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Abstract: Micro-energy grids integrating multiple energy sources can realize the efficient use of
renewable energy and accelerate the process of energy transition. However, due to the uncertainty of
renewable energy, the stability and security of system operations should be taken into account with
respect to multi-energy coupling economic operations. Thus, it is essential to make flexible capacity
allocations in advance of the actual scheduling of production in the micro-energy grid. With this
motivation, this paper constructs a three-stage scheduling model corresponding to the running stage
of the spot market. Specifically, the capacity of flexible, active devices is configured in the day-ahead
stage; then, the intraday economic operation dispatching scheme is provided according to the capacity
configuration. Based on the day-ahead and intraday optimization results, the system power balance
is realized through the dispatching process using the reserve capacity of flexible active devices for
deviations generated in the real-time stage of renewable energy. For the uncertainty of renewable
energy output, the clustering method is applied to realize the clustering analysis of renewable
energy output scenarios. In addition, the conditional value at risk (CVaR) theory is introduced to
modify the three-stage stochastic optimization model, and the risk values caused by uncertainty
are quantitatively evaluated. Finally, we simulate a practical case to verify the effectiveness of the
proposed model. The results show that day-ahead flexible capacity allocation enhances the autonomy
of the micro-energy grid system, ensures a certain degree of system operational security, and reduces
balancing costs in the real-time stage. The higher the risk aversion factor, the more operational costs
the system operator pays to avoid the risk. In addition, if the carbon penalty coefficient is higher, the
overall carbon emission level of the micro-energy grid will decrease, but it will gradually converge
to a minimal level. This paper guides the development of micro-energy grids and has important
constructional significance for the construction of multi-energy collaborative mechanisms.

Keywords: micro-energy grids; multistage optimization; capacity allocation; CVaR; processing
of uncertainty

1. Introduction

With the continuous growth of the social economy and the increasing energy demand,
the energy supply industry faces the dual pressure of meeting demand and reducing carbon
emissions. Therefore, the utilization of renewable energy has attracted more and more
attention and favor. By using locally distributed renewable energy, the micro-energy grid
not only has a high proportion of renewable energy access but also uses various energy
conversion and energy storage devices to achieve the comprehensive utilization of various
forms of energy, which effectively improves energy utilization efficiency, reduces pollutant
emissions, and has strong economic and environmental protection. It is known as one of
the main trends in the development of emerging energy systems, and it also provides an
important new model of resource utilization for the energy industry.
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1.1. Application Scenarios of Micro-Energy Grid

Micro-energy grids have extensive application scenarios in industrial parks, large
office buildings, and residential communities. For example, Reference [1] used an urban
community as the application scenario to study the optimization model of micro-energy
grids with compressed air energy storage devices. The operation results verify the validity
of the model. Reference [2] took the energy supply of a hotel as an example. It mainly
discussed the optimization of combined cooling, heating, and power (CCHP) unit capacity
and the power-cooling ratio under uncertain demand (cold, heat, and electricity), solar
radiation, and prices. Reference [3] took the energy network of a residential community as
an example, using the geothermal heat and waste heat generated by the cement industry
combined with CCHP units to meet the cooling, heating, and electricity needs of the com-
munity and to conduct an economic analysis; the results show that the proposed distributed
energy has economic viability for the system. Reference [4] took a rural microgrid as the
research object, and comprehensively considered the seasonal characteristics of the rural
microgrid. It proposed a distributed, robust scheduling model for rural microgrids based
on Wasserstein distance and on the cooperative interaction of source–grid–load–storage.
Reference [5] proposed a smart building energy management system (BEMS), which was
applied to a two-floor residential building, and the results show that the system could
achieve energy self-sufficiency. This case shows that the model can achieve more economi-
cal and robust scheduling strategies compared to the stochastic optimization model based
on a robust optimization model.

1.2. Construction of Micro-Energy Grid Optimization Scheduling Models

In terms of the optimization scheduling model construction of micro-energy grids,
most of the research has carried out mathematical modeling on the infrastructure of micro-
energy grids. Reference [6] established an efficient load-scheduling scheme by jointly con-
sidering an onsite photovoltaic (PV) system and an energy storage system (ESS), thereby
reducing energy consumption costs. Reference [7] proposed a two-stage coordinated
scheduling model to optimize multi-energy (electricity, heat, and cold) collaborative power
supply in a microgrid. In order to realize the full utilization of renewable energy, [8] con-
structed a cooperative operation optimization model of a power distribution network with
multiple microgrids and proposed an adaptive, dynamic, real-time optimization algorithm
for the joint system based on pretraining and online deep learning technology. Reference [9]
introduced plans for a solar, photovoltaic (PV) battery energy storage system (BESS) and a
gas microturbine (MT) coupled with a micro-gas turbine and a power grid. It proposed a
two-stage stochastic optimization model to help microgrid operators feasibly identify and
optimize planning solutions. It also provided valuable guidance for energy infrastructure
expansion from a comprehensive perspective. Reference [10] proposed a comprehensive
optimization scheduling scheme for microgrids based on a predictive control model to
eliminate the influence of uncertainty. The case simulation results demonstrate the effective-
ness and feasibility of the proposed method. Reference [11] took the total cost (including
investment, operation, maintenance, and fuel costs) and carbon dioxide emissions as the
minimum optimization objective and proposed the optimal scale and operation strategy
of a micro-energy power grid, using a multi-objective genetic algorithm (GA) to solve it.
Reference [12] comprehensively considered the economy and reliability of micro-energy
grids, constructing a two-layer optimization operation model aimed at obtaining an optimal
operation cost and operation risk index and using mixed integer current programming com-
bined with the IABC algorithm method to solve the model. Reference [13] considered the
uncertainty of the output power of renewable energy. It proposed a data-driven, set-based
Lupin optimization model considering the uncertainty of wind power and multi-demand
responses. The calculation example shows that the model could improve the system’s
stability, as well as the performance and economy of the system’s operation. In order to
solve the problems of inaccurate, random, fluctuating, and intermittent load forecasting,
Reference [14] proposed a three-stage, coordinated, and optimal dispatch strategy for the
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CCHP microgrid. The result shows that the proposed strategy can reduce and eliminate
the forecasting of renewable energy errors.

1.3. Operation Strategy of Micro-Energy Grids

Regarding micro-energy grid system operation strategies, [15] discussed the optimal
operation of intermittent renewable energy in a micro-energy grid. Reference [16] con-
sidered the regular preventive maintenance measures of micro-energy grids and built
a multi-objective optimization model to minimize cost and maximize system reliability.
Reference [17] proposed an optimal operation model to minimize energy consumption
and environmental cost. Reference [18] studied the demand response mechanism and
divided demand response into price-based demand response and incentive-based demand
response. Reference [19] integrated wind power, photovoltaics, gas turbines, and demand
responses based on integrated energy into the operation of a multi-energy carrier system.
Reference [20] adopted the method of robust optimization to deal with the prediction
errors of renewable energy generation and market price. Reference [21] used a two-stage
adaptive robust optimization model to solve the uncertainty of renewable energy output
and load. Reference [22] proposed a point estimation method to describe the uncertainty
of microgrids and used a robust optimization method to solve the model. Reference [23]
proposed a two-stage Stackelberg game theory model, and the results show that the model
had higher accuracy and better effect than the controlled autoregressive moving average
(CARIMA) model. Reference [24] considered the optimal scheduling problem of microgrids
with a high proportion of renewable energy systems (RES) and multiple energy storage
systems (ESS); it introduced CVaR and proposed a two-stage optimal scheduling model
considering economic and environmental protection. The results show that the model can
not only reduce operating costs, but also provide decision support for decisionmakers
through risk metrics.

Since a micro-energy grid integrates distributed renewable energy resources, the
randomness and volatility of renewable energy output should be fully considered during
the operation and management of the system, and it is necessary to develop a phased
operation strategy according to the proximity of the time period during the operation
process. At the same time, if we want to realize the autonomous operation and management
of micro-energy grids as much as possible, it is crucial to consider the capacity allocation of
flexible generation and storage devices in the day-ahead operation phase. However, few
previous studies on micro-energy grids have considered this issue from the perspective
of flexible capacity allocation. In addition, in the process of the clustering analysis of
renewable energy output scenarios, the FCM-CCQ clustering method has been used not
only to achieve scenario clustering, but also to evaluate different clustering schemes and to
select the optimal clustering scheme.

With these motivations, this paper proposes a multistage optimization model for micro-
energy grid operation, which contains day-ahead capacity allocation, intraday system
scheduling, and real-time system scheduling. In the context of renewable energy scenario
clustering analysis, we adopt a fuzzy c-mean-clustering comprehensive quality (FCM-CCQ)
method to realize the reasonable evaluation and selection of the clustering results. At the
same time, to further consider the impact of uncertainty factors on the system operation,
the CVaR theory was introduced to transform the multistage stochastic optimization model
and quantitatively evaluate the risk value brought on by uncertainty. Finally, a three-
level coordinated scheduling optimization model considering CVaR multi-energy and
multi-objective optimization is established, and an actual example is used to verify the
effectiveness of the constructed model.

The main contributions of this paper include the following aspects:

(1) Building a basic structural framework model of the micro-energy grid and explaining
the mathematical model of the essential physical components;
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(2) Building a three-level scheduling optimization model for micro-energy grids, which
is divided into three stages: (a) day-ahead capacity configuration; (b) intraday system
scheduling; (c) real-time system scheduling.

(3) Using the FCM-CCQ algorithm to describe the uncertainty of wind power and photo-
voltaics, the typical scenarios were obtained. The optimization calculation was carried
out based on the typical scenarios.

(4) Based on CVaR theory, the risk value of the micro-energy grid system participating in
spot market transactions was evaluated.

The rest of this paper is organized as follows: Section 2 describes the three-stage
collaborative optimization operation framework for micro-energy grids and the connection
mechanism between each stage; Section 3 describes the construction of the three-stage
scheduling optimization model for the micro-energy grid discussed in this paper; Section 4
discusses and analyzes the results; and in Section 5, the conclusions are summarized, and
future research directions and priorities are noted.

2. The Three-Stage Collaborative Optimization Operation Mechanism for a
Micro-Energy Grid

In the model constructed for this paper, the assumptions made were that the micro-
energy grid operator can achieve the deployment and use of all the operating equipment in
the system, and the problem of multiple entities is not considered. The detailed modeling
ideas are as follows.

2.1. The Three-Stage Collaborative Optimization Framework of a Micro-Energy Grid

The energy dispatch of the micro-energy grid belongs to the pre-dispatch; that is, the
energy dispatch plan is established before the actual output of wind power and photo-
voltaics is known. Generally speaking, the day-ahead stage is mainly used to establish
the reserve capacity allocation plan. The intraday stage is mainly used to establish the
energy dispatch plan. The real-time stage is mainly used to correct the forecast devia-
tion. Therefore, this paper designs a three-stage collaborative optimization structure for a
micro-energy grid, as shown in Figure 1:
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Level 1: Day-ahead capacity configuration. According to the forecast value and error
interval of wind power, photovoltaics, and load, each energy equipment in the micro-energy
grid is configured. The purpose of the capacity allocation of the micro-energy grid is to
realize the efficient supply of multiple loads, such as electricity, heat, cooling, and gas. This
paper selects the minimum cost of spare capacity configuration as the optimization goal.

Level 2: Intraday system scheduling. Based on the capacity reconfiguration scheme of
the micro-energy grid, the optimal supply of electricity, heat, cold, and gas in the micro-
energy grid is considered according to the predicted value of wind power, photovoltaics,
and load, and the goal of minimizing the operating cost of the micro-energy grid is realized.
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In this paper, the optimization objective is to minimize the total dispatching cost of the
micro-energy grid.

Level 3: Real-time system scheduling. Based on the energy scheduling results of the
micro-energy grid, the deviation between the predicted value and the actual value of wind
power and photovoltaics was analyzed. The reserve demand for electricity, heat, cold, and
gas was determined. Finally, the micro-energy grid’s optimal reserve capacity scheduling
scheme is established. In this paper, the optimization objective is to minimize the real-time
standby dispatching cost.

2.2. The Connection Mechanism of the Three Different Stage Models

The three-stage scheduling model of the micro-energy grid constructed above is an
optimization problem in three different stages, but this does not mean that each stage is in-
dependent of the other two stages. There is a specific connection relationship between each
stage. This section will explain in detail the connection mechanism of each optimization
stage. The first-stage model is the day-ahead capacity configuration of the micro-energy
grid. According to the simulation results of the first-stage model, it is substituted into the
second-stage model and the intraday energy economic dispatch model, and is then substi-
tuted into the constraints as input parameters for the second-stage model. The calculation
results of the models for the first and second stages are substituted into the constraints of
the model of the third stage. According to the gas turbine start–stop plan cleared in the
previous stage, the reserve capacity reserved for energy storage and demand response, as
well as the production arrangement of each piece of equipment in the micro-energy grid,
is adjusted based on the results of the clearing in the previous stage. Therefore, the third
stage must be solved on the basis of the model results of the first and second stages and
cannot be optimized separately.

3. Construction of a Three-Stage Scheduling Optimization Model for the
Micro-Energy Grid
3.1. Uncertain Handling of Wind Power and Photovoltaic Output

This paper uses the FCM-CCQ clustering method to deal with the uncertainty of
distributed wind power and photovoltaic output power [25]. The FCM-CCQ method
is different from traditional clustering methods such as K-means, fuzzy c-means (FCM),
etc. The traditional clustering method directly provides the number of cluster centers but
cannot explain why this value is selected as the number of cluster centers. The FCM-CCQ
method can solve this problem well. The FCM-CCQ method can be divided into two stages.
The first stage uses the general clustering method to select the number of different cluster
centers for clustering. The second stage evaluates the quality of each clustering result and,
finally, guides decisionmakers to choose the best number of clustering centers, that is, the
best clustering result. The specific solution steps are as follows:

Step 1: Similar to the conventional clustering method, first provide several clustering
scenes and sample data for n groups of wind speed scenes;

Step 2: Use the FCM method to perform clustering according to the specified number
of scenes a, 2a, 3a · · · · · · n− a and obtain corresponding multiple clustering schemes;

Step 3: Use the CCQ method to evaluate and score for each clustering scheme, calculate
the two evaluation indicators of cluster density and cluster proximity, and then obtain
the final result through weighted average. Different numbers of clusters correspond to
different comprehensive quality scores;

Step 4: Draw the relationship curve between the comprehensive quality score and
the number of clusters according to the calculation results. Find the inflection point of the
curve to determine the best clustering scheme.

The specific solution process is shown in Figure 2. First, we select the initial minimum
number of cluster centers as one, but this does not mean that our final clustering results are
treated as one category; rather, only one of the clustering results is reserved. It should be
noted here that the ultimate goal is to obtain a curve with the number of cluster centers
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as the x-axis and the average comprehensive quality score as the y-axis. b is the weighted
index, t is the index set, and s is the set of clustering results. Then, the historical data
on wind power and photovoltaics are input, and the membership matrix is initialized
to find the desired curve. The inflection point of the curve is the number of optimal
clustering scenes.
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3.2. The Construction of a Three-Stage Scheduling Optimization Model for Micro-Energy Grids
3.2.1. The First-Stage Model

The first stage is the optimization model for day-ahead capacity allocation. Because
there are some renewable energy units in the micro-energy grid, such as wind power
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and photovoltaics, in order to realize the priority consumption of renewable energy as
much as possible and reduce the abandonment of wind and light resources, it is necessary
to solve the randomness and intermittency of renewable energy output. Conventional
thermal power units are generally used in traditional power grids to balance fluctuations
in wind power output according to the peak-to-valley changes of load throughout the
day. Sufficient thermal power reserve capacity is the key to ensuring the safe and stable
operation of the power grid. However, there are many ways to stabilize the fluctuation
of renewable energy output in the micro-energy grid. In this paper, a combination of gas
turbines, power storage equipment, and demand response is used to stabilize the instability
of renewable energy output.

(1) The Objective function In the day-ahead capacity allocation, since the electricity
transaction process is not involved, it is only necessary to control the total cost of the
micro-energy grid in the day-ahead capacity allocation stage. Therefore, the target
aims to minimize the day-ahead capacity allocation cost. The objective function is
shown in Equation (1):

minCco =
T

∑
t=1

[
(CGT,t + CBESS,t + CDR,t) +

(
Cspiil

(
Pspill

W,t + Pspill
pv,t

))]
(1)

CGT,t = Cstartup
GT

ustartup
GT,t + Cstop

GT
ustop

GT,t + CRD
GT RD

GT,t + CRU
GT RU

GT,t (2)

CBESS,t = CD
BESS,tPdis,t + CC

BESS,tPchr,t (3)

CDR,t = a + bPDR,t (4)

It can be seen from the objective function that the total cost (Cco) can be divided
into three parts: gas turbine capacity allocation cost (CGT,t), energy storage capacity
allocation cost (CBESS,t), and demand response capacity allocation cost (CDR,t). Among
them, the gas turbine capacity allocation cost includes the startup and shutdown cost
of the unit, as well as the spare capacity cost.

(2) System constraints

(a) Gas turbine
PGT,min ≤ PGT,t − RD

GT,t (5)

PGT,t + RU
GT,t ≤ PGT,max (6)

RD
GT,t ≥ 0, RU

GT,t ≥ 0 (7)

where PGT,max and PGT,min are, respectively, the maximum and minimum power
of the gas turbine, while RU

GT,t and RD
GT,t are, respectively, the upper and lower

reserves of the gas turbine. PGT,t represents the actual gas turbine power.
The functional relationship between the natural gas consumption and power
generation of the gas turbine is shown in Equation (8):

FGT,t =
aPGT,t + buGT,t

ηGT · LHV
(8)

In the above formula, a and b are the gas-to-electricity conversion coefficients,
is the power generation efficiency of the gas turbine, LHV is the low calorific
value of natural gas, and uGT,t is a 0–1 variable: take 0 to mean gas turbine
shutdown; take 1 to mean startup. In addition, the power output constraints
and ramp rate constraints of the gas turbine need to be considered. The
mathematical expressions are shown in Equations (9) and (10):

uGT,tPmin
GT ≤ PGT,t ≤ uGT,tPmax

GT (9)

uGT,tRampdown
GT ≤ PGT,t − PGT,t−1 ≤ uGT,tRampup

GT (10)
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where Pmin
GT and Pmax

GT , respectively, represent the upper and lower limits of the
gas turbine output Rampdown

GT and Rampup
GT, respectively, represent the boundary

value of the gas turbine ramping power between every two time periods.
Considering that the gas turbine also produces heat energy while generating
electricity, and the thermoelectric power relationship curve is generally a non-
linear relationship, in order to facilitate the solution, this paper adopts the idea
of piecewise linearization to linearize the thermoelectric power output relation-
ship and convert it into a general mixed-integer programming problem [26].
The mathematical expressions are shown in Equations (11)–(14).

PGT,t = uGT,t M1
GT +

l

∑
k=1

Dk
GT,t (11)

uGT,t =
l

∑
k=1

zk
GT,t (12)

l

∑
m=k+1

zm
GT,t ≤

Dk
GT,t

Mk+1
GT −Mk

GT

≤
l

∑
m=k

zm
GT,t (13)

Hhe = uGT,tN1
GT +

l

∑
k=1

ck
GT Dk

GT,t (14)

where Mk
GT is the end point electric power value of each segment after the

piecewise linearization of the thermoelectric curve; zm
GT,t is a binary variable,

indicating that the current operating state of the gas turbine is on the piecewise
linear function of the m segment; ck

GT is the slope of the linear function of the k
segment; and Hhe represents the heat produced by the gas turbine.

(b) Energy storage battery operation constraints

EBESS
t+1 = (1− ηBESS

L )EBESS
t −

Pdis,t∆t
ηD

+ ηCPchr,t∆t, t = 0, 1, 2 . . . (15)

EBESS
min ≤ EBESS

t ≤ EBESS
max (16)

0 ≤ Pchr,t ≤ uBESS
chr,t Pchr,max (17)

0 ≤ Pdis,t ≤ uBESS
dis,t Pdis,max (18)

uBESS
chr,t + uBESS

dis,t ≤ 1; uBESS
chr,t , uBESS

dis,t ∈ {0, 1} (19)

Equation (15) represents the state transition equation of the energy storage
battery. EBESS

t represents the electrical energy stored by the energy storage
battery in the time period t. ηC,ηD, and ηL represent the charge and discharge
efficiency of the energy storage battery and its self-discharge rate. uBESS

chr,t
and uBESS

dis,t are the 0–1 state variables of the charging and discharging of the
energy storage battery in the period t, respectively; 0 means that the behavior
does not occur, and 1 means that the behavior occurs. Pchr,t and Pdis,t are the
corresponding charging and discharging power of the energy storage battery
in the period.

(c) Demand response capacity constraints

0 ≤ PDR,t ≤ PDR,max (20)

where PDR,t represents the actual demand response reserve capacity signed
with the power user during the t period, and PDR,max represents the maximum
corresponding capacity that the power user can bear.
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(d) Abandon wind power and photovoltaic output power constraints

0 ≤ Pspill
W,t ≤ P̃W,t (21)

0 ≤ Pspill
pv,t ≤ P̃pv,t (22)

where Pspill
pv,t and Pspill

pv,t are the power generation of abandoned wind and pho-

tovoltaic, respectively, P̃W,t and P̃pv,t are the predicted values of wind power
and photovoltaic output, respectively.

(e) System rotation reserve constraints: Reference [27] proposed that, in a distribu-
tion network with a high proportion of large-scale wind power, photovoltaics,
and other highly volatile renewable energy units connected, the scheduling
optimization model must consider the system spinning reserve constraints in
the micro-energy grid. This constraint also needs to be considered. When there
is a deviation in wind power and photovoltaic output, the reserved reserve
capacity is enough to balance the deviation.{

RU
GT,t + Pdis,t + PDR,t ≥ P̃W,t − PD

W,t + P̃pv,t − PD
pv,t

RD
GT,t + Pchr,t ≥ PU

W,t − P̃W,t + PD
pv,t − P̃pv,t

(23)

(f) System total reserve constraints: In the day-ahead stage, the total system
reserve should be reserved for the intraday scheduling operation stage to
ensure that the basic load requirements of cooling, heating, and electricity
are met.

ηecPec,t + QIT
D,t −QIT

C,t + ηacQac,t ≥ (1 + ϕc)Qc,t (24)

ηhc(Qboiler,t + Qrec,t + Qdis,t −Qchr,t −Qac,t) ≥ (1 + ϕh)Qh,t (25)

Ppv,t − Pspill
pv,t + PW,t − Pspill

W,t + PGT,t − Pec,t ≥ (1 + ϕe)Pe,t − PDR,t (26)

where ϕc, ϕh, and ϕe are the reserve coefficients of the cooling, heating, and
electric load of the micro-energy grid, respectively.

3.2.2. The Second-Stage Model

According to the solution result of the first-stage model, it should then be substituted
into the second-stage model as the input parameter of the second-layer model.

(1) The Objective function
The second-stage model considers two objectives, and the specific indicators can be
reflected in the total cost of system operation and the CO2 emissions of the micro-
energy grid. However, due to the difference between the two target dimensions, this
paper converts the CO2 emissions into penalty costs to measure the economy of the
micro-energy grid operation. These two goals can be expressed together, as shown in
Equations (27)–(31):

min f ID =
T

∑
t=1

(
C f uel,t + Cgrid,t + Crm,t + Cce,t

)
(27)

C f uel = f p(Fb + FGT) (28)

Cgrid = pM+PM+ − pM−PM− (29)

Crm = rmgtPGT + rmecPec + rmrecQrec + rmbQb + rmbess(Pdis + Pchr)

+ rmtst(Qdis + Qchr) + rmit(QIT
D + QIT

C ) + rmsPs + rmwPw
(30)

Cce =
T

∑
t=1

pc(cgtPGT + cboilerQb + cgridPM+) (31)
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where C f uel , Cgrid, Crm, and Cce, respectively, represent the fuel cost of the gas turbine,
the power interaction cost between the micro-energy grid and the main grid, the oper-
ation and maintenance cost of the micro-energy grid, and the CO2 emission penalty
cost in the micro-energy grid. Fb and FGT represent the natural gas consumption of
the gas turbine and gas boiler, respectively. f p refers to the real-time purchase cost of
natural gas. PM+ and PM− decibels indicate the purchase and sale of electricity. cg,
cboiler, and cgrid represent the CO2 emission intensity coefficients of gas turbines, gas
boilers, and electricity purchased from the grid, respectively. pc is the penalty coeffi-
cient. rmgt, rmec, rmrec, rmb, rmbess, rmtst, rmit, rms, and rmw represent the operation
and maintenance costs per unit of electricity for gas turbines, electric refrigerators,
waste heat boilers, gas boilers, batteries, heat storage tanks, ice storage machines,
photovoltaics, and wind power, respectively.

(2) System constraints

u∗GT,tP
min
GT ≤ PGT,t − RD∗

GT,t ≤ u∗GT,tP
max
GT (32)

Cce =
T

∑
t=1

pc(cgtPGT + cboilerQb + cgridPM+) (33)

u∗GT,t(Rampdown
GT − RD∗

GT,t) ≤ PGT,t − PGT,t−1 ≤ uGT,t(Rampup
GT − RU∗

GT,t) (34)

FGT,t =
aPGT,t + buGT,t

ηGT · LHV
(35)

PGT,t = u∗GT,t M1
GT +

l

∑
k=1

Dk
GT,t (36)

Hhe = u∗GT,tN1
GT +

l

∑
k=1

ck
GT Dk

GT,t (37)

u∗GT,t =
l

∑
k=1

zk
GT,t (38)

l

∑
m=k+1

zm
GT,t ≤

Dk
GT,t

Mk+1
GT −Mk

GT

≤
l

∑
m=k

zm
GT,t (39)

(3) Subsection

(a) Gas turbine
Compared to the expression of the gas turbine in the first-stage model, more
variables are added here. Among them, u∗GT,t, RD∗

GT,t, RU∗
GT,t are the clearing re-

sults of the first stage, which are directly substituted here as boundary conditions.
(b) Gas boiler

Qmin
boiler ≤ Qboiler,t ≤ Qmax

boiler (40)

Fb,t =
Qboiler,t∆t
ηb · LHV

(41)

where Qboiler,t is the thermal power output of the gas boiler at time t, Qmax
boiler

and Qmin
boiler are the upper and lower limits of the output thermal power of the

gas boiler, Fb,t is the natural gas consumption of the gas boiler, ηb is the energy
conversion efficiency coefficient of the gas boiler.

(c) Heat storage tank
Similar to the energy storage battery, the heat storage tank also has a thermal
energy state transfer equation, charge/discharge power constraints, and charge
and discharge state constraints, as shown in Equations (42)–(46):
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Qtst,t+1 = (1− ηTST
L )Qtst,t −

QTST
D,t ∆t

ηTST
D

+ ηTST
C QTST

C,t ∆t, t = 0, 1, 2 . . . (42)

Qmin
tst ≤ Qtst,t ≤ Qmax

tst (43)

0 ≤ QTST
C,t ≤ uTST

chr,tQ
TST,max
C (44)

0 ≤ QTST
D,t ≤ uTST

dis,t QTST,max
D (45)

uTST
chr,t + uTST

dis,t ≤ 1 (46)

(d) Ice Cooler
In the same way, the operating constraints of the ice-cold storage machine are
as follows:

EISS
t+1 = (1− η ISS

L )EISS
t −

PISS
dis,t∆t

ηD
+ ηCPISS

chr,t∆t, t = 0, 1, 2 . . . (47)

EISS
min ≤ EISS

t ≤ EISS
max (48)

0 ≤ PISS
chr,t ≤ uISS

chr,tP
ISS
chr,max (49)

0 ≤ PISS
dis,t ≤ uISS

dis,tP
ISS
dis,max (50)

uISS
chr,t + uISS

dis,t ≤ 1; uISS
chr,t, uISS

dis,t ∈ {0, 1} (51)

(e) Other energy conversion equipment
The micro-energy grid also includes three types of equipment: electric cooling,
gas heating, and thermal cooling. Electric refrigeration equipment converts
electrical energy into cold energy, and gas heating generates thermal energy by
burning natural gas. These energy conversion devices have different energy
efficiencies when switching energy types. For simplicity, this paper uses the
form of a matrix to represent the energy conversion process, as shown in
Equation (52): Qec,t

Qrec,t
Qh,t

 =

Pec,t 0 0
0 Hhe,t 0
0 0 Qhc,t

 ηec
ηrec
ηhc

 (52)

where Qec,t is the cooling power generated by the electric refrigeration at time
t. Qrec,t is the thermal power generated by the gas boiler at time t. Qh,t is
the thermal power generated by the heating coil at time t. Pec,t and Hhe,t,
respectively, represent the electricity consumption of the electric refrigerator
and the gas boiler at time t. Qhc,t represents the heat of the heating coil at
time t. ηec, ηrec, and ηhc represent the energy conversion efficiencies of the
three devices.

(f) Power balance constraints

ηecPec,t + QIT
D,t −QIT

C,t = Qc,t (53)

Qrec,t = ηrecHhe (54)

Qh,t = ηhc(Qboiler,t + Qrec,t + Qdis,t −Qchr,t) (55)

Psolar,t + Pwind,t + PGT,t − Pec,t + Pdis,t − Pchr,t + PM−,t − PM+,t = Pl,t (56)

where Pec,t represents the electric power consumed by the electric refrigerator
at time t. ηec represents the conversion coefficient of the electric refrigeration
machine to cold. QIT

D,t and QIT
C,t represent the cooling power and charging
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power of the ice-cold storage machine at all times, respectively. Qc,t, Qh,t, and
Pl,t are the cooling load, heating load, and electrical load in the system at time t.

3.2.3. The Third-Stage Model

Based on the results of the first and second-stage models, the third stage is modeled
with the goal of minimizing the total cost of real-time balancing.

(1) The Objective function

min fRT =
K

∑
k=1

ρk

T

∑
t=1

(
∆CGT,k,t + ∆CBESS,k,t + ∆CDR,k,t + ∆Cspill,k,t + f ID

)
(57)

∆CGT,k,t = p+GT,t∆
+
GT,k,t + p−GT,t∆

−
GT,k,t (58)

∆CBESS,k,t = p+BESS,t∆
+
BESS,k,t + p−BESS,t∆

−
BESS,k,t (59)

∆CDR,k,t = pDR,t∆DR,k,t (60)

∆Cspill,k,t = Cspill,t

(
∆wind,k,t + ∆pv,k,t

)
(61)

It can be seen that the objective function is mainly divided into four parts: the cost
of active power balance adjustment using gas turbines; the cost of active power balance
adjustment using energy storage; the cost of using demand response management methods
to reduce loads on the demand side; and penalty costs for abandoning wind and light.
Where ρk represents the probability of scenario occurrence, f ID is the total cost function of
intraday economic dispatch.

(2) Stochastic optimization scheduling model considering CVaR
When a micro-energy grid is optimized for real-time balance scheduling, it is not only

necessary to consider the issue of operating costs, but also to evaluate and analyze the risk
of fluctuations in operating costs caused by uncertain factors. In this paper, CVaR theory
is used to quantify the possible value-at-risk of the whole scheduling process. Therefore,
based on the objective function (58), we add CVaR risk aversion, which is jointly optimized
with the expected total cost through a linear combination. The mathematical expression of
the objective function is shown in Equation (62):

minF
Xt ,∀t

= λE( fRT) + (1− λ)CVaRα( fRT) (62)

where α is the confidence level, λ is the weight coefficient, and then according to the
transformation method of the literature [28], the Equation (62) is further transformed into
the Equation (63):

minF
Xt ,∀t

= λ ∑
k∈Ω

ρk

[
T

∑
t=1

(
∆CGT,k,t + ∆CBESS,k,t + ∆CDR,k,t + ∆Cspill,k,t

)]
+ (1− λ)

(
ζ +

1
α ∑

k∈Ω
ρkzk

)
(63)

s.t.

 zk ≤
T
∑

t=1

(
∆CGT,k,t + ∆CBESS,k,t + ∆CDR,k,t + ∆Cspill,k,t

)
− ζ

zk ≤ 0
(64)

where Ω represents the joint scenario set in the micro-energy grid and k represents the
kth scenario in it. ρk represents the probability of occurrence of the kth scenario; ζ, zk are
intermediate parameters that have no practical significance.

In this paper, the system operating cost value is controlled between the expected
operating cost and the CVaR value. When λ = 0, the micro-energy grid operator adopts
a strategy of completely avoiding risks, fully considering the risks that may occur in the
actual dispatching operation of the micro-energy grid, and avoids them. When λ gradually
increases, the strategy adopted by the micro-energy grid operator gradually tends to be
risk-neutral. Finally, when λ = 1, it means that the scheduling optimization decision is
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completely risk-neutral. At this time, only the expected total operating cost is considered,
and the CVaR value is ignored.

(3) System Constraints
In the real-time balance stage, not only the constraints of intraday energy economic

dispatch but also the constraints related to the real-time balance mechanism must be
considered. The main constraints are shown in Equations (65)–(74):

0 ≤ ∆+
GT,k,t ≤ u+

GT,k,tR
U∗
GT,t (65)

0 ≤ ∆−GT,k,t ≤ u−GT,k,tR
D∗
GT,t (66)

u+
GT,k,t + u−GT,k,t ≤ 1 (67)

0 ≤ ∆+
BESS,k,t ≤ u+

BESS,k,tP
∗
dis,t (68)

0 ≤ ∆−BESS,k,t ≤ u−BESS,k,tP
∗
chr,t (69)

u+
BESS,k,t + u−BESS,k,t ≤ 1 (70)

EBESS
k,t+1 =

(
1− ηBESS

L

)
EBESS

k,t −

(
P∗chr,t + ∆+

BESS,k,t

)
∆t

ηD
+ ηC

(
P∗chr,t + ∆−BESS,t

)
∆t (71)

EBESS
min ≤ EBESS

k,t ≤ EBESS
max (72)

0 ≤ ∆DR,k,t ≤ P∗DR,t (73)

∆PW,k,t + ∆Ppv,k,t = ∆+
GT,k,t − ∆−GT,k,t + ∆+

BESS,k,t − ∆−BESS,k,t + ∆DR,k,t −
(

∆wind,k,t + ∆pv,k,t

)
(74)

Equations (65)–(67) represent the power adjustment constraints for the active power
compensation of the gas turbine in the real-time phase, Equations (68)–(72) represent the
power constraints for the energy storage to perform active power compensation in the
real-time phase, and Equation (73) represents the demand response. With respect to the
power constraint for active power compensation in the real-time stage, Equation (74) means
that the deviation caused by wind power and photovoltaics in the real-time stage must
ensure that there is enough capacity to balance.

3.3. The Solution Method for the Three-Level Dispatch Optimization Model for the
Micro-Energy Grid

The overall solution to the three-level dispatch model of the micro-energy grid con-
structed in this paper can be roughly divided into four modules. The first module uses
the scene-clustering method to describe the typical output scenarios of wind power and
photovoltaics clustering into several reasonable typical scenarios. The second module is the
solution of the day-ahead reserve capacity allocation model. The third module corresponds
to the solution of the intraday economic dispatch operation model. The last module is
based on the output results of the first three modules and is brought into the real-time
balance stage dispatch model for a solution. A detailed flow chart is shown in Figure 3.

In terms of solving methods, the first module is the renewable energy output scenario
clustering, which is solved by the FCM-CCQ algorithm, and the specific solution process
is shown in Figure 2. Secondly, the models constructed in modules 2, 3, and 4 can be
abstracted as mixed-integer linear programming problems, which can be solved by the
branch-and-bound method, and since this method is a mature method in the field of
operations research, the current stage can directly call upon CPLEX solver to scale up the
solution. This method is not the highlight of this paper, so it will not be repeated.
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4. Example Analysis
4.1. Parameter Setting

In this paper, a small, low-carbon park was selected as an example analysis object. The
park can be regarded as a micro-energy grid, and its structure is shown in Figure 4. The
micro-energy grid includes a wind turbine with a rated power of 150 kW, a photovoltaic
generator with a rated power of 150 kW, a cogeneration unit with a rated power of 250 kW,
a 50-kW energy storage battery, a 500-kW gas boiler, a 160-kW heat storage tank, a 150-kW
cold storage machine, a 300-kW absorption-type chiller, and a 100-kW electric chiller. Refer
to [29] for the data on each piece of equipment; the cooling, heating, and electric load curves
are shown in Figure 5. This example analysis was performed on a computer configured
with an Intel(R) Xeon(R) E3-1230 v3 3.30 GHz and 8.00 GB of memory.
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Since the real-time output scenarios of new energy need to be clustered in advance,
this paper presents 50 groups of historical output data for wind power and photovoltaics
at 24 h. The data come from a wind farm and a photovoltaic power station, as shown in
Figures 6 and 7. The simulation of this example still uses MATLAB_2015b and calls for the
CPLEX solver to solve the problem.
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4.2. Analysis of Results of Clearing the Day before

Based on the prediction of wind power, photovoltaics, and load data, as well as the
analysis of the micro-energy grid capacity-optimized configuration scheme, the calculation
results are shown in Figure 8. The solid black line in the figure represents wind power
and photovoltaics at 24 h of possible maximum deviation; the sum of the solid gray lines
represents wind power and photovoltaics under 24 h of the maximum possible deviation;
and the sum of the bar chart represents the clearing result of the spare capacity of each spare
piece of equipment. According to the results, the sum of deviations in the morning (around
6:00), noon (10:00–14:00), and evening (19:00–21:00) are larger than in other periods, which
is consistent with the periods of large possible deviations in wind power and photovoltaics
analyzed above, verifying the rationality of the results.
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Figure 8. Reserve capacity clearance results.

Table 1 shows the cost of the gas turbine, demand response, and energy storage reserve
capacities. From the perspective of cost structure, the cost of the reserve capacity of the gas
turbine accounts for the highest proportion, exceeding 60%, and the leading role of the gas
turbine in the entire reserve capacity allocation process can be obtained.

Table 1. Cost details of reserve capacity (unit: RMB).

Gas Turbine Spare Capacity Cost Demand Response
Spare Capacity

Compensation Costs

Cost of Energy Storage
Backup Capacity Total Reserve

Capacity CostUp Spare
Capacity Costs

Down Spare
Capacity Costs

Discharge
Capacity Cost

Charging
Capacity Cost

14,579.893 11,065.679 9181.017 2147.625 2379.639 39,353.854

4.3. Analysis of Intraday Economic Dispatch Results

As can be seen from Figure 9, since the marginal operating cost of wind power and
photovoltaics is the smallest, the production plan is prioritized. However, the gas turbine
is maintained at the minimum output level during the period of 0:00–4:00. At this time,
it is necessary to consider the standby power. Capacity, that is, the minimum output, is
equal to the sum of the spare capacity and the minimum technical output of the gas turbine
at this moment. During the peak load period, from 18:00 to 22:00, the gas turbines are
basically at full output, but there is still a power demand gap. Therefore, at this time, it
is still necessary to purchase part of the electricity from the external power grid to meet
the system demand. Figure 10 shows the scheduling results of thermal energy. It can be
seen that the thermal storage tank displays thermal storage behavior during the periods of
8:00–9:00, 12:00, 15:00–16:00, and 19:00–20:00. To store the excess heat energy generated by
the gas turbine, and heat is released from 22:00 to 24:00, which reduces the heat production
of the gas boiler, realizes the decoupling of heat energy and electric energy to a certain
extent, and avoids thermal energy loss, thus improving energy efficiency. Figure 11 shows
the dispatching result of cold energy. It can be concluded that the ice-cold storage unit
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purchases electric energy when the electricity price is low and converts it into cold energy;
subsequently, cooling down at 8:00 a.m. reduces the power transmission pressure of the gas
turbine during this period, realizes the time–space separation of supply and consumption,
effectively avoids the high-power purchase price of peak load, saves power purchasing
costs, and improves the operation of the micro-energy grid economy.
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4.4. Analysis of Clustering Results

The FCM-CCQ method is used to cluster historical output data on wind power and
photovoltaics, and the marginal benefit curve of the cluster is obtained according to the
clustering results, as shown in Figure 12.
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According to the curve in the figure, as the number of cluster centers increases, the
average comprehensive quality score (ACQS) also increases gradually, but with a marginal
decreasing effect. Further observation of the curve shows that when the marginal benefit
exceeds a certain threshold, β, the corresponding boundary point is the optimal number of
cluster centers. Then, according to the optimal number of cluster centers, the results and
the probability of the typical clustering scenarios are obtained. The best clustering scenarios
determined in this example are ten typical wind power and photovoltaic combined output
scenarios, as shown in Figure 13:
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The probabilities of the above 10 typical scenarios are: 0.08, 0.12, 0.15, 0.05, 0.07, 0.13,
0.11, 0.09, 0.105, and 0.095. We needed to carry out real-time balanced optimal scheduling
for the overall micro-energy grid under each typical scenario of the real-time output of the
wind power and photovoltaics. However, since the scheduling optimization process is the
same in each scenario, this paper analyzes the scheduling optimization results with one
typical scenario out of ten wind power and photovoltaic output scenarios.

4.5. Analysis of Real-Time Stage-Clearing Results

According to the selected typical wind power and photovoltaic output scenarios, the
curves of the actual and predicted output of wind power and photovoltaics in this scenario
are obtained, as shown in Figure 14:
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Figure 14. Curve comparison of the actual and predicted output of wind power and photovoltaic power.

Based on the actual output curve of the wind power and photovoltaics, the output
results of each reserve capacity can be obtained, as shown in Figure 15:
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Figure 15. The result of the real-time phase standby capacity.

It can be seen from Figure 15 that the deviation between the actual output and the
predicted value of the wind power and photovoltaics at different times can be compensated
by the linkage adjustment mechanism of gas turbines, energy storage, and demand re-
sponse. The energy storage still carries out orderly charging and discharging in accordance
with the results and actual deviation of the day-ahead phase. The demand response is
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also to reduce part of the electricity load according to the day-ahead phase and the agreed
response period of the user. On the whole, the micro-energy grid uses its own energy
equipment to completely balance the fluctuations of wind power and photovoltaic output,
maintain the stability of the micro-energy grid operation, and play a safety role for the
whole system.

As the output of the gas turbine in the micro-energy grid changes, the output results of
other equipment in the real-time stage also change, as shown in Figures 16–18. Compared
with the intraday economic dispatching results, it is not difficult to find that the output
of gas turbines increases and decreases in different periods, which also means that the
thermal power of gas turbines will increase and decrease correspondingly. In order to
continue to meet the demand of thermal-load users, the output of the gas boiler will also
change accordingly.

4.6. Sensitivity Analysis

(1) λ factor sensitivity analysis
Regarding the uncertainty of photovoltaic and wind power output, although it is

described by scenario classification, the final operating cost is still only an expected value,
and there are still some risks. Therefore, this paper uses CVaR risk control theory to
reasonably avoid the economic risk of operating cost deviation. Since the subjective
tendency coefficient, λ, in Formula (62) is set externally according to the degree of risk
preference in the micro-energy grid, the value of λ will ultimately affect the decision result
of the system. Figure 19 shows the Pareto boundary curve between the expected total
operating cost and its CVaR for different values of λ. It can be seen that, as the value of
λ increases, the decisionmaker tends to be risk-neutral; as the value of λ decreases, the
decisionmaker tends to be risk-averse.
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Figure 16. Real-time phase electrical energy clearance results.
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Figure 17. Real-time phase heating energy clearance results.
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Figure 19. Pareto boundary curve of total cost and CVaR.

According to the curve analysis in the figure, we can see that the expected total cost of
the real-time balance of the micro-energy grid will decrease with an increase in the λ value,
but the CVaR value of its expected cost will decrease with an increase in the λ value. This is
because when the value of λ is larger, it indicates that the micro-energy grid operators tend
to choose the risk-neutral scheduling strategy, which can achieve the goal of minimizing
the expected total cost but cannot resist the interference brought on by the uncertainty
of the output power of renewable energy in the whole system. On the contrary, when
the value of λ is smaller, micro-energy grid operators tend to adopt a more conservative
scheduling strategy.

(2) Sensitivity analysis of carbon emission penalty coefficient
Bringing different penalty coefficient values into the model for further examination,

CO2 emissions under different penalty prices are obtained, as shown in Figure 20. As the
government increases penalties for CO2 emissions, micro-energy grids will gradually come
to control CO2 emissions; they will not always decline, but rather, gradually slow down and
tend toward a stable value. Further analysis shows that CO2 emissions in the micro-energy
grid are closely related to the combustion of natural gas and the purchase of electricity
from the main grid. It can be seen that, when the electricity and consumption purchased by
external users reach a certain functional constraint, CO2 emissions will not increase because
the functional requirements set by the system will have been fully satisfied.
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5. Conclusions

Micro-energy grids have great promotion value due to their relative independence,
small scale, and flexibility. They can use different energy couplings to realize the coordi-
nated supply of cold, heat, and electricity, as well as improve energy utilization efficiency
through energy storage, energy conversion, demand response, and multi-energy com-
plementation, as well as by reducing the peak-to-valley difference, thereby reducing the
maximum capacity and reserve capacity of the energy supply side. This paper focuses
on the multi-energy, collaborative, three-stage scheduling optimization operation of a
micro-energy grid from the perspectives of operation benefit, operation cost, spare capacity,
risk assessment, etc. The main research results and conclusions are as follows:

(1) A three-level scheduling optimization model framework for micro-energy grids is
proposed. Firstly, the connection relationship between the models at all levels is described;
secondly, the FCM-CCQ algorithm is used to obtain the optimal number of clustering
centers, and then the typical scenarios and their probability distributions with respect to
wind power and photovoltaic output are obtained; finally, based on the clustering results,
in each typical scenario of combined wind power and photovoltaic output, a three-level
dispatch optimization model of the micro-energy grid, with the minimum operating cost
as the objective function, is constructed.

(2) Fully considering the risks brought on by uncertain factors to system operation, we
use CVaR theory to transform the original model, realizing the visual display of risk value
and guiding decisionmakers to adopt corresponding scheduling optimization strategies in
a targeted manner to avoid possible risks;

(3) The practicability and effectiveness of the proposed model are verified by actual
cases. The model can provide effective decision support for micro-energy grid operators
under the condition of the electricity spot market.

The research work of this paper focuses on preconfiguring the capacity of flexible
generation equipment and energy storage to cope with the uncertainty of renewable energy
output in real-time, formulating an optimal strategy for micro-energy grid operation in
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phases that can provide strategic suggestions and references for the autonomous operation
and safety control of micro-energy grids. In addition, the clustering analysis method used
in this paper, FCM-CCQ, has the dual function of clustering and evaluation, which is better
than the traditional clustering algorithm and has a certain academic value. However, there
are still some inadequate research areas in this paper, such as not considering the realistic
problems that may be brought on by the operation of multiple entities in the micro-energy
grid system. Subsequent research work can use the cooperative game theory to study the
cooperative mechanism of the operation of multiple entities in the micro-energy grid.
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Nomenclature

CVaR Conditional value at risk C f uel The fuel cost of the gas turbine

CCHP
Combined Cooling Heating
and Power

Cgrid

The power interaction cost
between the micro-energy grid
and the main grid

PV Photovoltaic Crm
The operation and maintenance
cost of the micro-energy grid

BESS Battery energy storage system Cce
The CO2 emission penalty cost in
the micro-energy grid

MT Microturbine Fb
The natural gas consumption of
gas boiler

GA Genetic algorithm FGT
The natural gas consumption of
gas turbine

CARIMA
Controlled autoregressive
moving average

f p
The real-time purchase cost price
of natural gas

RES Renewable energy systems PM+ The purchase of electricity
ESS Energy storage systems PM− The sale of electricity

FCM-CCQ
Fuzzy c-means-clustering
comprehensive quality

cg
The CO2 emission intensity
coefficients of gas turbine

FCM Fuzzy C-means cboiler
The CO2 emission intensity
coefficients of gas boilers

ACQS
Average comprehensive
quality score

cgrid

The CO2 emission intensity
coefficients of electricity
purchased from the grid

Cco The total cost pc The penalty coefficient

CGT,t
Gas turbine capacity
allocation cost

rmgt

The operation and maintenance
costs per unit of electricity for
gas turbines
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CBESS,t
Energy storage capacity
allocation cost

rmec

The operation and maintenance
costs per unit of electricity for
electric refrigerators

CDR,t
Demand response capacity
allocation cost

rmrec

The operation and maintenance
costs per unit of electricity for
waste heat boilers,

PGT,max
The maximum power of the
gas turbine

rmb

The operation and maintenance
costs per unit of electricity for
gas boilers

PGT,min
The minimum power of the
gas turbine

rmbess

The operation and maintenance
costs per unit of electricity
for batteries

RU
GT,t

The upper reserves of the
gas turbine

rmtst

The operation and maintenance
costs per unit of electricity for
heat storage tanks

RD
GT,t

The lower reserves of the
gas turbine

rmit

The operation and maintenance
costs per unit of electricity for
the ice storage machine

PGT,t The actual gas turbine power rms

The operation and maintenance
costs per unit of electricity
for photovoltaic

LHV
The low calorific value of
natural gas

rmw

The operation and maintenance
costs per unit of electricity for
wind power

uGT,t The 0–1 variable Qboiler,t
The thermal power output of the
gas boiler at time t

Pmin
GT

The lower limits of the gas
turbine output

Qmax
boiler

The upper limits of the output
thermal power of the gas boiler

Pmax
GT

The upper limits of the gas
turbine output

Qmin
boiler

The lower limits of the output
thermal power of the gas boiler

Rampdown
GT

Lower boundary value of gas
turbine ramping power

Fb,t
The natural gas consumption of
the gas boiler

Rampup
GT

Upper boundary value of gas
turbine ramping power

ηb
The energy conversion efficiency
coefficient of the gas boiler

Mk
GT

The endpoint electric power
value of each segment after the
piecewise linearization of the
thermoelectric curve

Qec,t
The cooling power generated by
the electric refrigeration at time t

zm
GT,t A binary variable Qrec,t

The thermal power generated by
the gas boiler at time t

ck
GT

The slope of the linear function
of the k segment

Qh,t
the thermal power generated by
the heating coil at time t

Hhe
The heat produced by the
gas turbine

Pec,t
The electricity consumption of
the electric refrigerator at time t

EBESS
t

The electrical energy stored by
the energy storage battery in the
time period t

Hhe,t
The electricity consumption of
the gas boiler at time t

ηC
The charge efficiency of the
energy storage battery

Qhc,t
The heat of the heating coil at
time t

ηD
The discharge efficiency of the
energy storage battery

Pec,t
The electric power consumed by
the electric refrigerator at time t

ηL Its self-discharge rate ηec

The conversion coefficient of the
electric refrigeration machine
to cold

uBESS
chr,t

The 0–1 state variables of the
charging of the energy storage
battery in the period t

QIT
D,t

The cooling power of the ice-cold
storage machine at all times
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uBESS
dis,t

The 0–1 state variables of the
discharging of the energy storage
battery in the period t

QIT
C,t

The charging power of the
ice-cold storage machine at
all times

Pchr,t

The corresponding charging
power of the energy storage
battery in the period t

Qc,t
The cooling load in the system at
the moment t

Pdis,t

The corresponding discharging
power of the energy storage
battery in the period t

Qh,t
The heating load in the system at
the moment t

PDR,t

The actual demand response
reserve capacity signed with the
power user during the t period

Pl,t
The electrical load in the system
at the moment t

PDR,max
The maximum
corresponding capacity

ρk
The probability of
scenario occurrence

Pspill
pv,t

The power generation of
abandoned wind

f ID
The total cost function of
intraday economic dispatch

Pspill
pv,t

The power generation of
abandoned photovoltaic

α The confidence level

P̃W,t
The predicted values of wind
power output

λ The weight coefficient

P̃pv,t
The predicted values of
photovoltaic output

Ω
The joint scenario set in the
micro-energy grid

ϕc
The reserve coefficients of the
cooling of the micro-energy grid

k The k-th scenario

ϕh
The reserve coefficients of the
heating of the micro-energy grid

ρk
The probability of occurrence of
the k-th scenario

ϕe

The reserve coefficients of the
electric load of the
micro-energy grid
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