DM-MOA framework in IMAR. 

However, the ISL-DM-MOA framework is the first experiment of this type of urban 

sustainability assessment. Due to the data availability and the complexity of urban sus-

tainability, many elements of urban sustainability, such as the cultural dimension and re-

newal energy, are not examined by the current framework. Although this framework is 

open to all available data and information by its design, the next steps are more tests and 

validation studies. Moreover, since this approach breaks with two currently popular prac-

tices of using indicators and comprehensive scoring methods, it is currently challenging 

to compare this framework with other similar urban sustainability studies. 
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