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Abstract: AbstractThis study explored the effects of contributing factors on crash frequency, by injury
severity of all, daytime, and nighttime crashes that occurred on freeways. With three injury severity
outcomes classified as light injury, minor injury, and severe injury, the effects of the explanatory
variables affecting the crash frequency were examined in terms of the crash, traffic, speed, geometric,
and sight characteristics. Regarding the model estimations, the lowest AIC and BIC values (2263.87
and 2379.22, respectively) showed the superiority of the random-parameter multivariate negative
binomial (RPMNB) model in terms of the goodness-of-fit measure. Additionally, the RPMNB model
indicated the highest R2 (0.25) and predictive accuracy, along with a significantly positive α parameter.
Moreover, transferability tests were conducted to confirm the rationality of separating the daytime
and nighttime crashes. Based on the RPMNB models, several explanatory variables were observed
to exhibit relatively stable effects whereas other variables presented obvious variations. This study
can be of certain value in guiding highway design and policies and developing effective safety
countermeasures.

Keywords: crash frequency; freeway crash; random-parameter approach; elasticity effects

1. Introduction

Nowadays, a great number of crashes still occur on freeways, leading to serious
fatalities and property damages. The World Health Organization [1] reported that the
fatality number in traffic crashes globally continues to climb, reaching 1.35 million in 2016.
As reported by the Traffic Management Bureau of the Public Security Ministry [2], freeway
crashes made up 5% of all the roadway crashes in China which led to approximately 10%
of all the fatalities, and almost one-third of the very severe crashes (10 or more fatalities
involved) that occurred in the freeway in 2015. To mitigate the occurrence of freeway
crashes and the resulted outcomes, a wide range of research efforts have been conducted
based on a series of statistical model approaches (a more specific literature review on model
approaches will be conducted in the related work section) (i.e., [3,4]).

The nighttime crash remains a hot issue causing serious injury outcomes due to the
reduction in visibility. Drivers tended to take more time to operate due to the reduced
sight distance during nighttime, leading to an increased occurrence of crashes and more
severe outcomes [5]. The increased frequency of crashes and more severe outcomes can be
attributed to poor visibility during nighttime [6]. Considerable variations were observed in
the occurrence of freeway nighttime and daytime crashes. For instance, Stamatiadis et al. [7]
reported increased frequency of nighttime crashes despite the substantially lower traffic
volumes. In 2020, 48.1% of the fatal crashes in the U.S. took place during the nighttime [8].
Moreover, several studies reported that the severity of injury during nighttime is more than
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twice as higher as that in the daytime [9,10]. Sight distance is an essential factor that enables
drivers to perceive obstacles, traffic facilities, and road markings. NHTSA [11] illustrated
that drivers during the night can only detect the surrounding scenarios with illuminating
headlights at an average distance of 50 m. Moreover, horizontal curved segments tended
to aggravate safety concerns [12], for drivers have less time to perceive the curvature and
operate in the approach to these segments [13]. Given the horizontal alignment, there is a
significant requirement to analyze the impacts of related indicators about sight distance in
terms of policy and engineering perspectives, especially during nighttime.

An extensive body of count data models has been used to examine the causes of traffic
crashes, and the Poisson/negative binomial models and their extensions are commonly
proposed to lessen the number of crashes [14,15]. These traditional statistics models
assumed that the independent variables stay fixed across the observations Assuming
fixed or constant parameters across the observations means that the magnitudes of the
variables remain the same for all the individual observations. Specific instructions about
this issue can be seen in [15], which might generate inconsistent and biased estimation
results. Venkataraman et al. [16] also reported the unobserved heterogeneity while adopting
the fixed parameters due to the underestimation of standard errors in regression coefficients
and inflated t-ratios. This problem can be attributed to the unobserved factors and elements
affecting the frequency of crashes including the driver, vehicle, roadway, and environmental
characteristics which generate variations in the effects on the crash occurrence. Using the
random parameters in the negative binomial or Poisson models could address this issue to
some extent by accounting for unobserved heterogeneity [17,18].

Therefore, this study intends to propose count models accounting for random parame-
ters to analyze the determinants and impact levels thereof affecting the crash frequency of
daytime and nighttime crashes. The findings could be of great value for roadway designers
and traffic management departments seeking to develop effective countermeasures and
advanced technologies for freeway design and construction. The remainder of this study is
organized as follows. Section 2 summarizes the previous research efforts on modeling crash
frequency and time-of-day variation. Section 3 provides detailed descriptions of the crash
dataset. Section 4 shows the proposed methodological approach. Section 5 demonstrates
the model results. Section 6 illustrates the discussions and interpretations of the estimated
results, followed by conclusions shown in Section 7. The contributions of the paper are
specified as follows: (i) untangling whether the determinants of crash frequency by injury
severity changed over daytime and nighttime, and (ii) revealing an explicit understand-
ing of how effects of determinants determining crash frequency by injury severity show
time-of-day variations. This study lays a foundation for a total evaluation of crash frequen-
cies during certain time-of-day periods, by presenting the magnitude of the problem and
providing guidance for future research.

2. Literature Review

In previous traffic safety studies, many statistical models have been developed for
examining the attributes affecting crash occurrences and consequences. A comprehensive
literature review of the modeling methodologies for crash frequency is presented as follows.
In addition, related studies on the time-of-day variations and temporal instabilities are
discussed.

2.1. Literature Review of Modeling Methodology for Crash Frequency

Based on crash datasets, the statistical analyses in previous studies on crash data
have typically addressed the likelihood of a crash and resulting injury severity. The
application of count data involves determining the number of crashes occurring over
segments of a specified length. Various multivariate count models have been developed
for jointly analyzing crash frequencies with different outcomes of injury severity. Based
on Poisson regression, traditional count-data models (negative binomial models), Tobit
models, multivariate models, and other derived models (Table 1) have been widely adopted
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to study the probability of crashes, and random parameters have been used to account for
unobserved heterogeneity [17,19–32].

Table 1. Summary of approaches in the analysis of crash frequency.

Methodological Approach Significant Variables Previous Research

Random parameters count models

Average international roughness index (IRI);
pavement condition; annual average daily travel
(AADT); imposed speed limit; shoulder width,

horizontal and vertical curves; weather condition

Anastasopoulos and Mannering [17],
Buddhavarapu et al. [24]

Random parameters Tobit model IRI; pavement condition; horizontal curves; vertical
grade; median barrier Anastasopoulos et al. [25]

Latent-class (finite mixture)
models

Driver age; usage of alcohol/drugs; seat belt usage;
lighting condition; speed; pavement condition;

median barrier

Xie et al. [26], Behnood and
Mannering [27]

Markov switching count model
Pavement condition; AADT; percentage of

single-unit trucks; season; the number of bridges per
mile; shoulder width

Malyshkina et al. [28], Malyshkina
and Mannering [29]

Random-parameters multivariate
models

AADT; unsignalized controlled intersection
densities; business land use; lane number; lane

width; shoulder width; posted speed
Barua et al. [21], Dong et al. [23]

As shown in Table 1, among all of the contributing factors, a wide range of roadway,
traffic, and environmental characteristics influence both the likelihood and injury severity
of crashes [15].

2.2. Literature Review of Time-of-Day Variation and Temporal Instability

A growing body of research efforts has been conducted to analyze the time-of-day
variation and temporal stability of the factors affecting the crash frequency and resulting
severity. For instance, Wei et al. [33] indicated the significant effects across time of day in
truck crashes, for the afternoon and night crashes were more severe. Ackaah et al. [34]
revealed that nighttime traffic crashes were associated with more severe injury outcomes,
most of which occurred in the early hours of the night. Malyshkina et al. [28] indicated
that the crash frequency varied between states over time. Malyshkina and Mannering [35]
and Xiong et al. [36] found that crash severity stayed unstable over short periods, along
with unobserved heterogeneity. Additionally, a great number of studies stress the temporal
instability over time-of-day or year periods among the determinants among roadway
geometrics, pavement, weather, and traffic characteristics [37–44].

However, to the authors’ limited knowledge, few studies address the crash frequency
targeted at daytime and nighttime freeway crashes. Additional efforts should be devoted
to investigating the frequency of daytime and nighttime crashes, and to revealing the
remarkable differences and similarities of the significant factors and their influences. This
study conducted a comprehensive understanding of the above problems by proposing
random parameters count models to analyze the effects of drivers, vehicles, roadway
alignments, traffic, and environmental characteristics on crash frequency.

3. Methodology
3.1. Poisson (Negative Binomial) Regression Model

Poisson regression is a generalized linear approach to analyzing crash frequency. The
response variable P is assumed to yield to Poisson distribution, with the expected value
modeled by a linear combination of unknown parameters [45]. In a Poisson regression
model, the probability of having yas crashes belonging to crash severity s (s = 1, 2, . . . , S)
for roadway section a in the period is given by

P(yas) =
e−λas λ

yas
as

yas!
(1)
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where λas denotes the Poisson parameter for roadway section a.

3.2. Negative Binomial Regression Model

Negative binomial (NB) regression is a common generalization of Poisson regression
including a gamma noise variable [46]. This model is very popular because it models the
Poisson heterogeneity with a gamma distribution and the variance is not equal to the mean
restrictively. The Poisson regression model (PRM) restricts the mean to be equal to the
variance (E = VAR), and the PRM model fits not well in some cases. When the model does
not hold equality, the data may stay overdispersed (E < VAR) or underdispersed (E > VAR),
and the standard errors of the estimated parameter of the PRM will be incorrect. To account
for overdispersion in the crash count data, PRM is promoted and derived [47] for each
observation i.

λi = EXP(βXi + εi) (2)

where EXP(εi) is a gamma-distributed error term following the Gamma distribution with
mean 1 and variance α. When the variance α is significantly different from 0, the negative
binomial regression is appropriate. Otherwise, the Poisson model is better.

In response to the non-constant explanatory variables in the models, we developed the
random parameters in each estimated parameter to account for unobserved heterogeneity
[15].

βij = bj + ϕij (3)

where βik denotes the kth explanatory variable for observation i; bj is the mean parameter
estimates; ϕij is a randomly distributed term capturing unobserved heterogeneity.

3.3. Random-Parameter Multivariate Model

Several studies proposed multivariate models for collision counts at different levels
of classification [48]. Then, the multivariate model accounting for a random-parameter
framework is proposed using a common Poisson distribution [49,50]:

Ys|θs = Poisson(θs) (4)

where Ys denotes the number of crashes that belong to crash severity s (s = 1, 2, . . . , S).

3.4. Elasticity Effect on Crash Frequency

To provide more insight and explain the marginal effects of the exogenous variables,
the elasticity effect is computed for the random-parameter multivariate negative binomial
(RPMNB) model across all the periods. The elasticity effect denotes an estimate of the effect
of a variable on the expected frequency assuming all the other variables take the average
values [51]. The elasticity effect is the effect on the expected frequency λi of a 1% change in
the variable following Equation (5).

Eλi
xij =

∂λi
λi
×

xij

∂xij
= β jxij (5)

where xij value of the jth independent variable for observation i; β j estimated parameter
for the jth independent variable; and λi expected frequency for observation i.

3.5. Model Estimation

Model estimation such as log-likelihood function (LL) is conducted in this study. The
log-likelihood function follows Equation (6).

LL = ∑N
n=1

(
∑M

m=1σmn

[
βmXmn − LN∑∀MeβMXMn

])
(6)
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where Xmn and σmn denote the vector and standard deviation of explanatory variables
(roadway, traffic, and environment characteristics variables), respectively. βm is the esti-
mated parameter.

Bayesian information criterion (BIC) is also used for model comparison, which is a
generalized version of the Akaike Information Criterion (AIC) considering the Bayesian
equivalent [52].

BIC = nPln(n)− 2ln(LL) (7)

AIC = 2k− 2ln(LL) (8)

where nP and LL denote the number of model parameters, and the likelihood function,
respectively.

Then, the log-likelihood ratio is used to examine the model goodness-of-fitness.

R2 =
LL(β)

LL(0)
(9)

where LL(β), and LL(0) denote the log-likelihood at the convergence of the ‘full model’
and ‘constant model only’, respectively.

4. Data Description

We used three-year (2015–2017) crash data from Beijing-Shanghai Freeway, which was
collected by the traffic management department. The data contained a total of 3159 crashes,
including data about the vehicle type, time, location, climate, road surface condition, and
casualty condition. Among the datasets, rear-end crashes, scrub crashes, and other types
of crashes were included. In addition, roadway geometric features were collected from
road design and construction drawings, including those concerning horizontal alignment,
vertical alignment, and interchange segments. In addition, the definitions of daytime and
nighttime crashes were extracted from the detailed descriptions in the dataset.

We divided the road into 426 different sections according to the horizontal alignment,
vertical alignment, and interchange. We obtained the average annual daily traffic (AADT)
of 426 sections as reported by roadway management agencies [53].

We adopted the crash severity levels from the Ministry of Public Security in China [54],
as follows.

(1) Light crash: a crash causing minor injuries to one to two persons, or causing property
damage less than CNY 1000 (approximately USD 154.19);

(2) Minor crash: a crash causing serious injuries to one to two persons, minor injuries to
more than two, or property damage of more than CNY 1000 but less than CNY 30,000;

(3) Severe crash: a crash causing one to two deaths, serious injuries to three to ten persons,
or property damage of more than CNY 30,000 but less than CNY 60,000;

(4) Very severe crash: a crash causing more than two deaths, serious injuries to more than
10 persons, or property damage of more than CNY 60,000. No very severe crashes
were identified in this dataset. The crash frequency and outcomes regarding the
three severity levels (light injury, minor injury, and severe injury) were calibrated and
analyzed based on multivariate models.

Table 2 summarizes the crash statistics for the different injury severities during day-
time and nighttime, including both two-vehicle and multi-vehicle crashes. Additionally,
all casualties and property losses involved in a two-vehicle or multi-vehicle crash were
considered in order to evaluate the injury severity outcomes.
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Table 2. Descriptive statistics of crash frequency.

Code Variables
Name

Day Night Total
Frequency Percentage Frequency Percentage

1 Light injury 2083 65.94% 869 27.52% 2952
2 Minor injury 124 3.93% 57 1.80% 181
3 Severe injury 17 0.53% 9 0.28% 26

Total 2224 70.40% 935 29.60% 3159

The operating speeds of cars and trucks were calculated by segments according
to different geometric features, based on the models in Specifications for Highway Safety
Audit [54] published in 2016.

In general, the stopping sight distance is the shortest distance required for an ordinary
driver to react and to slow down or stop when encountering obstacles while driving
at a certain speed. Based on the Guidelines for Design of Highway Grade-separated
Intersections [55], the stopping sight distances of cars and trucks were calculated based on
Equations (10) and (11), respectively.

Scar =
v85t
3.6

+
( v85

3.6 )
2

2g f
(10)

Truck drivers can see the vertical planes of obstacles at a considerable distance from
their perspective at a low speed, but it is also difficult to control the vehicle owing to the
poor braking performance. Despite the high viewpoint, truck drivers also lose sight in
places with limited lateral line-of-sight vision.

Struck =
v85t
3.6

+
( v85

3.6 )
2

2g( f + i)
(11)

where Scar Struck denotes the stopping sight distance of the car and truck, respectively. v85
is the operating speed (km/h); t is the reaction time, set as 2.5 s generally, (judging time
as 1.5 s, running time as 1.0 s); g is the gravitational acceleration, i.e., 9.8 m/s2; i is the
longitudinal grade; and f is the longitudinal friction coefficient between the truck tires and
road surface, and generally takes a value of 0.17.

Corrugated beam guardrails are commonly set in the middle and beside a road across
all sections, and the inside (outside) guardrails along the left-turn (right-turn) horizontal
curves will affect the drivers’ sight. We consider the largest transverse clear distance for
confirming sight safety, i.e., the distance between the curve of sight and the track. When the
plane curve is sharp, the transverse clear distance should be determined on the inside lane.
We calculated the required stopping sight distance of each section for safety by following
Equation (12).

H = Rs

(
1− cos

γ

2

)
(12)

Here, H denotes the largest transverse clear distance; Rs is the radius of the inside
lane; and γ is the central angle of the line of sight.

The crash, traffic, speed, geometric, and sight characteristics of the independent
variables are summarized in Table 3.
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Table 3. Descriptive statistics of key variables.

Variables Names Definition Min. Max. Mean SD

Crash characteristic

Weather 1, rainy or snowy day (6.1%); 0, otherwise
(93.9%) 0 1 0.06 0.2

Pavement
condition 1, ice pavement (2.1%); 0, otherwise (97.9%) 0 1 0.02 0.1

Season

1, occurred from February to April; 2, occurred
from May to July; 3, occurred from August to

October; 4, occurred in November, December, or
January.

1 4 2.5 1.4

Traffic characteristic

Interchange 1, occurred near an interchange (25.8%); 0,
otherwise (74.2%) 0 1 0.1 0.3

Bridge 1, occurred on bridge (12.4%); 0, otherwise
(87.6%) 0 1 0.3 0.5

AADT Average annual daily traffic volume 31,158 68,836 52,850.9 10,581.5

Speed characteristic

VO−car (km/h) Operating speed of cars 95.1 193.8 119.6 21.5

∆VO−car (km/h) Speed difference of cars with adjacent segment −78.0 85.9 −0.2 34.9

VO−truck (km/h) Operating speed of trucks 61.3 104.8 79.3 12.1

∆VO−truck (km/h) Speed difference of trucks with adjacent segment −25.7 34.0 −1.4 21.3

∆VO (km/h) Speed difference between cars and trucks 12.6 104.7 40.3 16.0

Geometric characteristics

R f ront (m) Radius of the plane curve of front section 5597 1,000,000 429,300.6 490,879.2

L f ront (m) Length of the plane curve of front section 450 3267 1224.2 711.3

Rpresent (m) Radius of the horizontal curve (plane curve of
present section) 5597 1,000,000 380,669.6 481,087.0

Lpresent (m) Length of the horizontal curve (plane curve of
present section) 680 3676 1638.4 639.0

Rback (m) Radius of the plane curve of back section 5597 1,000,000 438,578.3 492,254.3

Lback (m) Length of the plane curve of back section 450 3676 1233.8 759.3

imin (%) Minimum longitudinal grade of current section −1.6 1.6 0.0 0.4

Lsmin (m) Length of the longitudinal slope corresponding
to the minimum grade 240.0 1740.0 773.3 296.0

imax (%) Maximum longitudinal grade of current section −2.50 2.50 0.00 0.97

Lsmax (m) Length of the longitudinal slope corresponding
to the maximum grade 362.0 1740.0 652.6 248.0

Sight characteristics

Scar (m) Stopping sight distance of cars 244.0 1004.8 423.6 139.6

Struck (m) Stopping sight distance of trucks 52.0 279.4 82.7 24.3

Hcar (m) Horizontal clearance of cars 0.02 6.5 1.4 1.5

Htruck (m) Horizontal clearance of trucks 0 0.2 0.05 0.04

Note: Car denotes vehicles with a wheelbase less than 7 m and power greater than 15 kW/t, and Truck denotes
vehicles with a wheelbase more than 7 m or powerless than 15 kW/t [54].

5. Results
5.1. Model Specification and Overall Measure of Fit

Estimation was involved in the empirical analysis, based on traditional and proposed
models as follows: (1) the traditional model-multivariate negative binomial (NB) model and
multivariate Poisson model considering the excess zero-count data; and (2) the proposed
model–random-parameter multivariate NB (RPMNB) model and random-parameter mul-
tivariate Poisson (RPMP) models. A comparison of the traditional and proposed models
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is shown in Tables 4 and 5 in terms of fitness and predictive performance measures, and
Tables 6–8 provide the estimated results from the proposed models.

Table 4. Goodness-of-fit measure of six count models for all-time crashes.

Model Log-Likelihood AIC BIC R2

MNB model −1095.79 2245.58 2354.99 0.21
MP model −1159.81 2371.63 2476.99 0.22

RPMNB model −1084.76 2221.53 2326.88 0.25
RPMP model −1174.98 2397.97 2495.22 0.24

Table 5. Predictive performance measure of two models (RPMNB and RPMP).

Type
RMSE MAE MAPE

RPMNB RPMP RPMNB RPMP RPMNB RPMP
All-day 6.65 6.68 5.57 5.58 0.64 0.63 *
Daytime 4.87 4.28 * 4.11 4.76 0.65 0.66

Nighttime 0.95 0.96 1.92 1.92 0.66 0.68
Note: RPMNB = Random-parameter multivariate negative binomial. RPMP = Random-parameter multivariate
Poisson model. * are the measures where the RPMP model performs better.

Table 6. Model results of random-parameter multivariate NB model for all crashes.

Variables 1 Parameter
Estimate t-Stat

Elasticity Effects
LI MI SI

(MI) Constant −0.0044 −2.87
Traffic characteristics

(LI) AADT 3.36 × 10−5 11.54 1.41 −1.10 −0.31
Speed characteristics

(LI) ∆VO−car 0.0045 6.19 6.26 × 10−4 −2.12 × 10−4 −4.14 × 10−4

(SI) ∆VO−truck −0.022 −2.73 −5.26 × 10−3 9.22 × 10−3 −3.96 × 10−3

Geometric characteristics
(LI) Rpresent 1.17 × 10−6 4.51 0.46 −0.01 −0.45
(SI) Lpresent 5.43 × 10−4 10.34 0.62 −0.77 0.15
(MI) L f ront 7.84 × 10−5 3.98 0.086 0.034 −0.12
(SI) Lsmin −2.90 × 10−4 −2.51 −0.20 0.65 −0.45

Sight characteristics
(LI) Scar −1.18 −3.05 −383.33 61.11 322.22
(LI) Struck 1.17 5.13 75.61 −11.31 −64.30
(MI) Htruck 2.958 4.16 0.15 0.34 −0.49

Number of observations 3159
AIC 2221.53
BIC 2326.88
R2 0.25
α 2.43

Note: Variables not shown here are insignificant attributes. 1 Variable definition and unit can be seen in Table 3.
Parameter defined for (LI) Light injury; (MI) Minor Injury; (SI) Severe Injury.
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Table 7. Model results of random-parameter multivariate NB model for daytime crashes.

Variables Parameter
Estimate t-Stat

Elasticity Effects
LI MI SI

(LI) Constant 0.0082 3.10
Traffic characteristics

(LI) AADT 4.89 × 10−5 15.44 1.94 −2.96 1.02
Speed characteristics

(LI) ∆VO−truck −0.023 −2.34 −2.68 × 10−3 5.30 × 10−3 −2.62 × 10−3

Geometric characteristics
(LI) Rpresent 1.02 × 10−6 6.42 0.37 −0.08 −0.29
(LI) Lpresent 5.81 × 10−4 10.20 0.71 −0.34 −0.37
(LI) Lsmin −2.82 × 10−4 −2.28 −0.21 0.13 0.08

Sight characteristics
(SI) Scar −0.73 −7.27 −319.39 360.13 −40.74
(LI) Struck 0.72 4.46 63.06 −23.02 −40.04
(MI) Htruck 3.12 4.64 0.18 0.11 −0.29

Number of observations 2224
AIC 1986.82
BIC 2092.17
R2 0.27
α 2.41

Table 8. Model results of random-parameter multivariate NB model for nighttime crashes.

Variables Parameter
estimate t-Stat

Elasticity effects
LI MI SI

(LI) Constant −0.03 −2.11
Traffic characteristics

(MI) AADT 3.20 × 10−5 10.54 1.23 3.23 −4.46
Speed characteristics

(LI) ∆VO−car 0.0045 6.41 1.38 × 10−3 1.64 × 10−3 −3.02 × 10−3

(SI) ∆VO−truck −0.024 −3.08 −3.57 × 10−3 7.28 × 10−3 −3.71 × 10−3

Geometric characteristics
(LI) Rpresent 2.02 × 10−6 4.13 0.58 −2.60 2.02
(SI) Lpresent 3.07 × 10−4 10.34 0.33 −0.60 0.27
(LI) L f ront 7.84 × 10−5 3.89 0.28 −0.82 0.54
(MI) Lsmin −3.11 × 10−4 −6.97 −0.27 −1.15 1.42

Sight characteristics
(MI) Scar −2.75 −2.74 −887.39 −366.50 520.89
(LI) Struck 2.64 3.24 176.75 −73.02 −103.73
(LI) Htruck 4.53 2.55 0.09 −0.59 0.50

Number of observations 935
Log-likelihood −796.78

AIC 1645.56
BIC 1750.91
R2 0.29
α 2.51

To assess the predictive accuracy of the estimated models, we used the root mean
square error (RMSE), mean absolute error (MAE), and mean absolute percentage error
(MAPE), defined as shown in Equations (13)–(15). Table 6 presents the values for these
measures.

RMSE =

√
1

nO
∑nO

i=1(Oi − Pi)
2 (13)

MAE =
1

nO
∑nO

i=1(Oi − Pi) (14)



Sustainability 2022, 14, 9061 10 of 16

MAPE =
100%

nO
∑nO

i=1

∣∣∣∣Oi − Pi
Oi

∣∣∣∣ (15)

In the above, Oi and Pi denote the observation and predicted value, respectively, and
nO is the number of observations.

As shown in Table 5, both the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) of the RPMNB model (2221.53 and 2495.22, respectively) were the
smallest among all of the models. The highest log-likelihood ratio (R2) (0.25) indicated
that the RPMNB model outperforms the other models. Therefore, models accommodating
unobserved effects performed better than their corresponding independent models (in
both traditional and proposed regimes), highlighting the importance of accommodating
the unobserved heterogeneity in examining crash counts by the different crash types.

Overall, Table 6 shows that the proposed approach provided a superior fit relative
to its counterparts in the traditional frameworks when accounting for the penalty for the
additional parameters.

Thus, the proposed RPMNB model was superior in terms of both fitness and perfor-
mance, allowing us to estimate parsimonious model systems with more efficient parameter
estimations.

Subsequently, each base effect was estimated for common exogenous variables across
the three crash severities, and we estimated the deviation of variables versus the base for
each crash type [56]. The corresponding t-statistic is statistically significant if the deviation
term differs from the base effect. Based on the t-statistic, the parameter did not reveal
differential sensitivity for the base crash type if the variable was statistically insignificant.

5.2. Model Estimation Result

In this section, we conducted a detailed discussion of the significant factors affecting
the crash count components for the different periods. The model estimation results for
the RPMNB models for all, daytime, and nighttime crashes are shown in Tables 7–9,
respectively. The estimated α parameters were positive and statistically significant in the
models (2.43, 2.41, and 2.51, respectively), indicating that crash counts were overdispersed
and confirming the appropriateness of the RPMNB models relative to the RPMP model.

Table 9. Results of likelihood ratio test between daytime and nighttime period.

t1
t2

Daytime Nighttime

Daytime - 123.562 (10) (>99.99%)
Nighttime 105.628 (9) (>99.99%) -

Similar to the traditional approach, we presented the individual effects of each exoge-
nous variable while accommodating the crash propensity. A positive value of a variable in
Tables 7–9 indicated there will be additional crashes with the increase in this variable, and
fewer crashes otherwise.

5.3. Transferability Tests

Two series of transferability tests were conducted to analyze the variation of effects
on the crash frequency for daytime and nighttime crashes. The first transferability test
was carried out to determine the temporal instability of daytime and nighttime crashes as
follows [44]:

χ2
t1
= −2[LL(βt1t2)− LL(βt1)] (16)

where LL(βt1t2) denotes the log-likelihood at the convergence of the model containing
parameters from t2 while using subgroup t1’s data, and LL(βt1) is the log-likelihood at
the convergence of the model using data subgroup t1. To obtain two test results for each
model comparison, this test was also conducted with the t1 subgroup and t2 subgroup being
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reversed. The degree of freedom equals the number of estimated parameters in model βt1t2 .
The resulting χ2 value under the X2 distribution can be used to determine the confidence
level at which the null hypothesis that the parameters are equal between two year-period
data can be accepted or rejected [5,42]. Table 9 presents the results of the likelihood ratio test
between daytime and nighttime period, specifying that in the models the null hypothesis
that the different periods tested produced equal parameters can be rejected with >96%
confidence (>99.99%).

Then, another transferability test was also conducted to examine the temporal instabil-
ity following [5]:

χ2
t2
= −2

[
LL(βalltime)− LL

(
βdaytime

)
− LL

(
βnighttime

)]
(17)

where LL(βalltime) represents the log-likelihood at the convergence of the model for aggre-
gated data containing daytime and nighttime crashes, while LL

(
βdaytime

)
and LL

(
βnighttime

)
,

respectively, denote the log-likelihood at the convergence of the models for daytime and
nighttime crashes. Overall, model estimates gave an χ2 value of 95.32 with 8 degrees of
freedom (the degrees of freedom equal to the summation of statistically significant param-
eters in each year minus the number of statistically significant parameters in the overall
model). This result also indicated the null hypothesis that statistically significant parameters
in separate daytime and nighttime model remain temporal stable and can be rejected with
99.99% confidence.

6. Discussions
6.1. Traffic Characteristics

The AADT was significant to the crash frequency for all three models, indicating
additional light-injury crashes (all crashes: 1.41; daytime crashes: 1.94; nighttime: 1.23, in
Tables 6–8) with greater traffic volumes. In addition, the interchange and bridge attributes
were insignificant.

6.2. Speed Characteristics

The estimated parameters showed that the ∆VO−truck has negative effects on the risk
propensity of light and severe injury crashes in the three models. The negative values
indicated a lower likelihood of light-injury and severe-injury crash occurrences with a
greater speed difference in the trucks.

The ∆VO−car only showed a positive influence on the crash frequency of nighttime
and all crashes; it was insignificant for daytime crashes. As expected, a greater ∆VO−car led
to a greater number of crashes with light injury severity, contrary to the results for trucks.
Less severe injury crashes occurred at all times with a greater speed difference in the cars,
in line with the Solomon curve [57]. A greater speed difference between cars indicated a
greater difference in geometric alignment with adjacent segments [54]. Highway sections
with poor consistency in highway geometric design were positively associated with the
crash occurrence, especially during nighttime. Moreover, the drivers had additional time to
adjust to changes in roadway alignment and control speed and steering during the daytime.

6.3. Geometric Characteristics

In terms of geometric attributes, both Rpresent and Lpresent were positively associated
with an increased likelihood of light-injury crashes in all three models.

The Lsmin showed a negative influence on light-injury crash risk in the three models.
The explanation may be owing to the greater speed of trucks when driving through road
sections with small longitudinal grades. The reduced speed difference between cars and
trucks led to a lower probability of rear-end and side-strike crashes and promoted highway
safety. This finding was consistent with those of previous studies [58,59], in which the
authors illustrated that the crash frequency was positively related to the speed differences
between cars and trucks.



Sustainability 2022, 14, 9061 12 of 16

Similarly, the length of the plane curve of the front section (L f ront) revealed a higher
likelihood of light injury and nighttime crashes. The positive effect indicated more severe
injury crashes in the evening: the probability will increase by 54% with every 1% in L f ront.
This finding was reasonable because speeding and fatigued driving were more likely to
appear in the evening [60], especially through a smooth curve, representing a major cause
of severe crashes.

6.4. Sight Characteristics

The results showed that the Scar had a negative effect on the frequency of light-injury
crashes across the three models. The sufficient sight distance for the cars ensured smooth
driving on the highways, but excellent driving conditions with higher sight distances will
induce drivers to exceed the speed limit.

However, the likelihood of light-injury crashes increased with higher values of Struck
and Htruck. This finding was reasonable because the higher stopping sight distance and the
horizontal clearance of the truck facilitate the drivers in controlling their direction more
accurately. Therefore, they had a greater distance to react properly to alleviate the impact
of an incoming crash [61].

6.5. Elasticity Effects

The elasticity effects of the contributing factors for all daytime and nighttime crashes
with three injury severities were calculated for comparison. As shown in Figure 1, the
elasticity effects of ∆VO−truck and Struck showed the same trend with different degrees of
influence for all of the time windows, indicating no variation over time. Fewer light injury
and severe injury crashes will occur with a greater ∆VO−truck. The greater stopping sight
distance of trucks contributed to a greater number of crashes with light injury severity.

The elasticity effects of the AADT indicated more light and severe injury crashes during
daytime (1.94 and 1.02, respectively), and less severe injury crashes during nighttime (−4.46)
with a greater traffic volume. This result was reasonable, as drivers tended to cautiously
drive to compensate for the shorter visibility in the evening [62], leading to a lower risk
propensity.

Apparently, Rpresent showed different influence trends for daytime and nighttime.
Additional severe injury crashes along with fewer minor injury crashes will occur during the
night with an increase in Rpresent. The proportion of severe-injury crashes rose significantly
during nighttime (daytime: −0.29; nighttime: 2.02, in Tables 7 and 8), indicating that
driving on segments with smaller curvature during nighttime made drivers more prone to
severe crashes.

In addition, the values of Lpresent, Lsmin, Scar, and Htruck showed the same trend, with
higher positive values of the elasticity effects for severe-injury crashes during nighttime
than daytime (nighttime to daytime crashes: 0.27 to −0.37, 1.42 to 0.08, 520.89 to −40.74,
and 0.50 to−0.29, respectively), as shown in Figure 1d–f,h. Interestingly, regarding the more
negative values, the increase in these factors caused fewer minor-injury crashes during
nighttime (−0.60, −1.15, −366.50, and −0.59, respectively). Therefore, the estimated results
showed that the influences of several factors indicated injury-severity transferability across
the time of day.
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Figure 1. A 95% confidence interval of elasticity effects of contributing factors on crash frequency. (a)
Average annual daily traffic (AADT). (b) Speed difference of trucks with adjacent segment (∆VO−truck)
(10−3). (c) Radius of the horizontal curve (Rpresent). (d) Length of the horizontal curve (Lpresent). (e)
Length of the longitudinal slope corresponding to the minimum grade (Lsmin). (f) Stopping sight
distance of cars (Scar). (g) Stopping sight distance of trucks (Struck). (h) Horizontal clearance of trucks
(Hcar).
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7. Conclusions and Future Direction

This study explored the effects of the contributing factors on the crash frequency by
injury severity of all, daytime, and nighttime crashes that occurred on freeways. With
injury severity outcomes classified as light injury, minor injury, and severe injury, the effects
of the explanatory variables affecting the crash frequency were examined in terms of crash,
traffic, speed, geometric, and sight characteristics. Regarding the model estimations, the
lowest AIC and BIC values (2263.87 and 2379.22, respectively) showed the superiority of the
RPMNB model in terms of the goodness-of-fit measure. Additionally, the RPMNB model
indicated the highest R2 (0.25) and predictive accuracy, along with a significantly positive
α parameter. Based on the RPMNB models, several explanatory variables including were
observed to exhibit relatively stable effects such as ∆VO−truck and Struck, whereas other
variables were found to produce variations including AADT, Rpresent, Lpresent, Lsmin, Scar,
and Scar.

According to the current findings of this study, several recommendations can be
indicated as follows: (1) at nighttime, active light-emitting warning messages, speed limit
signs, and other reasonable measures should be set up to prevent drivers from speeding
or fatigue; (2) education programs or other measures should be implemented to ensure
the safe driving of professional drivers; (3) the lane distribution measures for different
vehicle types should be suggested to reduce the interference between cars and trucks; and
(4) during the design stage, the alignments of curve-grade sections should be optimized to
provide continuous and co-ordinated roadway three-dimensional conditions.

Notably, this study is not free of limitations. The data sample was small and future re-
search can benefit from collecting crash data for longer periods and from more freeways. The
remaining dataset should be checked for accuracy in terms of under/over-reporting issues,
and more detailed and comprehensive data should be collected. Moreover, more advanced
statistical count models can be proposed to account for the unobserved heterogeneity.
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