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Abstract: This study seeks a better understanding of the acceptance of geospatial technology with
Light Detention and Ranging (LIDAR) in road design in a developing country, Malaysia. Existing
surveying measurement methods to provide quick, accurate, and reliable information are unsuccessful
in producing an expected result, especially in large areas. In addition, topographic data cannot be
observed well with the conventional total station method in areas under thick canopies, which
is challenging to identify road areas at risk to the environment, such as slope failure. Geospatial
surveying technology by LiDAR helps in measuring fields over a wide area and provides a broader
spatial extent. At the same time, the laser capability of airborne LiDAR, which penetrates the canopy,
helps give accurate readings on the terrain. However, the use of LiDAR geospatial technology for
use in road design is still insufficient to date. Thus, this study is developed to identify the factors
that influence the use of LiDAR in road design among engineers. Factors identified are barriers,
motivation, and strategy. Barrier factors consist of lack of knowledge, risk, cost, and human aspects
that slow down the development of LiDAR use. On the other hand, motivational factors consist of
encouraging engineers to obtain knowledge about LiDAR and to use it more widely. Meanwhile, a
strategy factor form increases LiDAR measurement methods through activities or work procedures.
The finding shows that barriers and strategy factors are the significant factors that affect the acceptance
of LiDAR among engineers. However, motivational factors have no significant effect to engineers
in accepting the use of LiDAR. The advantages of this study and its limitations are also discussed.
Finally, this study also provides compilation of few suggestions pertaining this topic to improve
future research.

Keywords: geospatial technology; LiDAR; sustainable road planning and design; factor influencing
road infrastructure project; Exploratory Factor Analysis (EFA); Confirmatory Factor Analysis (CFA)

1. Introduction

Geospatial technology acquires, collects, and stores geographic data that contribute to
geographic mapping and analysis [1]. Among the examples of geospatial technology are
Global Positioning System (GPS), Geographic Information Systems (GIS), spectral imagery,
Light Detention and Ranging (LiDAR), and aerial photography are examples of geospatial
technology [2–7]. Although geospatial technology is getting more stable, some obstacles
are found to hinder its development; including financial [8,9], lack of knowledge [4], lack
of experience [10], lack of training [9], data sharing data is not manageable [11], lack of
support from institutional [12], and poor communication among organizations [8].
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In addition, incentives are able to increase the use of geospatial technology applications
such as the government support, [11,13] encouragement for staff to be involved in the form
of training and knowledge sharing so that the use of this technology can be utilised fully
by the users in improving the quality of work and thus enhancing work ability [14].

In this study, LiDAR is the selected geospatial technology in road design to obtain
topographic data due to the weakness of conventional measurement methods involving the
disappearance of spot height data during observation data, especially in areas inaccessible
to humans, particularly in hilly slopes and dense forests [15]. LiDAR is very potent in
providing Digital Terrain Model (DTM) information which is very useful in determining
the road network mapping [16,17]. DTM are also useful in providing information for
the construction of slope protection in road areas with high slopes [18,19]. Meanwhile,
the Digital Elevation Model (DEM) information obtained from LiDAR can be utilised in
determining the drainage structure of the road [20].

Previously most of researchers have studied the barrier factors that influence the use
of geospatial technology. Reynard [9] and Jozefowicz et al. [10] examined the barrier factor
in influencing geospatial technology. In Canada and the UK, the geospatial technology
they studied was GIS technology. At the same time, researcher Henrico et al. [13] further
describe the factors of behavioural intention in influencing GIS use in South Africa. Barrier
factors influencing geospatial data are also shared by researcher Waterman et al. [11] in the
UK and researcher Ali et al. [8] in Pakistan. Researcher de Gouw et al. [4] also studied the
barrier factors to use geospatial GIS, Global Navigation Satellite System (GNSS), Imagery
and LiDAR in New Zealand.

In comparison, motivational factors are reviewed in detail in geospatial web technol-
ogy by Hennig [14] in Austria, Germany, and Switzerland. Researcher Eilola et al. [12] also
studied the barrier factor in using high-resolution remote sensing images in Tanzania. In
this paper, a detailed study will be carried out to examine the factors that influence the
use of geospatial technology, namely LiDAR in Malaysia. A total of 3 factors were studied,
namely the barrier factor, the motivational factor, and the strategy factor.

A questionnaire instrument consists of items pertaining to the literature study of
prior research is constructed to examine the factors which impact the use of LiDAR in
road design. Exploratory Factor Analysis (EFA) aids in the development of measurement
models. The assessment of this study model was then confirmed using Confirmatory Factor
Analysis (CFA).

The following is the order of the topics in this research paper: Section 2 explains the
literature review on factors influencing usage of geospatial technology. In Section 3, our
hypothesis formulation and conceptual framework are described. Section 4 discusses the
study’s methodology; Section 5 reports the findings; Section 6 is devoted to discussion; and
Section 7 presents the work’s conclusion.

2. Literature Review on Factors Influencing Usage of Geospatial Technology

Previous academics have investigated various aspects that have influenced the use of
geospatial technology. Reynard [9] has reviewed past studies on geospatial technologies
using the World Wide Web (Geo Web). The results have identified two barrier factors:
financial barriers and technological barriers. Financial barriers include budget constraints
in collecting a large amount of geospatial data. At the same time, the technological barrier
occurs when there is less efficient experience-wise staff in handling GIS efficiently and thus
delay the work handling process.

Jozefowicz et al. [10] stated that in the government sector, barriers such as budgets,
roles, responsibilities, and regulations restrict the development of big geospatial data. Nev-
ertheless, in the private sector, geospatial data development does benefit giant companies
with its data application, such as geospatial data that is stored in cloud facility provided by
the company. However, a shortage of experts in GIS, incompatibilities of input data, and
incoherent data systems occur in both sectors. There are limitations associated with the use
of geospatial data such as LiDAR, spectral and area imagery, receivers and datasets, and
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data portals, according to de Gouw [4], due to shortage of knowledgeable staff, insufficient
training, and the high acquisition cost of LiDAR.

On the other hand, Hennig [14] stated motivational factors contributes to the use
spatial data integrated in web technology. Variants that that contribute to this factor are
teamwork spirit among the staffs, a sense of appreciation in the implementation of work,
community involvement, cooperation, enjoyment of work, and additional advantages to
job roles pertaining to spatial technology.

Henrico et al. [13] explained that the main intention in using free and open-source
software such as QGIS in geospatial technology is to improve the quality of work. In
addition, it aids in the learning and training process to improve the knowledge of GIS
data sharing.

Waterman et al. [11] identified that in geospatial data sharing has also provide obstacle
in LiDAR implementation. Several challenges that limit data sharing in the government
sector are the lack of resources to handle a broad scope, difficulty in obtaining accurate
data in modelling. Government sector also face difficulty to provide risk information to
consumers across the private sector. The gap and inaccuracy of data quality between these
two sectors tend to affect users’ confidence in accepting the data released.

Ali et al. [8] mentioned organizational barriers are identified in geospatial data sharing.
These barriers include poor communication among organizations, missing data policy,
irresponsibility of stakeholders who are not alert of their actual roles, weak network access
in causing difficulty to access data, and budget constraints during implementation.

Eilola et al. [12] also expressed these barriers associated with the use of remote sens-
ing images such as inadequate ICT equipment compatible during data processing and
analysis as well as a lack of skilled and efficient employees in using geospatial technology.
In addition, citizens lack exposure to geospatial technology, and they still need institutional
support for on to use in actual fieldwork. Full support from the government will ensure
remote sensing is implemented comprehensively in the planning stage. A summary of
these past studies is shown in Table 1 below.
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Table 1. Factors influencing the implementation of geospatial technology based on previous studies base on previous studies.

Author(s)/ Years Country Geospatial Technology Instruments Factors Findings

D. Reynard [9] 2018 • Canada • GIS • Review paper • Barrier

• Inability to use GIS and analyse the findings is due to a lack
of expertise.

• Insufficient financial resources.
• Handling GIS projects take a long time.

S. Jozefowicz et al. [10] 2019 • The UK • GIS • Questionnaire • Barrier
• Shortage of experts in GIS and remote sensing specialists.
• Data and systems are incompatible.
• Legal issues.

S. de Gouw et al. [4] 2020 • New Zealand

• GIS
• GNSS
• Imagery
• LiDAR

• Questionnaire • Barrier • Staff lack of training and knowledge.
• Data acquisition costs.

S. Hennig [14] 2020
• Austria
• Germany
• Switzerland

• Web technology
• Questionnaire
• Analysis website
• Analysis of web technology

• Motivational

• Practicing and learning.
• Assistance and appreciation among the staffs.
• Community involvement.
• Cooperation and appreciation.
• Enjoyment
• Job benefits.

S. Henrico et al. [13] 2021 • South Africa • GIS • Questionnaire • Behavioural intention

• Job performance
• Learning & training
• Others encouragement & self-willingness
• Enjoyment
• Job benefits

L. Waterman et al. [11] 2021 • The UK • Sharing geospatial data • Questionnaire
• Interview • Barrier • Lack of data quality

• Lack of resources

A. Ali et al. [8] 2021 • Pakistan • Sharing geospatial data • Questionnaire • Barrier

• Poor communication among organisations
• Missing sharing data policy
• Irresponsibility of stakeholders
• Weak network access
• Budget constraint

S. Eilola et al. [12] 2021 • Tanzania • High-resolution on remote
sensing images • Questionnaire • Barrier

• Inadequate ICT equipment
• Lack of expert
• Less exposure to technology
• Lack of institutional support
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3. Hypothesis Formulation and Conceptual Framework
3.1. Barrier Factor

Barrier is a factor that influences the use of LiDAR in the form of challenges that
prevent the use of measurement methods involving information knowledge, risk, cost, and
human aspects.

Previous studies found that there are barriers in terms of knowledge among staff. De
Gouw et al. [4] stated that the staffs in the organization did not have good knowledge
of LiDAR for the reason of being inexperienced and insufficient data exposure to any
form of courses and training. Reynard [9] and Kim et al. [21] also investigate difficulties
in employing expertise equipped with geospatial technology expertise such as LiDAR.
In addition, there is a skill gap and lack of communication between staff who specialize
in computer programming and staff who are not competent according to Reynard [9],
Jeppesenet al. [22], and Kim et al.

In terms of cost barriers, according to De Gouw et al. [4] and Grohmann et al. [23],
LiDAR has high operating costs but it can produce excellent data. According to Kim et al. [21]
and Reynard [9], some organizations have constraints in implementing LiDAR applica-
tions. Reynard [9], in his study, also stated that another limitation is shortage of high-end
computers in LiDAR data processing process.

In addition, Barazzetti et al. [17] stated that LiDAR data could not stand alone because
it needs to be integrated with Building Information Models (BIM) to produce as-built
drawings of road project. Meanwhile, LiDAR survey observations pose a high risk to
airplanes or helicopters passing by in complex areas are expressed by Pellicani et al. [24]
and Schumann et al. [25]. They stated that LiDAR measurement observations has limitation
during uncertain weather such as overcast and rain. According to Hammond et al. [26],
LiDAR data processing will become more complicated if it involves more detailed or
broader area of survey.

As an emerging technology LiDAR is prone to rapid changes in software develop-
ment and persistent with the latest technological updates according to Gargoum and
El-Basyouny [27] Based on the Suleymanoglu and Soycan [28] study, the laser scanning
capability of the system affects the accuracy of LiDAR measurements in the field. Moreover,
LiDAR data can be affected by terrain condition thus make it difficult in filtering point
clouds. Therefore, based on a comprehensive literature review, Hypothesis 1 has been
proposed.

Hypothesis 1 (H1). The barrier factor positively affects the usage of LiDAR on road design.

3.2. Motivational Factor

Motivational factor is a factor that influences the use of LiDAR in the form of a strong
desire to succeed, such as support, information provision and data management.

According to Häggquist and Nilsson [29], management support in providing aware-
ness of the importance of data applications can be a source of motivational development of
LiDAR infrastructure development. Meanwhile, De Gouw et al. [4] pinpoint management
support is an important element in providing a conducive working environment to produce
dedicated and responsible staffs in handling LiDAR data.

Peterson et al. [30] and Cao et al. [31] also reported the management needs support
in providing courses or training on processing and analysing LiDAR data. Kim et al. and
Kweon et al. [21,32] said that the management provides complete computer software for
staff can analyse LiDAR data perfectly.

According to Rose et al. [33], the person appointed for the observation of LiDAR data
should have a good experience, whereas, according to Lin et al. [34] and Enwright et al. [35],
the appointed person should be able to produce a topographic data map enclosed with
extensive information of dense and mountainous forest areas. Therefore, based on a
comprehensive literature review, Hypothesis 2 has been proposed.
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Hypothesis 2 (H2). The motivational factor positively affects the usage of LiDAR in road design.

3.3. Strategy Factor

A strategy factor is a component that influences the use of LiDAR in the form of a
strategy or proposal to increase the use of LiDAR measurement methods through activities
or work procedures. In addition to that, strategy approach that can improve the quality of
work as well as benefit the department and employees.

According to Aksamitauskas et al. [36], the observation of survey data with LiDAR
takes shortened the time to produce result compared to tradional method of using total
station. Based on the study of Olafsson & Skov-Petersen [30], impetuous development of
LiDAR knowledge is shown in the organization if the expert take into account the needs of
the scope of work involved.

In addition, according to Olafsson & Skov-Petersen [30], personal with expertise
with the scope of work will assure impetuous development of LiDAR knowledge in the
organization.

The presence of competent staff and experts with work experience in using geospatial
technology will definitely help other staffs in completing tasks, according to Olafsson
& Skov-Petersen [30]. Peterson et al. [30] and Cao et al. [31] also pointed out that the
efficiency of skilled staff in analysing LiDAR data can help disseminating knowledge in the
workplace.

Another strategy is to share LiDAR data information on various divisions in the
agency to help in decision-making in the management of road design projects. Among
the divisions involved are bridge and highway divisions which Gargoum et al. [37] and
Guo et al. [38] mentioned in their studies.

De Gouw et al. [4] and Morgenroth and Visser [39] said the strategy of education could
provide awareness in cultivating knowledge among professional staff in the agency who
work in fields that require exploration of the widespread use of geospatial technology to
overcome the problem of lack of knowledge.

Free and open-source software or LiDAR data, which are more accessible than the data
obtained by both the government and the private sector for work usage, can help create
awareness of LiDAR, according to Roussel et al. [40]. Therefore, based on a comprehensive
literature review, Hypothesis 3 has been proposed.

Hypothesis 3 (H3). The strategy factor positively affects the usage of LiDAR on road design.

3.4. Proposed Conceptual Framework

Based on the comprehensive literature review stated above, the study conducted
is to explore factors influencing the use of LiDAR in road design in Malaysia based on
three factors, as shown in Figure 1 below.
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4. Methodology
4.1. Instrument Design

First, a comprehensive study was conducted to identify factors that can influence the
use of LiDAR in road design in Malaysia by referring to previous studies. Afterwards,
a questionnaire was developed by adapting and adopting items from previous studies.
After that, the questionnaire was sent for face validation and expert validation [41]. Face
validity is essential to ensure each question in the questionnaire prepared is free from
grammatical errors and comprehensible [42]. In this study, face validation was conducted
after going through comprehensive proofreading. Meanwhile, content validity is crucial to
validate the questionnaire developed especially the functionality of each measuring item in
the instrument. In this study, an expert panel was appointed to check the reliability of the
constructed questionnaire instrument [43].

A pilot study was conducted on 45 samples. The pilot study is crucial to see if the
questionnaire is valid and reliable to distribute. Reliability measures the consistency of
a constructed instrument, and in this study, the instrument is measured by utilizing with
the Cronbach Alpha value [44]. From the results of the pilot study as shown in Table 2
below, the Cronbach alpha values recorded are at excellent level of consistency for the
barrier factor and use of LiDAR because it is in the range of coefficients 0.8 to 0.9. In the
meantime, strategy factors and motivational factors are at an excellent level because they
have an alpha coefficient of more than 0.9. High Cronbach’s alpha values, which indicate
good internal consistency of the items in the scale [44].

Table 2. Reliability of pilot study.

Factors Cronbach’s Alpha

Barrier 0.885
Motivational 0.952
Strategy 0.923
Use of LiDAR 0.853

4.2. Sample Size and Data Collection

In this study, a simple random sampling method was used. This sampling method is
quick and easy [45]. Approximation of the sample size, it was determined with reference to
the Krejcie & Morgan [46] table. The population of this study is 300, but the required study
sample obtained is 169. In this study, 169 samples were selected because, according to
Hair et al. [47], implementing a large sample size will further improve the accuracy of
PLS-SEM test results. This number is considered appropriate because it is higher than the
minimum sample size obtained through the G*power 3.1.9.7 computation for the sample
calculation of a value of 77. In this study, 169 samples were used based on the recommen-
dations of Krejcie & Morgan [46] to represent the population of engineers involved in road
design.

As hypothesised in Figure 1 in this research, this questionnaire presents factors and
their related measured items in Appendix A, Table A1. The survey questionnaire was
distributed in August and September 2021 throughout Kuala Lumpur, Malaysia. Kuala
Lumpur was chosen because there is where most of experienced road design work in
Malaysia are concentrated. Out of all the questionnaires distributed online, 165 question-
naires were successfully returned by the respondents during data collection. The response
rate achieved is 97.6% of the estimated sample size of 169. This rate is outstanding because,
according to the Baruch & Holtom [48] study, the response rate for individual studies is
around 52.7%.

Of the total, 10 forms were discarded because of missing information. As indicated in
Table 3, the questionnaire was constructed on a five-point Likert scale with 155 responses,
ranging from strongly disagree with the score one to strongly agree at score five. A total
of 59.4% of respondents were males, and 40.6% were females. In terms of education level,
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61.9% are degree holders, while 50.3% were equipped 11–20 years of work experience;
57.4% of respondents work in the government sector, and most of them possess high
experience using surveying data from total stations/GPS compared to LiDAR and UAV,
which is 57.4%.

Table 3. Features of the research participants; n = 155.

Characteristics Items Numbers Percentage (%)

Gender
Male 92 59.4

Female 63 40.6

Educational

Diploma 12 7.7
Degree 96 61.9
Master 44 28.4
Ph.D 3 1.9

Working experience

<1 year 1 6
1–10 years 42 27.1
11–20 years 78 50.3
>20 years 34 21.9

Working sector Government 89 57.4
Private 66 42.6

Site engineer 14 9
Position Design engineer 63 40.6

Project engineer 78 50.3

Use of surveying data

Total station/GPS 89 57.4
UAV/Drone 6 3.9

LiDAR 20 12.9
Total station/GPS & UAV/Drone 11 7.1

Total station/GPS & LiDAR 8 5.3
Total station/GPS, UAV/Drone & LiDAR 18 11.6

UAV/Drone & LiDAR 3 1.9

4.3. Data Analysis and Tools
4.3.1. Exploratory Factor Analysis (EFA)

EFA was conducted to determine the item correlation value and the correlation value
between the items. In addition, EFA ascertains the number of factors, their interrelationship,
and how the variables are related to the factors. [49]. EFA was conducted on 150 samples
in this study. This study analyzed EFA analysis using SPSS Statistic 25 software. In EFA,
the first steps are Kaiser—Meyer—Olkin (KMO) test for sample size adequacy and the
Bartlett sphere test for data factorization [50]. Then it is followed by anti-image correlation
matrix [51], commonalities [52] and loading factor [50].

4.3.2. Confirmatory Factor Analysis (CFA): Measurement Model & Structural Model

There are two measurements in the analysis of the actual study. Firstly is measurement
the model that contains convergent validity, discriminant validity, and construct reliability.
In convergent validity, there is an outer loading values and AVE. Finally, HTMT analysis is
incorporated in discriminant validity test whereas composite reliability analysis is included
in construct reliability of test.

Variable reliability refers to a study instrument’s internal stability and consistency [45].
The reliability test of the variables uses a composite reliability test obtained through the
PLS Algorithm procedure. Composite reliability values below 0.6 are considered weak,
0.7 as satisfactory, and 0.8 above are considered as good [45]. The composite reliability
value for each variable should be greater than 0.7 [53].

The convergent validity test was determined based on each item’s outer loading value
and the Average Variance Extracted (AVE) for each variable obtained through the PLS
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Algorithm procedure. The AVE value exceeded 0.5, indicating that the study variables
explained the average change between the items [53].

In the convergent validity test, outer loading with values above 0.7 indicate that the
study items have reached a predetermined level of convergent validity [53]. To solve the
problem of items having a factor weighting value less than 0.7, two actions are needed [53].
Firstly, the item of a factor weighting value less than 0.4 should be removed from the
analysis. Secondly, for the items of a factor weighting value between 0.4–0.7, testing should
be done before decision whether to retain the item or to be removed from the analysis.

The discriminant validity is determined based on the Heterotrait-Monotrait (HTMT)
test [47,53] obtained through the PLS Algorithm procedure. The HTMT test ensures that
items in one variable are different from items in other variables [53]. Forty-five (45) samples
were tested at the pilot study stage for this research. The HTMT test ensures that items
in one variable are different from items in other variables [53]. The recommended HTMT
value level is less than 0.85 [54] or less than 0.90 [55]. An HTMT value level of less than
0.85 is considered the best because it has a high sensitivity rate to discriminant validity and
it shows differences of items in each variable. However, a value level less than 0.9 is still
acceptable [47].

The second part of measurement is the structural analysis model, which consists of
path coefficient, strength of model R squared (r2), predictive relevant test Q-squared (Q2),
and effect size, f squared (f2).

The Path Coefficient is calculated using beta (β) values, t (t) values, or p values [53]
from statistical tests through the bootstrapping process. The value is a measure of each
independent variable’s or predictor’s contribution weights in a relationship. The more
relevant the predictor variable is determined by the greater the beta value is [47]. When
direction of the study’s hypothesis is either positive or negative, the value of t defines
the level of significance of a relationship, notably t > 1.28 (p < 0.10), t > 1.65 (p < 0.05),
and t > 2.33 (p < 0.001). When the study hypothesis had no directional indication, t > 1.65
(p < 0.10), t > 1.96 (p < 0.05), and t > 2.33 (p < 0.001) were used [53].

The model’s strength (R squared) aims to assess the degree of changes that occurs to
the dependent variable when the independent variable is included in the analysis. The
model’s strength is measured based on the value of the R squared obtained through the
PLS Algorithm procedure. A value of R squared = 0.75 is categorized as strong, 0.50 as
moderate, and 0.25 as weak [53]. However, on the other opinion [56], the recommended R
squared value is 0.26, categorized as strong, 0.13 as moderate, and 0.02 as weak.

The goal of the predictive relevant test (Q squared) is to determine the independent
variable’s ability to predict the dependent variable. The blindfolding technique yields Q
squared results used to measure relevant prediction. When the Q squared value is larger
than 0, the independent variable may be able to predict the dependent variable [53].

The effect size (f squared) determines how much the independent variable contributes
to the dependent variable. The effect size uses the PLS Algorithm technique and the value
of f squared. A value of f squared = 0.35 was considered high, 0.15 was considered medium,
and 0.02 was considered modest [53].

5. Results
5.1. Exploratory Factor Analysis (EFA)

This study implemented EFA analysis using SPSS Statistic 25 software. There were
30 items tested, as shown in Appendix A, Table A1. By referring to Appendix A-Table A2,
the KMO values for barrier factors, motivational factors, strategy factors, and use of LiDAR
showed values greater than 0.5 and were accepted [51]. At the same time, the Bartlett
sphere test showed a significant account with a reading of <0.05 [51] which was 0.000.
Therefore, Bartlett’s spherical indicated that all the findings were reliable and met the
EFA requirement, while for the anti-image correlation matrix all items higher than 0.5
is acceptable [51]. Then, the analysis proceeded with the Principal Component Analysis
(PCA), as shown in Table A2 in Appendix A. The communalities achieved more than
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0.5 [52] for all factors indicate that the barrier factor consists of items (BR1 to BR8), the
motivational factor consists of items (MV1 to MV9), the strategy factor consists of the item
(ST1 to ST8) and use of LiDAR consists of items (ULL1 to UL5).

5.2. Confirmatory Factor Analysis (CFA)
5.2.1. Measurement Model

Evaluation of the measurement model was first conducted against the proposed
conceptual framework tested in this study through model analysis. The variables found
in the conceptual framework are strategy, motivational, barrier, and use of LiDAR. Each
variable contains the items as shown in Appendix A, Table A1, From the CFA analysis,
3 factors are found via preliminary testing on 30 items found 3 factors, namely strategy,
barrier, and use of LiDAR, with an outer loading value of 0.40 to 0.70. According to
Hair et al. [53], items can be eliminated if the AVE value for the factor can be increased. In
this study, for the strategy factor, ST8 is eliminated. For the barrier factor, BR1 and BR2
were eliminated, and for the use factor of LiDAR, UL1 and UL 4 were eliminated. Table 4
shows the items eliminated based on the findings of the initial testing of the measurement
model conducted.

Table 4. Eliminated item.

Factors Eliminated Items Outer Loadings

Strategy ST8 0.579

Barrier
BR1 0.588
BR2 0.597

Use of LiDAR
UL1 0.626
UL4 0.458

As shown in Appendix A, Table A3 by the second analysis of CFA, all items reached
a convergent level of validity because these items meet the outer loading above 0.7 [53].

The AVE values in Appendix A-Table A3 also show that all constructs are above
0.5 [53]. This indicates the constructs is used in this study comply with convergent validity
standards.

Table 5 shows the HTMT value of less than 0.85 for each variable studied and, at
the same time, shows that the constructs used in this study comply with the standard of
discriminant validity [53].

Table 5. Discriminant Validity: Heterotrait-Monotrait Ratio (HTMT).

Factors Barrier Strategy Motivational Use of LiDAR

Barrier
Strategy 0.583

Motivational 0.540 0.785
Use of LiDAR 0.664 0.745 0.676

In addition, the composite reliability values for each construct, as shown in Appendix A,
Table A3, indicate that the constructs as used in this study comply with the composite
reliability [53].

5.2.2. Structural Model

Results of the analysis of the path coefficients test, as shown in and Table 6 below, can
answer the hypothesis of this study and the structural model by Smart PLS is shown in
Figure 2. The results of hypothesis testing using smartPLS coefficients by bootstrapping
technique showed that the barrier factor had a significant relationship with the use of
LiDAR because the value of t > 1.96 and p < 0.05. Then, the strategy factor had a signif-
icant relationship with the use of LiDAR significance because the value of t > 1.96 and
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p < 0.05, and the motivational factor had no significant relationship with the use of LiDAR
significance because of t value < 1.96 and p > 0.05 [53].

Table 6. Path coefficient.

Path Coefficients (β) T Statistics p Values Results

H1: Barrier factor->Use of LiDAR 0.331 5.668 0.000 Significant

H2: Strategy factor->Use of LiDAR 0.306 2.542 0.011 Significant

H3: Motivational factor->Use of LiDAR 0.182 1.587 0.113 Not significant
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Table 7 shows the value of the R squared in PLS algorithm testing and Table 8 is
showing the PLS blindfolding test for the value of the Q squared. The value of the R
squared obtained is 0.471, indicating the model’s strength is moderate [53]. At the same
time, the value of Q squared is 0.261, which is greater than zero [53], confirming that the
barrier factor, procedure factor, and support factor to predict the relevant impact on the use
of LiDAR.
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Table 7. Results of strength of model test (R squared).

R Squared Result

Use of LiDAR 0.471 moderate

Table 8. Results of relevant prediction test (Q squared).

Q Squared Result

Use of LiDAR 0.261 relevant impact predictions

In Table 9, the size effect test, f squared value indicated by the barrier factor is 0.148,
strategy factor value is 0.079 and motivational factor value is 0.029 which leads to a small
effect size in LiDAR. At the same time, the value of f squared on the motivational factor
gives a large effect size [53].

Table 9. Results of effect size (f squared).

Dependent Variable Independent Variable f Squared Results

Barrier factor 0.148 Small to medium effect
Use of LiDAR Strategy factor 0.079 Small to medium effect

Motivational factor 0.029 Small to medium effect

6. Discussion of the Results
6.1. Theoretical Implications

Despite the apparent benefits of LiDAR for road design work, particularly in forests
and highlands, it is still not commonly used in Malaysia. This study aims to focus on the
variables that affect the utilization of LiDAR for road design work in Malaysia. Barrier, mo-
tivation, and strategy are the aspects examined in this research. Based on the results shown
in the previous section, the model developed in this study is supported and sufficiently fit
to predict the factors influencing the use of LiDAR in road design work in Malaysia. This
study proves that the proposed model leads to 47 per cent of the variance elaborated for the
case of intention to use LiDAR for road design among engineers. Furthermore, in this study,
all factors are supported except for motivational. Therefore, it is proven that strategy and
barrier factors affect the intention to use LiDAR. Interestingly, the most dominant factor
influences the use of LiDAR is barrier factor.

The results showed the barrier as the most significant factor in engineers’ accep-
tance of using LiDAR in road design (β = 0.331, t = 5.668). This result is consistent with
previous studies by Reynard [9], Ali et al. [8], de Gouw et al. [4], Eilola et al. [12], and
Waterman et al. [11].

The studies on barrier factors have shown that limited budgets hampered the use of
geospatial technology in most areas, and this result confirmed previous studies carried
out by Reynard [9] and Ali et al. [8]. In addition, this study also confirmed the findings by
Reynard [9] and de Gouw et al. [4] which explains that barriers also occur due to shortage of
staff who are experts in geospatial technology in road design work in Malaysia. This study
also proves that inadequate computer equipment to perform high demand data processing
of LiDAR have impaired analysis work in road design in Malaysia which resembles the
research conducted by Eilola et al. [12] and Waterman et al. [11].

Meanwhile, strategy is the second significant factor in the engineers’ acceptance of
using LiDAR in road design in Malaysia with a value (β = 0.306, t = 2.542). These results
were consistent with studies conducted by Henrico et al. [13] and Schindler [57]. Study
by with S. Henrico et al. [13] mentioned that a strategy approach is needed in developing
training and learning to maximize the use of geospatial technology.

Schindler et al. [57] conducted a similar study with this research regarding the de-
velopment of spatial procedure and the importance of considering views of stakeholders
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involved in the industry in constructing better guideline. Stakeholder consists of devel-
opers, decision-makers, planners, and researchers; and they rely on each other in sharing
information, ideas, and data among themselves. Therefore, better efficiently and coopera-
tion between stakeholder can expedite in the usage of geospatial technology.

Interestingly in this research, the motivational factor is not significant, in contrast to
the study conducted by Hennig [14], who stated that this factor is crucial because it can
drive people to learn and use spatial data to support projects. This research proves only
two factors that affect the use of LiDAR in Malaysia: barrier and motivational factors.
Therefore, these two factors need to be considered by the Ministry of Works Malaysia,
which has significant responsibilities with between departments in Public of Works, which
manages the design and construction of both state roads and federal roads. Apart from
that, the Malaysian Highway Authority manages the road design of highways in Malaysia.

6.2. Practical Implications

Based on this finding, it is hoped that the benefits of geospatial technology offered by
LiDAR can be used wisely in road design for further improvements future road design in
Malaysia. This study also shows that many engineers involved in road projects agree with
the potential usage of LiDAR in road design. It helps to give the info on the volume of cut
and fill earthworks in slope areas, map of landslide risk maps in areas which are close to
roads despite the limitation pertaining to weather factors such as thick clouds, overcast,
and rain.

This study also shows that using LiDAR in road design is beneficial in mapping
landslide risk maps such as the landslide risk map in highland areas such as Cameron
Highlands, Pahang, Malaysia. It can help engineers design roads by planning the construc-
tion of slope protection in areas at risk of slope failure. In addition, the use of LiDAR, which
can be used in conjunction with BIM, can assist the design engineers with road networking
information between new and existing road using computerised models.

Beside this, other barriers identified are budget for the implementation of LiDAR,
handful of LiDAR experts and difficulty in filtering the LiDAR point cloud data due to the
density of the earth’s surface. Moreover, it may cause shortage of critical information in
developing procedures in road design guidelines in Malaysia. To date, there are no specific
procedures for road engineers to design roads using LiDAR data and all existing parties
are still make use of conventional data from the total station/GPS. Therefore, this study
also aids in identifying strategy elements for LiDAR implementation in road design which
may give a positive impact in producing guidelines and procedures of road design. The
process of producing guidelines of LiDAR should involve person with knowledgeable
with relevant subject. The scope of work helps to improve the work process and identifies
knowledge and skills needed by the personnel in analysing data.

Barrier identification and proper guidelines implementation in procedures or policy
usage of LiDAR in road design will assist policymakers especially Department of Public of
Works Malaysia in improvising the existing guidelines or procedures for road design. It will
also benefit future road projects by providing in-depth understanding of the flow of road
design by using LiDAR data and thus speeding up the road design process particularly
in a complex condition. Policy maker should also propose a friendly guideline to ensure
LiDAR can be fully integrated in future road projects.

The authorities should implement a promotion programme to raise awareness by
expanding a series of training and workshops for all industries and academia to encourage
the implementation of LiDAR in road design. Furthermore, to improve the efficacy of
the use of LiDAR towards the efficient method of roads and transportation in Malaysia,
the Ministry of Works can also expand cooperation between the Ministry of Energy and
Resources with organisations like the Department of Survey and Mapping Malaysia.
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7. Conclusions

The use of LiDAR by engineers in Malaysia was explained using a conceptual model
that included the three factors barrier, strategy, and motivation. The concept was proposed
and put to the test using SEM. The findings demonstrated how effectively the model
predicted engineers’ intentions to use LiDAR. Barriers and strategies had a positive impact
towards engineers’ intentions to use a LiDAR. The most significant factor is a barrier. The
barriers elements that were studied in this research were high operating costs, a limited
budget to implement LiDAR, a lack of high-end computers, a limited budget to hire expert
staff, a limited budget to analyse software, and difficulty in filtering data. This study
emphasised the value of LiDAR in road design for engineers and prompted a further study
on motivational factors in the future. The findings of this study can aid governments in
developing efficient interventions to encourage engineers to use LiDAR. The barrier that
restricts the development of LiDAR is shortage of computer equipment and software and it
should be taken into consideration by the relevant agencies to expand the use of LiDAR.
In addition, guidelines and procedures related to LiDAR should be developed as a reference
to industry professionals involved in the design industry for road construction in Malaysia.
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Appendix A

Table A1. Measurement items and variables.

Factors/Items References

BR Barrier

Self-created by referring to the research by
Kim et al. [21], S.de Gouw et al. [4], and
Grohmann et al. [23], Reynard [9], S. Gargoum and
El-Basyouny [27], Suleymanoglu and Soycan [28]

BR1 Difficulty in getting expert staff
BR2 Adequacy of reference to guide
BR3 High operating cost
BR4 Restricted budget to implement LiDAR technology
BR5 Lack of high-end computers
BR6 Restricted budget on the subscription of paid software to analyse data
BR7 Restricted budget on appointing experts
BR8 Difficulty in filtering data

MV Motivational

Self-created by referring to the research by Häggquist
and Nilsson [29], S.de Gouw et al. [4],
Peterson et al. [30], Cao et al. [31], Kweon et al. [32],
L. Rose et al. [33]. B.Bigdeli et al. [58],
B. Babble et al. [59], Z.Zhang et al. [60]

MV1 Support from the management is given through exposure to the importance of
data application

MV2 Management support to provide specialized staff
MV3 Support from the management is given through providing training
MV4 Support from the management is given by providing computer software
MV5 Stakeholders’ views are considered in enhancing the knowledge
MV6 Appointed an experienced contractor
MV7 Appointed a competent contractor
MV8 Appointed a knowledgeable contractor
MV9 Providing comprehensive information on dense forest and mountain areas.

ST Strategy

Self-created by referring to the research by Olafsson
& Skov-Petersen [61], T. Hammond et al. [26],
A. Shaker et al. [62], S.de Gouw et al. [4],
Aksamitauskas et al. [36], of Peterson et al. [30] and
Cao et al. [31], S. Landry et al. [63]

ST1 Procedure is developed by those who have the expertise
ST2 Developed procedure must consider the scope of work
ST3 Developed procedure must involve the technical agency
ST4 Developed procedure must solve problems
ST5 Developed procedure must involve an experienced staff
ST6 Procedures developed should identify the knowledge and skills
ST7 Procedures developed should identify the adequacy of training
ST8 Observation of survey is faster

UL Use of LiDAR
Self-created by referring to the research by
S. Gargoum et al. [37], T. Görüm [64],
P. Jagodnik, et al. [65], F. Hatta Antah et al. [66].
B. Matinnia et al. [18]

UL1 Data obtained detects assets of roads
UL2 Generation of a computerized model
UL3 Development of landslide risk maps
UL4 Survey data collection is limited to weather factors
UL5 The capabilities of accurate data measurement

Table A2. Analysis of Exploratory Factor (EFA).

Factors Code

Kaiser–
Meyer–
Olkin
(KMO)

Bartlett’s Test of
Sphericity Anti-Image

Correlation Matrix
of Items

Communalities

Factor Loadings

Approx.
Chi-

Squared
df Sig. Barrier Motivational Strategy Use of

LiDAR

Barrier
(BR)

0.799 665.741 28 0.000
BR1 0.746 0.848
BR2 0.750 0.794 0.848
BR3 0.835 0.773 0.620
BR4 0.828 0.546 0.839
BR5 0.820 0.742 0.859
BR6 0.796 0.763 0.854
BR7 0.788 0.809 0.746
BR8 0.877 0.671 0.633

0.435

0.889 1979.794 36 0.000

Motivational
(MV)

MV1 0.899 0.874 0.887
MV2 0.890 0.904 0.909
MV3 0.830 0.938 0.938
MV4 0.864 0.902 0.908
MV5 0.974 0.808 0.853
MV6 0.881 0.941 0.916
MV7 0.837 0.956 0.948
MV8 0.918 0.931 0.923
MV9 0.838 0.878 0.891
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Table A2. Cont.

Factors Code

Kaiser–
Meyer–
Olkin
(KMO)

Bartlett’s Test of
Sphericity Anti-Image

Correlation Matrix
of Items

Communalities

Factor Loadings

Approx.
Chi-

Squared
df Sig. Barrier Motivational Strategy Use of

LiDAR

0.854 951.614 28 0.000
Strategy ST1 0.879 0.674 0.764

(ST) ST2 0.902 0.844 0.882
ST3 0.907 0.823 0.880
ST4 0.846 0.863 0.894
ST5 0.907 0.773 0.847
ST6 0.727 0.881 0.917
ST7 0.754 0.865 0.886
ST8 0.923 0.452 0.630

0.657 268.315 10 0.000

Use of
LiDAR

(UL)

UL1 0.818 0.643 0.791
UL2 0.656 0.805 0.891
UL3 0.669 0.827 0.904
UL4 0.524 0.795 0.890
UL5 0.578 0.765 0.856

Table A3. Convergent Validity.

Factors Items Outer Loadings Average Variance Extracted (AVE) Composite Reliability (CR)

Barrier (BR)

BR3 0.739

0.614 0.905

BR4 0.823
BR5 0.798
BR6 0.854
BR7 0.776
BR8 0.704

Motivational (MV)

MV1 0.851

0.720 0.959

MV2 0.841
MV3 0.883
MV4 0.839
MV5 0.843
MV6 0.827
MV7 0.849
MV8 0.848
MV9 0.851

Strategy (ST)

ST1 0.729

0.636 0.924

ST2 0.831
ST3 0.828
ST4 0.900
ST5 0.854
ST6 0.709
ST7 0.711

Use of LiDAR (UL)
UL2 0.704

0.629 0.836UL3 0.754
UL5 0.793
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