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Abstract: Constructing structures on lateritic soil is challenging in geotechnical engineering due to
the various physical and geotechnical characteristics. Many studies investigated different stabiliser
materials to strengthen the geotechnical parameters of lateritic soil. This study used activated carbon
and coir fibre (ACF) to stabilise lateritic soils as an environmentally friendly binder. Experiments in-
cluding the unconfined compressive strength (UCS) test and the direct shear test (DST) are performed
to investigate the mechanical properties of ACF-stabilised soil for different percentages of activated
carbon (AC). Before and after ACF stabilisation, microstructural characterisations of soil samples were
performed using field emission scanning electron microscopy (FESEM) and surface-area analysis
(BET). The experimental results demonstrate that 3% ACF can considerably enhance the compressive
strength, while 2% ACF significantly improves the shear strength, of lateritic soil. Accordant to the
UCS results, using fibre in AC-stabilised soil improves post-peak behaviour and residual strength.
Moreover, 2% ACF can significantly improve shear strength by creating an interlocking matrix among
AC, soil particles, and fibre. The microstructural characterisation based on the findings obtained by
FESEM and BET analysis confirms that AC particles fill soil voids. AC restrains the soil movement
when exposed to external stresses. In addition, the formation of gel in the stabilised soil matrix binds
the soil particles, increasing the strength of the ACF-stabilised soil in comparison with untreated soil.

Keywords: lateritic soil; activated carbon; direct shear test; geotechnical properties; microstructure

1. Introduction

The behaviour and properties of soil significantly influence the economy, safety, and
success of many civil engineering projects. Soil stabilisation and soil reinforcement are
extensively used in many engineering structures to enhance geotechnical properties, such
as the plasticity, durability, shear strength, density, and permeability of natural soils [1–3].
It is essential to consider all aspects of environmental control, including water pollution
control, water resources, containment and waste disposal, and the mitigation of natural
disasters effects such as earthquakes and landslides on structures. Therefore, stabilising
underlaid soil is essential to have a stable system [4].

Although various additive materials are used as soil stabilisers, cement and lime
are widely used as binders [5]. They have been employed in soft-soil improvement for
decades because they improve soil strength, limit shrinkage and swelling, and decrease
settlement [6]. Although these binders are efficient in enhancing the geotechnical charac-
teristics of soil, they have some limitations, including environmental impacts and costs.
For example, a tonne of cement requires 1.5 tonnes of raw materials and 5.6 GJ/tonne of
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energy [7] and releases about 0.95 tonnes of CO2 [8], whereas production of a tonne of
lime releases 0.86 tonnes of CO2 [9]. Furthermore, around 7% of overall greenhouse-gas
emissions in the atmosphere belong to cement-manufacturing processes [10,11]. Given
these issues, using environmentally friendly and cost-effective stabilisers is significant for
stabilising soils.

Many waste products in agriculture include coconut shells, straw, discarded apple
pulp, coir pith, apricot stone shells, sawdust, sugarcane bagasse, olive stones, and peanut
husk. As a result, these waste products will be abundant, and their disposal will be
burdensome financially and environmentally. One environmentally responsible option is
making activated carbon from them [12] and stabilising problematic soils such as lateritic
soil. This is more inexpensive, cost-effective, and environmentally friendly than chemical
additions. Moreover, many fibres that have been used as reinforcement in soil are also
waste products. Generally, fibres are categorised into two groups, synthetic (polypropylene
(PP), polyethene, glass, polyester, steel, carbon) and natural (palm, coir, sisal, jute, wheat,
bagasse). Synthetic fibres are more durable and are highly resilient when exposed to
environmental changes. Recently, researchers have focused on using some synthetic fibres,
particularly recycled and waste fibres, for soil stabilisation [13], although synthetic fibres
are mostly non-biodegradable and, thus, would persist in the environment for centuries
without decomposition [14].

Furthermore, some synthetic fibres can leach dangerous chemicals into the soil, perme-
ating groundwater or other nearby water sources and ecosystem [15]. In contrast, natural
fibres are cheaper and more tolerable than synthetic fibres [16]. Some natural fibres such as
coir fibres have a low cellulose content but a high lignin content, making them extremely
durable, strong, and resilient as well as strongly resistant to abrasion, fungal and bacterial
decay, and pilling. Besides, coir fibres can resist months of soaking without destruction;
they have an extensive range of erosion-control applications [17].

Fibre-reinforced soils have become more popular due to their superior flexibility and
strength to natural soils. They improve railway substructure and slope stability and reduce
pavement thickness [18]. Some advantages of fibre as reinforcement compared to geosyn-
thetic layers in soil are fewer catastrophic failures, more utility in complicated geometries
and constrained places, higher flexibility and deformability, a lower chance of developing
weak planes, and cost-effectiveness [19]. Besides, fibre also improves the flexural behaviour
of cement-stabilised soil [20]. In addition, the SEM images of fibre-reinforced soil exposed
to freezing–thawing cycles revealed that fibre is undamaged by the repeated freeze–thaw
cycles [21], resulting in higher durability. The resilient modulus, permanent strain, and
damping ratio improve when waste-tire textile fibres are used to reinforce sandy soil [22].
In sandy soil, the aspect ratio and fibre content reduced the critical confining stress and en-
hanced the shear strength [23]. Fibre also improved the strength, slope stability, and safety
factors in embankments filled with fibre-reinforced soil [24]. Carbon fibres have a natural
resistance to degradation, and randomly dispersed short carbon fibre could efficiently
strengthen non-cohesive soil [25]. The authors of [26] also showed that adding carbon
fibre to clay soil enhances its shear strength considerably. However, the authors of [27]
demonstrated that adding low carbon to clay soil raises the interparticle forces. Moreover,
the pores are filled with cementitious products. Many previous soil-improvement studies
have concentrated on traditional calcium-based stabilisers such as lime and cement rather
than non-traditional stabilisers. Hence, alternative eco-friendly additions to conventional
stabilisers based on calcium have become widely popular to reduce the environmental
effect of traditional stabilisers. Activated carbon is a material that finds wide application in
many areas, especially in environmental protection [28]. According to a few studies, AC
can absorb CO2 due to the large surface area of the unit volume, and contaminants can be
adsorbed in the submicroscopic pores. In addition, activated carbon is stable in basic and
acidic environments [29,30]. Moreover, the compression strength and CBR value of soil are
increased by adding AC contents [31].
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This research investigates the influence of AC and coir fibre on the geotechnical
properties of lateritic soil. A set of DST and UCS testing was performed to find the effect of
AC (1, 2, 3 wt%) and 0.5% coir fibre on the strength properties of stabilised-soil specimens.
The peak compressive strength, stress and strain behaviour, elastic modulus, initial friction
angles, and cohesion were examined and discussed. Finally, FESEM and BET tests were
carried out to reveal the microstructure of treated and untreated soil to understand the AC-
and ACF-stabilising mechanisms.

2. Materials and Methods

This research investigates the soil collected from location 1◦33′32.9′ ′ N, 103◦38′39.4′ ′ E
coordinates in Universiti Teknologi Malaysia, Johor campus. Table 1 shows the physical
and engineering characteristics of lateritic soil used in this research. Lateritic soils are
usually too poor and unsuitable for infrastructure facilities construction such as railways
and highways. In addition, Figure 1 depicts the particle-size analysis of soil and AC.
Regarding Table 1, the particle-sizes analysis of lateritic soil is within the ranges found in
other studies [32]. The soil particles less than 75 microns and AC were measured using
laser-diffraction equipment, model 2000 E Ver. 5.52 (ISO:13320, 2009), to be more effective
and reliable [33]. Then, the sieving results are used to analyse soil particles greater than
75 microns. This study combines laser diffraction with conventional techniques due to time
savings and high accuracy [34]. Moreover, the soil used in this research mainly consists of
clay minerals, as illustrated in the X-ray-diffraction analysis results in Figure 2.

Table 1. Geotechnical properties of soil.

Properties Value Method Standard

Liquid limit (LL) 70.3%

BS 1377

Plasticity index (PI) 28.3%
Gravel 12.79%
Sand 17.54%
Silt 61.26%

Clay 8.41%
Specific gravity 2.74

Maximum dry density (kg/m3) 1390
Optimum moisture content 28%

pH 4.05
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Figure 2. X-ray-diffraction pattern of lateritic soil.

The additive used in this study is AC coconut derivative that was obtained from
Evachem company in Selangor, Malaysia. Table 2 summarises the significant oxides of AC
achieved by XRF testing (equipment model EDX 720, Shimadzu, Japan). AC is a kind of
carbon that is often used to filter organic pollutants from air and water and for various other
applications [28]. AC contains minor, low-volume porosity that enhances the surface area
available for chemical reactions [35]. The surface area of one gram of AC is over 3000 m2

due to its high degree of microporosity [36]. The increased surface area alone can provide
an activation level suitable for practical applications [37]. Activated carbons usually have
been derived from waste products such as coconut shells, straw, discarded apple pulp, coir
pith, apricot stone shells, sawdust, sugarcane bagasse, olive stones, and peanut husk [12].

Table 2. Chemical composition of AC.

Composition (%) by Weight

CaO 39.77
K2O 17.68
P2O5 16.62
Fe2O3 11.27
SO3 7.83
ZnO 3.47
MnO 2.57
CuO 0.62
SrO 0.18

Coir fibre is also employed in this study as a reinforcement material besides AC.
It comes from the husk of a coconut and is a fibrous material, thus known as being
environmentally friendly. Figure 3 shows an image of lateritic soil, activated carbon,
and coir fibre. Coir fibre has higher tensile strength, is lighter, contains more hemicellulose,
cellulose, and lignin, and has a slower degradation rate than other natural fibres. The coir
fibre utilised in the current research has an average diameter of 0.3 mm, unit weight of
1430 kg/m3, and average tensile strength of 125 MPa.
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Figure 3. Image of (a) lateritic soil, (b) activated carbon, and (c) coir fibre.

The mechanical characteristics of the AC- and ACF-stabilised specimens are investi-
gated using unconfined compression tests (Instron 3366 universal testing machine, US).
The UCS testing is conducted based on BS1377: Part 7:1990, with a 1 mm/min rate, to
determine the stabilised soil’s compressive strength (qu). The specimens are compacted
in three layers, similar to the compaction test. Figure 4 shows the machine utilised in this
investigation for UCS testing.
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To examine the impact of AC on shear strength properties of lateritic soil, according
to BS1377: Part 7:1990, a small direct shear test (direct/residual shear apparatus, model
TKA-DSS-10, Quilin Town, Jiangsu, China) is performed at a 1.5 mm/min strain rate under
normal stress of 100, 200, and 300 kPa. For preparing the specimens, the soil is dried in an
oven and then wetted to the optimum water content. After that, it is compacted in three
layers to the target unit weight within the shear box. Figure 5 shows an ACF specimen
before and after the direct shear test.
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To explore the chemical composition and microstructural changes of the AC-stabilised
soil, FESEM analysis (model Nova Nano SEM, FEI, Holland) has been conducted on
both natural soil and stabilised soil, following the procedure in the previous study [38].
Specimens for microstructural testing are obtained from UCS samples. In addition, this
research has used the BET test to evaluate changes in surface area and pore-size distribution
of natural and treated specimens. This analysis is an essential factor in exploring how
the soil interacts with its surroundings physically and chemically due to most chemical
reactions in soils occurring at the surface of particles [39]. BET technique is among the
most widely used methods for measuring the quantified external surface area and pore size
distribution [40]. This method gathers inert gas adsorption isotherm data and modelling
the data according to the BET isotherm equation [41].(

v
vm

)
=

c ( P
P0
)

(1− P
P0
)
[
1 + (c− 1) P

P0

] , (1)

where v is adsorbed gas quantity, vm is monolayer-coverage adsorbed gas, P is the equi-
librium pressure of adsorbates, P0 is the saturation pressure of adsorbates, and c is the
BET constant.

3. Tests Results
3.1. Unconfined Compression-Strength Test

The stress–strain curves are illustrated in Figure 6 for natural soil, the AC-stabilised
soil, and the ACF-stabilised soil. First, the soil was examined for 1%, 2%, and 3% AC
content. Then, the soil was tested for 1%, 2%, 3% AC, and 0.5% coir fibre, due to adding
coir fibre with more than a 5% decrease in the compacted density consequently decreases
the soil strength [42]. As illustrated in Figure 6a, the strength of the soil raised with the
rising AC content, similar to the previous study. For instance, the untreated UCS value
of 200.87 kPa increased to 243.65 kPa, 306.31 kPa, and 545.40 kPa for 1%, 2%, and 3% AC,
respectively, as shown in Figure 6a. The combination of 0.5% coir fibre further increased
the UCS of the AC-stabilised soil, as depicted in Figure 6b. Similarly, Crane et al. [43] also
found that adding activated carbon enhanced the UCS value of soil.

The high strength of AC depends on soil-porosity reduction. The cementation bonds
and denser fabric are the main causes of UCS values and shear-strength improvement [44,45].
Figure 6b shows that the additive fibre in the AC-stabilised soil changes the brittleness
behaviour of the AC-stabilised soil to flexible behaviour, along with improving the com-
pression strength. The stress–strain curves of AC specimens show a fast hardness up to
the peak, then softening afterwards. However, the reinforced specimens illustrate a ductile
behaviour, by adding 0.5% coir fibre to AC specimens. Fibre additions in the AC specimens
enhance the soil strength by tightly enclosing the particles around the fibres as a bridge
surface [46].
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Figure 6. UCS results for (a) AC specimens and (b) ACF specimens.

Compared to untreated soil specimens, all specimens illustrate more strength and
ductility at failure strain. The failure strain increased from 2.85% for untreated soil to 2.90%,
3.22%, and 3.65% for 1%, 2%, and 3% AC, respectively, showing the increased flexibility.
Moreover, the brittleness of the ACF specimens further decreased, resulting in plastic
deformation and a significant increase in failure strain for about 3.22%, 4.13%, and 3.87%
for 1%, 2%, and 3% ACF, respectively. It indicates that adding fibre to AC soils improves
soil strength dramatically, due to coir fibre combining with additives and promoting
interlocking between soil particles [3]. Anggraini et al. [47] observed similar results by
adding coir fibres and lime into the marian clay soil. They presented improvements
in mechanical properties such as UCS values, shear-strength parameters, and flexibility.
Previous research found that coir fibre improves the stiffness, strength [48], and bearing
capacity of clay soil [49].

3.2. Direct Shear Test

Figure 7a demonstrates the shear strength versus shear strain for the AC specimens.
Peak shear strength raised with rising normal stress, particularly 300 kPa normal stress. In
addition, peak shear strength increased with increasing AC content. Figure 7b presents the
stress–strain curves of the AC-stabilised soil upon adding 0.5% coir fibre. By comparing
Figure 7a,b, it is perceived that the influence of the AC-stabilised soil further enhances upon
adding coir fibre. It is also apparent from the stress–strain curves that adding coir fibre
improves both peak shear strength and post-peak residual strength. Comparable findings
for kenaf-fibre-reinforced soil were presented by Ghadakpour et al. [50]. While Dutta et al.
showed that carbon tetrachloride and sodium hydroxide treated coir fibres improved the
post-peak strength slightly in clay soil [51]. Although the AC-stabilised specimens also
demonstrate fast hardening up to the peak, post-peak residual strength is considerably
lower than for the ACF samples, as seen in Figure 7. Given this issue, it is concluded that
the strength-softening behaviour of the AC-stabilised soil decreases upon the inclusion
of coir fibre. In addition, the ductility of the AC-stabilised soil increased when 0.5% coir
fibre was added. It is similar to previous studies that showed ductility rose when discrete
plastic [52] and waste-tire textile [53] fibres were added to stabilised soil.
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Moreover, adding AC increases peak shear strength, and the enhancement rate in-
creases with increasing normal stress, as shown in Figure 8. Similarly, the inclusion of 0.5%
coir fibre further enhanced the peak shear strength of the AC-stabilised soil, as illustrated
in Figure 9. Although adding AC in natural lateritic soil increases the peak strength, the
increasing rate is not significant for more than 2% AC. For instance, the peak strengths
of the AC-stabilised soils are 121.8 kPa and 123.72 kPa for 2% and 3% AC, respectively.
Overall, similar to the findings of this study, Kamaruddin et al. [54] found that using coir
fibre in lime-stabilised soil further increases tensile strength and compressive strength.
Sivakumar and Vasudevan also observed that the inclusion of coir fibre raised both shear
parameters in expansive soils [55].
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3.3. Microstructural Analysis

FESEM and BET tests have been used to assess the influence of AC and fibre on lateritic
soil at the micro level. Figure 10 presents the FESEM results of untreated and ACF soil.
Untreated lateritic soil contains minerals in platy shapes, leading to large holes, as seen in
Figure 10a by the dark patches, similar to prior research findings [56,57]. Clayey particles
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float and separate when they contact water, forming enormous pores [58]. The FESEM
results of ACF and AC are shown in Figure 10b,c, respectively. Regarding Figure 10b,
small amounts of calcium aluminate (CA) and calcium silicate (CS) are formed due to the
available calcium in AC. Hence, pores and gaps are filled by them and the AC particles.
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The microstructure of untreated soil is altered by the inclusion of AC. As present in
Figure 2, lateritic soil is mainly composed of alumina (Al2O3) and silica (SiO2), whereas AC
is primarily composed of calcium ions. The most significant values in terms of chemical
components belong to calcium in AC (Table 2) and silicon and aluminium in the soil. The
stabilising procedure with the inclusion of AC in the soil occurs in physical and chemical
stages: initially, AC fills the tiny pores and gaps (short term), and then pozzolanic reactions
and calcium hydration (long time) happen in the soil. Lime and cement, as calcium-based
stabilisers, are being used to strengthen the soil during the hydration and pozzolanic
processes [59]. However, in the AC-stabilised soil, the physical stage is considerable rather
than in lime and cement because the particle size of the activated carbons is smaller. In
addition, coir fibre fills pores and connects soil particles that create an integration structure
as a bridge. The surface of coir fibre is rough as well, and under shear load, soil particles
are imbanded into the pores and grooves of the fibre. Consequently, the soil’s efficient
contact area and the interlinkage between the fibre and the soil are enhanced. In contrast,
polypropylene fibre drew out the soil because of weaker superficial adhesion on the soil–
fibre interaction surface, resulting in a gap between thesoil and the fibre [60].

3.4. Surface Area Analysis (BET)

The changes in the micropores and surface area of natural soil and 2% ACF-treated soil
have been evaluated using the BET surface-area technique. The impact of AC on the lateritic
soil’s pore volume, surface area, and pore size is presented in Figure 11. The BET values of
the untreated lateritic soil and 2% ACF increase from 25.57 m2/g to 45.57 m2/g, respectively,
while the pore size and pore volume decrease from 3.05× 10−7dm and 3.89× 10−4dm3/g
to 1.51× 10−7dm and 3.51× 10−4dm3/g, respectively. The BET results confirmed that mi-
cropores and porous structures are filled with AC particles during stabilisation. Therefore,
activated carbon changes the lateritic soil structure into a completely interlocking system
with fewer tiny pores because it has a high surface area [36].
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Figure 11. Pore volume, surface area, and pore size of lateritic soil and 2% ACF soil.

4. Discussion

The stability of the underlying soils has a considerable influence on the long-term
performance of pavement systems. In situ subgrade soil is commonly unable to provide the
necessary support for optimum efficiency under traffic loads and environmental conditions.
Soil stabilisation and soil reinforcement are one alternative for improving the geotechnical
properties of a poor subgrade [61]. This study addresses soil treatment with activated
carbon and coir fibre, natural materials obtained from abundant local materials.
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4.1. Unconfined Compressive Strength

Concerning Figure 12, the UCS values demonstrate that the 3% AC with 0.5% fibre is
sufficient for improving the lateritic soil. In other words, adding 3% AC with 0.5% coir fibre
to the natural lateritic soil used in this study is adequate to fulfill the minimum UCS value
of 800 kPa requirement of the Malaysia Public Works Department (MPWD) specifications
for medium- and low-volume road construction. The findings in the current study are
similar to a previous research study [62], in which 6% cement was found to be enough to
stabilise the lateritic soil. According to Sobhan [52], chemically stabilised soil is resistant to
compression, but its contribution to tensile strength is negligible. It is a significant issue
when tension cracks appear in the soil due to shrinkage; it is expected that the stabilisation
will be able to resist it. As a result, it is essential to enhance the stabilised soil’s hardness,
flexibility, and tensile strength with fibre reinforcement. As presented in Figure 12, the
compressive strength increases when using fibre in the AC-stabilised soil. The UCS values
for 1%, 2%, and 3% AC-treated soil increased further to 64.32%, 106.24%, and 51.87%,
respectively, upon the addition of 0.5% coir fiber. Given Figure 12, adding 2% AC and 0.5%
fibre results in the highest increased compressive strength. This improvement might be
due to the effective interlocking between the fibre, AC, and soil [26].
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Figure 12. Compressive strength (UCS) for different AC contents.

4.2. Shear Strength

Figure 13 demonstrates the relationship between the shear stress and normal stress
of the AC, ACF, and untreated specimens. The shear strength improves with rising AC
and ACF contents. However, the difference in shear strength for the 3% AC and 3% ACF
samples is not considerable compared to the 2% AC and 2% ACF samples, respectively.
Hence, 2% AC and 2% ACF effectively improve the strength of lateritic soil.

In addition, Figure 14 has shown the effect of adding AC and ACF on improving
internal-friction angle and cohesion. The adhesion of AC-treated samples increases linearly
with increasing AC content, reaching 17.9 kPa for 3% AC, which is 616% greater than the
untreated soil.
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Figure 13. The relationship between peak shear strength and normal stress lateritic soil treated with
(a). various AC content and (b) various ACF content.
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Figure 14. Internal-friction angle and cohesion of treated specimens with (a) AC and (b) ACF.

Nonetheless, the influences of AC on the internal-friction angle are not considerable,
with just a 25% improvement ratio observed in the 2% AC specimen compared to untreated
soil. Considering Figure 14, it is perceived that the coupled effects of AC and coir fibre
are more significant than the influence of AC. Figure 14b indicates that adding fibre in the
AC specimens improves the internal-friction angle and cohesion. The shear parameters of
the ACF-stabilised soil illustrate an increasing trend with increasing AC up to 2%, beyond
which the shear parameters decrease. Therefore, 2% ACF can be considered optimum due to
the highest shear-strength parameters, as seen in Figure 14b. The internal-friction angle and
cohesion with 2% ACF are 51.1 kPa and 22

◦
, respectively, showing 20.44% and 37.5% higher

strength parameters than the untreated specimen. The results show that adding coir fibre
improves the strength of lateritic soil. Coir fibre can increase soil cohesion by contributing
reciprocal friction between the soil and the complex structure [48]. Indeed, coir fibre can fill
part of the gaps and provide interlocking effects when dispersed equally in soil. Hence,
shear strength can improve significantly by increasing the frictional angle and internal



Sustainability 2022, 14, 9100 13 of 18

cohesion. The finding obtained in the current study is comparable to previous results, in
which carbon fibre as a non-traditional additive in clay soil developed cohesiveness [26].
Moreover, Tang et al. [63] also reported that adding palm fibre limited soil-creep rate and
deformation, while long-term strength increased.

4.3. Elastic Modulus (E50)

The influence of ACF on the stiffness and flexibility of soil is evaluated with the secant
modulus. As in previous studies, the secant modulus is considered half of the maximum
UCS and DST values [64,65]. The impact of ACF on the elastic modulus of soil obtained
from the UCS values and direct shear values is presented in Figure 15. This figure shows the
relation between the secant moduli (E50) and peak shear strength (qDST) and the UCS values
(qUCS) of soil treated with 1%, 2%, and 3% AC, and 1%, 2%, and 3% AC with 0.5% fibre. The
equation of E50 = 31.283 qUCS is derived from the UCS values that cover qUCS > 200 kPa,
while the equation of E50 = 79.95 qDST from the DST test results is appropriate for qDST
between 50 to 200 kPa. According to the UCS results, the elastic modulus shows an
increasing trend from 8767.81 kPa for 1% AC-treated soil to 23,730.22 kPa for 3% ACF-
treated soil. In the direct shear test, the elastic modulus rises with rising normal pressure.
The minimum and maximum elastic-modulus values are 3696.90 and 13,549.12 kPa for 1%
AC (100 kPa) and 3% ACF (300 kPa) specimens, respectively. AC and coir fibre additive
improves the secant modulus. The findings of this research are in line with previous
research conducted by [66], which added coir fibres and fly ash in high-plasticity clay.
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Figure 15. Relationship between elastic modulus (E50) and (a). UCS values for qucs > 200 kPa and
(b) DST values for qDST between 50 to 200 kPa.

4.4. Deformability Index (ID)

According to Equation (2), the deformability index is another factor utilised to explain
the deformation behaviour of soils in this study [67].

ID =
strain at the peak strength of stabilised soil
strain at the peak strength for natural soil

, (2)

The deformability factor has shown the deformation behaviour of treated soil com-
pared to untreated soil [68]. According to the UCS results in Table 3, the deformability
of the AC-stabilised soil rises from 1.02 to 1.28 for 1% and 3% AC content, respectively.
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Similarly, the deformability index increased to 1.13, 1.45, and 1.36 for 1%, 2%, and 3% ACF,
respectively. Therefore, the maximum deformation index depends on 2% ACF-treated
soil. This issue reveals that the bonding between AC, soil particles, and fibre results in
more strains in ACF than just adding AC in lateritic soil. It confirms that using fibre in
AC-treated soil improves soil behaviour from brittle to ductile [56].

Table 3. Result of deformability index, elastic modulus, and failure strain (UCS).

Mixture E50 (kPa) Failure Strain (%) ID

Lateritic soil 7515.41 2.85 -
1% AC 8767.81 2.90 1.02
2% AC 14,045.07 3.22 1.13
3% AC 17,725.91 3.65 1.28

1% ACF 14,480.51 3.22 1.13
2% ACF 17,810.64 4.13 1.45
3% ACF 23,730.22 3.87 1.36

In this study, when AC is added to lateritic soil as a stabiliser, it improves compressive
strength, shear strength, cohesion, and deformability and decreases pore size and pore
volume in the soil. Adding coir fibre in the AC-stabilised specimens significantly improves
the peak shear strength and post-peak residual strength and increased the elastic modulus,
UCS value, deformability, internal-friction angle, and cohesion. Moreover, adding coir
fibre to AC-treated soil improves the ductility in the soil. Figure 16 presents a scheme of
influence AC and ACF on some parameters that are investigated in this research.
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Optimum content was obtained at 2% ACF for treating lateritic soil because the UCS
values for 2% AC-treated soil improved by 106.24% upon adding 0.5% coir fibre. Similarly,
the direct shear-test result showed that 2% ACF is more suitable than other combinations.
By the way, it is observed that 3% ACF can enable the lateritic soil to reach the minimum
UCS value of the MPWD specifications and improve the shear strength and flexibility,
which are applicable for road construction.
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5. Conclusions

These days, green technology and ecologically friendly technique are critical compo-
nents of all-over development. Following this, a technique for lateritic soil stabilisation was
examined, including activated carbon and coir fibre. This study evaluates soils stabilised
with activated carbon and coir fibres through a set of UCS, DST, FESEM, and BET tests.
According to the MPWD specifications and test results, untreated lateritic soil could not be
used as road pavement for low-volume roads unless stabilised with activated carbon and
coir fibre. In general, the following conclusions are advanced based on the finding of this
experiment work:

- The compressive strength of soil samples enhances significantly with rising AC content
and adding coir fibre. This improvement is due to effective interlocking between fibre,
AC, and soil.

- Adding coir fibre in AC soil improves mechanical parameters, such as peak shear
strength, friction angle, cohesiveness, flexibility, and residual strength, which are key
parameters in construction engineering.

- Cohesions of the ACF-modified specimens are higher than the untreated specimen.
AC fills micropores and porous structures during the stabilisation process. Coir fibre
can fill some gaps and provide interlocking effects when dispersed equally in soil.
Hence, coir fibre and AC can considerably improve soil shear strength due to increased
cohesiveness and frictional angle. Therefore, these materials create a complex mixture
of soil, which sudden failure decreases on the ground due to overloading.

- The FESEM results of AC and ACF have presented which pores are filled with AC.
Therefore, cohesiveness, compression, and shear strength have been improved, due to
the materials, from the reaction between minerals and additives bonding the soil particles.

- The BET data also verify that the porous structures and micropores fill with AC
particles during stabilisation. Consequently, pore size and pore volume decrease in
AC lateritic soil.
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