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Abstract: Improving green total factor productivity (GTFP) is the key for China’s mineral resources
industry to get out of the dilemma of resource depletion and environmental degradation. The
Super Slacks-Based Measure (Super-SBM) model with undesirable output is used to calculate the
GTFP of China’s mineral resources industry between 2004 and 2019, and the space–time correlation
threshold is quantitatively determined by the space–time semivariogram. On this basis, the spatial
weight matrix is constructed, and the spatial panel vector autoregression (SPVAR) model is used
to quantitatively estimate the space–time impact response among GTFP, import dependence, and
R&D investment. The results show that: (1) The maximum range of mineral resources industry
GTFP in time and space are 12.28 years and 635.28 km, respectively. Taking the space range as the
correlation distance threshold to construct spatial weight matrix improves the accuracy of spatial
analysis. (2) The increase in import dependence and R&D investment can effectively improve the
GTFP of local and its neighboring provinces. In the long term, an increase in import dependence has
a positive impact on R&D investment, and an increase in R&D investment can reduce the import
dependence. (3) In the response to impact, the eastern region is greater than the western region, the
coastal provinces are greater than the inland provinces, and the provinces close to the impact source
are greater than the provinces far away. Therefore, policies to limit resource and energy consumption,
pollution, and carbon emissions should be strengthened. The incentive policies should be emphasized
differently and adopted for the impact sources and response areas. The R&D investment in the full
mineral industry process should be increased to improve the GTFP.

Keywords: mineral resources industry; GTFP; space–time semivariogram; space–time impact response

1. Introduction

The mineral resources industry provides basic material resources for mankind and
supports the prosperity and development of the world economy and society. China is a
major producer and consumer of global mineral resources and has an important influence
on the world’s mineral resources industry market. In the long term, China’s demand of min-
eral resources will remain at a high level. The rapid development of the mineral resources
industry has led to excessive resource consumption, serious carbon emissions, and low
resource utilization efficiency [1]. According to the China Industrial Statistical Yearbook
and Carbon Emission Accounts and Datasets’ (CEADs) data, the operating revenue of
China’s mineral resources industry (including mining, smelting, and processing industries)
accounted for 25.28%, energy consumption accounted for 43.27%, and carbon emissions
accounted for 33.87% of the industry in 2019. Undoubtedly, the mineral resources industry
is a high energy consumption and high emission industry. The resource and environmental
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problems caused by this extensive development patten threaten the future sustainable
development of China’s mineral resources industry. Under the context of a low-carbon
economy, more and more countries are paying attention to reducing resource and energy
consumption and carbon emissions. The mineral resources industry is constantly transi-
tioning to one that is green, safe, and efficient. Improving green total factor productivity
(GTFP) has become the only way for China’s mineral resources industry to get out of the
dilemma of resource depletion and environmental degradation.

At present, the research hotspots on GTFP of industries are mainly focused on the
following aspects:

(1) Definition of the concept and measurement framework. Total factor productivity
(TFP) measures the efficiency of converting all inputs into final outputs [2,3], and it is mainly
used in the study of economic growth and sustainable development. In the early research on
TFP, only the capital element input and economic benefits of output were considered [4,5].
With the deepening of research, scholars have found that resource consumption and
environmental pollution are issues that cannot be ignored in sustainable development and
should be included in the analysis framework, then GTFP emerges as the times require [6,7].
Considering the importance of the mineral resources industry in the development of
the global economy and the disturbance to the resource environment during the mining
and production process of mineral resources, the GTFP of the mineral resources industry
has attracted more and more attention of scholars in recent years [8–10]. Resource and
environmental indicators such as fossil fuels, energy consumption, carbon emissions, waste
gas, waste-water, and solid wastes have been continuously incorporated into the analysis
framework of the mineral resources industry GTFP [11–13], which has improved the
accuracy of the measurement of sustainable development of the mineral resources industry.

(2) GTFP is influenced by many factors, and the perspective of research is constantly
changing from non-spatial to spatial effects. A large number of studies have shown that
factors such as industrial agglomeration [14,15] and environmental regulation [16] have
impacts on regional or industrial TFP. Due to the extremely uneven spatial distribution
of mineral resources in the world, the global trade of mineral products is frequent, and
import and export become an important factor affecting GTFP [17]. It is found that im-
port not only has a unidirectional influence on TFP, but also an interactive relationship
among TFP, imports, and R&D investment. Import is accompanied by technology inflow,
which is conducive to improving the overall level of R&D [18]; moreover, import and
R&D are conducive to competition, stimulating innovation and learning, and promoting
the improvement of TFP [19–21]. Through in-depth study, scholars found that TFP and
importation have obvious spatial correlation. These relationships not only exist locally, but
also bring spatial spillover effects to surrounding areas. Import, combined with local and
surrounding R&D, will bring sustained and stable growth of TFP [22–24]. However, as an
indispensable aspect of the sustainable development of China’s mineral resources industry,
there are few achievements in the exploration of the interaction relationship and spatial
effects of the three variables.

(3) In terms of research methods, a spatial model has become a research hotspot in
recent years. The spatial relationships of regional economies are measured by the spatial
weight matrix. Building a more reasonable spatial weight matrix can improve the accuracy
of spatial effect analysis. The commonly used spatial weight matrix mainly includes a single
matrix such as adjacency relationship, geographical distance, and economic distance, or a
composite spatial weight matrix such as economic geography [25–27]. Geographic distance
can be widely used to measure the influence from far to near. In practical applications,
in order to improve the estimation effect, spatial association needs to be limited within a
certain range, and a geographic distance threshold is usually set. The distance threshold
of spatial weight matrix can be determined directly according to the scale of the research
object [28] by using the inflection point of the U-shaped influence relationship as the
threshold [16], or by using continuous regression to improve the accuracy [29].
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At present, most studies on GTFP focus on industry and region, while there are fewer
studies on GTFP in mineral resources industry, literature on the space–time effects of GTFP
in mineral resources industry from the perspective of international trade is extremely
rare. Although factors such as energy and environment have been included in the GTFP
measurement in the mineral resources industry, the consideration of resource inputs is not
comprehensive enough. With the deepening of spatial analysis, a large number of scholars
have used spatial econometric models to determine whether variables have impacts on
GTFP; however, few studies have focused on the affect process. This paper focuses on
how imports and R&D affect GTFP from a spatial perspective. The spatial weight matrix
is the key parameter to reflect spatial relationships, while its objective determination is
difficult. This paper tries to improve the accuracy of spatial weight matrix construction by
quantitatively measuring the spatial relevance distance as a threshold with the space–time
semivariogram. Through the accurate measurement and space–time evolution analysis of
GTFP in the mineral resources industry, as well as the simulation of the space–time impact
response of import and R&D investment to GTFP, the results can provide a scientific basis
for the sustainable development of mineral resources industry in China, and also provide a
more accurate basis for the formulation of policies related to spatial layout, import, and
R&D investment of the mineral resources industry.

The contributions of this paper can be summarized in three points. Resource inputs are
incorporated into the GTFP analysis framework of mineral resources industry to improve
the accuracy of measurement. An attempt to combine the space–time semivariogram with
the SPVAR model improves the accuracy of the spatial effect analysis. The SPVAR model
is used to analyze the response process of the mineral resources industry GTFP that is
impacted by import and R&D investment in space.

2. Materials and Methods
2.1. Study Area

The study area includes data from 30 provinces in China (excluding Tibet, Hong Kong,
Macao, and Taiwan). The spatial location of each province is represented by the coordinates
of the provincial capital city. The calculation range of space–time semivariogram is set as
rectangle, as shown in Figure 1.

Figure 1. Study area.
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2.2. Methodological Analysis Framework

The research contents mainly include GTFP measurement of mineral resources industry
and the space–time impact response analysis among GTFP, import dependence, and R&D
investment. The main research method is the SPVAR model, which is used to explore the
space–time impact response (Figure 2). The Super-SBM model is used to measure GTFP of
mineral resources industry, and space–time semivariogram is used to construct the spatial
weight matrix, which is the key parameter in SPVAR.

Figure 2. Methodological analysis framework of space–time impact response among GTFP, import
dependence, and R&D investment in mineral resources industry.

2.3. Super Slacks-Based Measure (SBM) Model

Compared with the radial efficiency measurement of CCR and BCC models, the Slacks-
Based Measure model (SBM) can avoid overestimating the actual efficiency, measure the
excess inputs and insufficient outputs, and decompose and measure the efficiency of each
element by relaxation. In order to further consider the undesirable outputs and overcome
the problem that the effective decision-making unit (DMU) cannot be compared when the
efficiency is greater than 1 [30,31], the Super-SBM model, including undesirable output, is
used for measurement, and its calculation formula is:

φ∗ = min
1
m ∑m

i=1
xi
xi0

1
s1+s2

(
∑

s1
r=1

yg
r1

yg
r10

+∑
s2
u=1

yb
r2

yb
r20

)
s.t. x ≥ ∑n

j=1, 6=0λjxj, j = 1, · · · , m
yg ≤ ∑n

j=1, 6=0λjy
g
j , r = 1, · · · , s1

yb ≥ ∑n
j=1, 6=0λjyb

j , l = 1, · · · , s2

x ≥ x0, ys ≤ ys
0, yb ≥ yb

0, λ ≥ 0, ∑n
j=1, 6=0λj = 1

(1)

where, φ∗ is the efficiency. x is the input. yg is the desirable output. yb is the undesir-
able output. λ is a non-negative multiplier vector for linear programming. “-” above
the variable represents the projected value. The larger the value of φ∗, the higher the
efficiency level. When φ∗ is greater than or equal to 1, it means that all slack variables are 0(

s−0 = 0, sg
0 = 0, sb

0 = 0
)

.

2.4. Space–Time Semivariogram

The GTFP of the mineral resources industry shows the characteristics of correlation
and randomness in time and space. It is difficult to describe the complete space–time semi-
variogram of the GTFP in the mineral resources industry with only a single deterministic
or purely stochastic model. The space–time semivariogram can not only represent the
continuity of changes, but also show the randomness of changes. It is an effective analysis
method to describe the space–time variability of GTFP in mineral resources industry.

Space–time semivariogram is extended from the traditional variogram [32,33].
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Let
{

Z(u); u ∈ Rd+1
}

be a multivariate space–time random field which has the fol-
lowing form of matrix equation:

u = (s, t), s = (ss, s2, . . . , sd) ∈ D ⊆ Rd (generally d = 3)

t ∈ T ⊆ R is the temporal coordinate, and D× T ⊆ Rd+1 is the spatial coordinate.
If the space–time variable Z(u) satisfies the second-order stationary, then its expec-

tation, M, is independent of u = (s, t), while the space–time variables Z(u) and Z(u + h)
depend on the space–time separation vector, h = (hs, ht). Where hs and ht represent the
interval in space domain and time domain, respectively.

In order to model the experimental space–time semivariogram, two models can be
used: the integrated product model and the integrated product–sum model. It is generally
considered that the integrated product–sum model is better than the integrated product
model [34–36]. Another model of space–time semivariogram is polynomial expression
for nested structures [37]. The space–time semivariogram model γst(hs, ht) is expressed
directly by the sum of a series of functions, fi, with the coefficient, τi:

γst(hs, ht) = ∑
i

τi fi(hs, ht) (2)

In practicality, the polynomial expression holds the same characteristics as the sum of
different types of elementary semivariograms. In order to improve the polynomial form of
the space–time semivariogram, tensor product cubic smoothing surface can be used. The
tensor product function, S(hs, ht), is the product of two basic independent functions f (hs)
and g(ht), and is multiplied by the weighting coefficient bkl .

S(hs, ht) =
K

∑
k=0

L

∑
l=0

bkl fk(hs)gl(ht) (3)

where K and L are the orders of f and g, respectively. In the case of a cubic spline function,
K and L are 3, with 16 unknown bkl . Considering that the first and second derivatives
of S must be continuous at all the lags (hs, ht), 15 independent conditions are needed to
determine the function. In addition, it is necessary to balance the two criteria between (1)
the closeness of the function to the experimental semivariogram data and (2) its smoothness,
as defined by small curvature. Generally, the balance weight of all (hs, ht) can be equal.

2.5. Spatial Panel VAR (SPVAR)

Spatial econometric technology introduces spatial effect into traditional econometric
methods, which can reflect the influence of spatial factors. The spatial panel vector autore-
gression model (SPVAR) is an endogenous system that includes both temporal and spatial
factors. It can be used for the study of multivariable space–time interaction [38,39]. The
vector autoregression model with spatial elements can significantly reduce the prediction
error.

The three variables of GTFP, import dependence (IMD), and R&D investment (RD) of
the mineral resources industry interact in time and space. Considering the synchronous
influence, time lag influence, and spatial lag influence among variables, a SPVAR model is
constructed to analyze the “impact-response” process among the three variables. In order
to simplify the analysis, the SPVAR model with a time lag 1 order and space lag 1 order is
shown as follows:
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

GTFPit = β11 IMDit + β12RDit + θ11 IMDi,t−1 + θ12GTFPi,t−1+

θ13RDi,t−1 + γ11 ĨMDi,t−1 + γ12G̃TFPi,t−1 + γ13R̃Di,t−1 + µ1t
IMDit = β21GTFPit + β22RDit + θ21 IMDi,t−1 + θ22GTFPi,t−1+

θ23RDi,t−1 + γ21 ĨMDi,t−1 + γ22G̃TFPi,t−1 + γ23R̃Di,t−1 + µ2t
RDit = β31 IMDit + β32GTFPit + θ31 IMDi,t−1 + θ32GTFPi,t−1+

θ33RDi,t−1 + γ31 ĨMDi,t−1 + γ32G̃TFPi,t−1 + γ33R̃Di,t−1 + µ3t

(4)

where GTFP, IMD and RD are explanatory variables. βij, θij, and γij are the coefficients.
ỹi,t−1 = ∑n

i=1wijyi,t−1 is the 1 order cross term of space–time lag in the endogenous variable.
wij is the spatial weight coefficient. i is the province. t is the time. µ is the random
disturbance term.

The spatial weight coefficient adopts the geographic distance spatial weight matrix
W =

[
wij
]
. Among them, the threshold of the correlation distance is measured objectively

and quantitatively by the range fitted by space–time semivariogram. The formula is as
follows:

wij =

{
1/d2

ij 0 ≤ dij ≤ a and i 6= j

0 dij > a or i = j
(5)

where wij is the element in row i and column j of the spatial weight matrix. dij is the
straight-line distance from the capital of i province to the capital of j province. a is the range
of the GTFP of the mineral resources industry. Beyond the range, it is considered that the
relationship between the two provinces can be ignored, and the weight element is set to 0.

2.6. Sample Selection and Data Sources

The sample data of mineral resources industry ranges from 2004 to 2019.

2.6.1. Selection of Input and Output Indicators

GTFP measures the overall efficiency of transforming all inputs into the final output, in
which resource and energy consumption and environmental pollution need to be included
in the analysis framework. In addition to considering the desirable output, the measure-
ment of the GTFP of the mineral resources industry also needs to consider the undesirable
output and reflect the resource input, so as to more comprehensively reflect the relationship
between the production efficiency and the cost of resources and environment of mineral
resources industry. In previous studies, although fossil fuels and energy consumption have
been contained in the input indicators as resource inputs, these indicators cannot fully
represent the input of mineral resources.

This paper selects resource input, energy input, capital input, and labor input as input
indicators of GTFP of mineral resources, mineral sales output value as desirable output,
and CO2 emissions as undesirable output. Due to the more comprehensive consideration
of the resource input, the GTFP of the mineral resources industry measured in this paper is
more accurate.

The resource input is represented by the total output value of the raw ore industry. In
order to unify the differences in the type, quantity, and value of the resource input, the total
output value of the raw ore industry in the China Mining Yearbook is used and deflated
according to the ex-factory price index.

Energy input is represented in energy consumption. The energy consumption of the
mineral resources industry in the “CEADs Database” is used for summary calculation
and converted into standard coal. Among them, the input of oil, natural gas, and coal is
calculated in the resource input, and this part of the input is excluded when calculating the
energy input.

Capital input is represented by capital stock. The fixed asset investment data is used in
“China fixed asset investment database”. According to the provincial fixed asset investment
price index (2004 as the base period), the deflator is processed, and the perpetual inventory
method is used for accounting [40].
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Labor input is represented by the number of employed persons at the end of the year.
The number of employed persons in the mineral resources industry of each province is
measured by using the “China Industrial Economic Database”.

Desirable output is represented by the sales output value. The sales output value data
of mineral resources industry is used in the “China Industrial Economic Database”. Taking
2004 as the base period, the industrial producer price index of each province is used for
deflator processing.

Undesirable output is represented by CO2 emission. The CO2 emission of the mineral
resources industry is used in the “CEADs database”.

2.6.2. Data Sources of Space–Time Semivariogram Indicators

The calculation data of space–time semivariogram adopts the GTFP of the mineral
resources industry, including 30 provinces in China from 2004 to 2019, with a total of
30 × 16 = 480 annual data.

2.6.3. Data Sources of SPVAR Model Indicators

The SPVAR model adopts the data of GTFP, IMD, and RD of mineral resources industry.
GTFP adopts the calculation results of the Super-SBM model with undesirable output.
IMD is expressed as a percentage of imports to the total output value. The data on

the import value of the mineral resources industry comes from the “Guoyan Network” in
China.

RD is calculated according to the R&D investment and operating income data of listed
companies in the mineral resources industry from the “Guotai’an” database in China.

The interpolation method is used to estimate the missing data for the above variables.

3. Results
3.1. Measurement Result of GTFP

Using the Super-SBM model with an undesirable output, the mean of the GTFP of
the mineral resources industry in 30 provinces in China from 2004 to 2019 was calculated
(Table 1). The mean of the GTFP of the mineral resources industry in the 30 provinces is
0.424. The largest province is Hainan (0.958), and the smallest province is Heilongjiang
(0.141). Most of the provinces have a low level of GTFP in the mineral resources industry.
From the calculation results, resource input as an independent variable suggests that the
GTFP and the annual growth rate are not so overestimated [41,42].

Table 1. Mean of GTFP of mineral resources industry from 2004 to 2019.

Province GTFP Province GTFP Province GTFP Province GTFP

Beijing 0.893 Shanghai 0.576 Hubei 0.426 Yunnan 0.213
Tianjin 0.740 Jiangsu 0.871 Hunan 0.425 Shaanxi 0.322
Hebei 0.374 Zhejiang 0.588 Guangdong 0.767 Gansu 0.298
Shanxi 0.195 Anhui 0.292 Guangxi 0.216 Qinghai 0.201

Inner Mongolia 0.211 Fujian 0.417 Hainan 0.958 Ningxia 0.305
Liaoning 0.28 Jiangxi 0.524 Chongqing 0.374 Xinjiang 0.153

Jilin 0.254 Shandong 0.711 Sichuan 0.329 mean 0.424
Heilongjiang 0.141 Henan 0.479 Guizhou 0.204 - -

The following will further analyze the change law of GTFP in each province in time
and space.

3.2. Space–Time Evolution Analysis of GTFP

There are obvious regional differences in the spatial distribution of GTFP in the mineral
resources industry. In order to analyze its space–time evolution law, it is necessary to group
the data. The GTFP of the mineral resources industry is generally low. In the results
calculated by the Super-SBM model, the high-efficiency provinces have an efficiency value
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greater than 1. According to the distribution characteristics of GTFP, the grouping standard
is determined and divided into five groups (Figure 3).

Figure 3. Space–time evolution of GTFP in mineral resources industry.

From the spatial distribution map, it can be seen that the spatial distribution of GTFP
in each province has obvious spatial correlation, and that the spatial interdependence
between provinces is obvious.

The GTFP has increased significantly in the time trend, which is mainly due to the
improvement of the comprehensive utilization efficiency of resources and energy and the
improvement of the pollution control level in the production process. From the perspective
of spatial trends, high-efficiency provinces continue to gather in coastal areas, which effec-
tively drives the improvement of GTFP in neighboring provinces. Due to the convenience
of sea and land transportation, coastal provinces are the main sources and processing
places for the import of mineral products, saving transportation and economic costs. They
have become the high-value distribution areas of GTFP. This is consistent with the existing
research results on the distribution of GTFP in China’s mineral resources industry [41,43].

3.3. Space-Time Semivariogram Analysis of GTFP

According to the distribution characteristics of GTFP in time and space, the parameters
for calculating the space–time semivariogram are determined.

The GTFP data are annual data, the total timespan is 16 years, and the distribution is
regular. Therefore, when calculating the space–time semivariogram, the time step (interval),
error, and number are set as 1 year, 0.5 years, and 14 years, respectively.

The GTFP data are geodetic coordinate data in space. The maximum separation
distance of GTFP is 3492 km, the minimum separation distance is 122 km, and the most of
separation distances are about 1400 km. The spatial distribution of coordinates is irregular.
When calculating the space–time semivariogram, the spatial step (interval), error, and
number are set as 100 km, 50 km, and 12 km, respectively.

According to the distribution of the calculated results of the experimental time bound-
ary semivariogram (Figure 4a) and the experimental space boundary semivariogram
(Figure 4b), the spherical model is selected to fit the theoretical time and space boundary
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semivariogram. Furthermore, the integrated product–sum model and the tensor product
cubic smoothing surface model can be used to fit the theoretical model of the space–time
semivariogram. The experimental space–time semivariogram and the theoretical space–
time semivariogram can be presented in the same figure (Figure 4c).

Figure 4. Space–time semivariogram of the GTFP of mineral resources industry. (a) time boundary
semivariogram; (b) space boundary semivariogram; (c) space–time semivariogram.

The spatial range of the space–time semivariogram of the GTFP of mineral resources
industry is 635.28 km, the sill value is 0, and the arch height is 0.076, which has a strong
spatial correlation in the range of 635.28 km. The time range is 12.28 years, the sill value is
0, and the arch height value is 0.035, which has a strong time correlation in the range of
12.28 years.

The fitting degree of the time boundary semivariogram is better than that of the space
boundary semivariogram; its range is larger, and its arch height is more obvious, indicating
that the GTFP of mineral resources has a greater correlation in time and has better continuity
and correlation, while the spatial continuity and correlation are relatively small.

Overall, the space–time semivariogram can quantitatively measure the spatial semi-
variogram and temporal semivariogram distance of the GTFP of the mineral resources
industry.

Using the results calculated by space–time, the spatial weight matrix in SPVAR is
calculated. The capital Urumqi of Xinjiang province is about 1462 km away from the capital
Xining of Qinghai province and 1621 km away from the capital Lanzhou of Gansu province,
both exceeding the range of 635.28 km. If the geographical distance is 0, Xinjiang has no
neighboring province, therefore the distance between the two provinces is retained.

Compared with the traditional method of determining the threshold in the spatial
weight matrix [29], using the space–time semivariogram to calculate the spatial range as
the threshold can more accurately reflect the objective reality.

3.4. Space–Time Impact Response

Before using the SPVAR model, firstly, the stationarity test of variables is carried out.
Secondly, the Granger causality test is carried out to analyze whether there is an interactive
relationship between variables. Third, the spatial correlation of all variables is tested.

The data of GTFP, IMD, and RD in the mineral resources industry from 2004 to 2019
are used for a series of tests. The stationarity test results show that the three variables have
significant stationarity. The Granger causality test shows that there is a pairwise Granger
causality relationship among the three variables. The spatial correlation test shows that
GTFP and IMD have a significant positive spatial correlation in each year, while RD has a
significant spatial correlation in 9 out of 16 years. Therefore, the SPVAR model can be used
for parameter estimation of the three variables.

3.4.1. Estimation Results

It can be found from the model estimation results (Table 2) that the coefficients of
the time lag term and the space–time lag cross term are significant, indicating that it is
reasonable to add spatial factors to the model. Adding space–time lag cross term can obtain
a more ideal forecast. However, the endogenous variable system of the model will cause
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the interpretation of the parameter estimation results to have no practical significance [44].
It is necessary to further simulate the space–time impact response generated by the mutual
impact of the three variables.

Table 2. Estimation results of SPVAR model parameters.

Variable GTFP IMD RD

GTFP (−1) 0.33 * (0.19) −0.807 ** (0.40) 0.017 * (0.01)
IMD (−1) 0.023 * (0.01) 0.136 (0.24) −0.002 (0.01)
RD (−1) 0.418 (0.68) −1.223 (1.43) 0.088 * (0.05)

W × GTFP (−1) 0.01 (0.27) −0.95 ** (0.48) −0.032 * (0.02)
W × IMD (−1) 0.019 (0.16) −0.021 (0.41) −0.005 (0.03)
W × RD (−1) 0.739 * (0.44) −0.116 (2.42) 0.368 ** (0.18)

Note: The data corresponding to each variable are parameter estimates, and the data in parentheses are standard
errors. ** and * indicate significance at the statistical level of 5% and 10%, respectively. GTFP (−1), IMD (−1) and
RD (−1) represent the time lag 1 order of GTFP, IMD and RD respectively. W × GTFP (−1), W × IMD (−1) and
W × RD (−1) represent the 1 order cross term of the time-space lag of GTFP, IMD and RD respectively.

3.4.2. Impact Response Analysis

The impact source of the impact response of the SPVAR model can be various variables,
and the response can be reflected in time and space. The impact from a province will
gradually spread to the surrounding provinces over time, and the response degree and way
will vary in different regions, which can be expressed through the spatial weight matrix.

For the 30 regions and 3 variables, n× k2 = 30× 32 = 270 (n is 30 regions and k is 3
endogenous variables), and impact response graphs can be generated. For demonstrating
the main points, this paper selects several representative provinces as the impact source to
analyze the impact process to the adjacent provinces.

1. IMD as impact source

In order to analyze the impact response process of IMD as an impact source to GTFP,
Zhejiang, Jiangxi, and Inner Mongolia were selected as representative impact sources in the
eastern, central, and western regions to analyze the impact response process to neighboring
provinces.

According to the distance from near to far, there are four selected neighboring provinces
of Zhejiang, namely Shanghai, Jiangsu, Anhui, and Fujian, used to analyze the impact
response process. Moreover, four neighboring provinces of Jiangxi are selected, namely Hu-
nan, Anhui, Fujian, and Zhejiang. In the same way, there are three neighboring provinces
of Inner Mongolia, namely Shanxi, Beijing, and Hebei.

From the simulation results (Figure 5), under the positive impact of one standard
deviation from IMD, the three variables all presented space–time responses of different
ranges and directions in the local and neighboring provinces.

Under the positive impact of one standard deviation of IMD from Zhejiang province,
the response of the GTFP in the local and neighboring provinces is obviously positive in
two years. The maximum local response occurred in the second year, and the response
ranges of the neighboring provinces varied. Jiangxi and Inner Mongolia had the same
situation as Zhejiang province. The GTFP response on neighboring provinces shows
three characteristics: (1) the neighboring provinces are affected the most in the eastern
region, somewhat in the central region, and the least in the western region. (2) Due to
more convenient shipping and higher import dependence, the coastal provinces are more
affected than the inland provinces. (3) The closer the province is to the impact source, the
greater the response. The reason is that imported ores can reduce resource input costs and
carbon emissions, and the inflow of technology accompanying imports can also improve
production efficiency, which also improves GTFP.
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Figure 5. Space–time response of the IMD of the mineral resources industry as impact source: (a)
impact of Zhejiang IMD on GTFP; (b) impact of Jiangxi IMD on GTFP; (c) impact of Inner Mongolia
IMD on GTFP; (d) the impact of Zhejiang IMD on IMD; (e) impact of Zhejiang IMD on RD.

Under the positive impact of one standard deviation of IMD from Zhejiang province,
the response of IMD is obviously positive in the local province; however, it is very weak in
the neighboring provinces. This coincides with the actual situation of mineral resources.
The import channels of the mineral resources of each province are generally fixed.

Under the positive impact of one standard deviation of IMD from Zhejiang Province,
the response of RD in the local and neighboring provinces will first be negative, then
be positive, and, finally, tends to be stable within two years. The inflow of technology
accompanying mineral products’ import will have a certain “crowding out” effect on local
RD in the short term due to factors such as secrets, technology protection, and competition.
However, in the medium and long term, mineral products import will promote local
RD. After a certain period of technical learning and knowledge innovation, GTFP can be
effectively improved.
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2. GTFP as impact sources

With relatively higher GTFP, the Zhejiang province is selected as the representative
impact source. According to the distance from near to far, there are four selected provinces,
namely Shanghai, Jiangsu, Anhui, and Fujian, taken to analyze the impact response process.

Under the positive impact of one standard deviation of GTFP from Zhejiang province,
the three variables in the local and neighboring provinces all produced space–time re-
sponses (Figure 6a–c). The response intensity of coastal provinces is higher than inland
provinces, and near regions are higher than far regions.

Figure 6. Space–time response of GTFP and RD of the mineral resources industry as impact source.
(a) Impact of Zhejiang GTFP on GTFP; (b) impact of Zhejiang GTFP on IMD; (c) impact of Zhejiang
GTFP on RD; (d) the impact of Shandong RD on GTFP; (e) impact of Shandong RD on IMD; (f) impact
of Shandong RD on RD.

Under the positive impact of one standard deviation of the GTFP from Zhejiang
province, the response of the local GTFP is strongly positive in the first year, then alternates
between negative and positive, and the response degree continues to decrease to stability.
The response of the GTFP in neighboring provinces is slightly positive.

Under the positive impact of one standard deviation of the GTFP from the Zhejiang
province, the response of IMD in local and neighboring provinces is negative, and then
becomes positive. In the initial stage, due to the local mineral reserves and domestic
supply, the improvement of GTFP will not decrease the IMD. However, along with the
continuous expansion of demand, it is necessary to cover the shortage through importing
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minerals, resulting in an increase in import dependence. The improvement of GTFP will
produce technology spillovers in neighboring provinces, therefore the demand for minerals
in neighboring provinces will be relatively reduced, and the IMD will also decrease.

Under the positive impact of one standard deviation of the GTFP from the Zhejiang
province, the response of local RD is positive in the first year and turned negative in
the second year, while the response of RD in neighboring provinces was negative. Since
the improvement of GTFP is mainly due to technological progress, the improvement of
GTFP in the Zhejiang province will promote the local RD in the short term. Along with
the continuous technology overflow from Zhejiang provinces, neighboring provinces can
reduce RD by accepting technology transfer.

3. RD as impact sources

With relatively high RD, Shandong Province is selected as the representative RD
impact source region to analyze the impact response process to neighboring provinces.
From near to far, four provinces, Hebei, Henan, Beijing, and Shanxi, adjacent to Shandong
Province, were selected for analysis.

Under the positive impact of one standard deviation of RD from Shandong Province,
the three variables all have different responses (Figure 6d–f). The overall response intensity
shows that the provinces closer to Shandong are higher.

Under the positive impact of one standard deviation of RD from Shandong Province,
the response of GTFP in local and neighboring provinces is positive. It shows that RD is con-
ducive to improving GTFP. With the increase in RD, the technical level of mineral resources
industry, the efficiency of resource utilization, and carbon emissions have been significantly
improved, and local GTFP has also been effectively improved and has promoted the GTFP
in surrounding areas.

Under the positive impact of one standard deviation of RD from Shandong Province,
the response of IMD in local and neighboring provinces is negative. The RD can improve
the resource utilization efficiency and can effectively reduce the import volume under the
same demand.

Under the positive impact of one standard deviation of RD from Shandong Province,
the response of local RD is significantly positive, while the response of neighboring
provinces is weakly positive. The RD level in each province is relatively fixed. Although
RD somewhat increases over time, it is more affected by the decisions of local enterprises
and local governments, and is not affected by neighboring provinces.

Similar to the results found from a study on the TFP of Chinese industry or region [20,21],
it also can be found that IMD and RD all have positive effects on GTFP. Using SPVAR, we
can analyze the impact response process more clearly and accurately.

4. Discussion

Although there has been a lot of research on the GTFP of the mineral resources industry,
there are still two points to be improved.

The first is related to the input of mineral resources. Most studies consider resource
input by measuring GTFP, but do not fully incorporate it into the research framework.
Usually, energy input is used as the only resource input variable. As the depletion of
mineral resources becomes increasingly prominent, energy cannot fully represent mineral
resources, and some scholars propose to use resource and energy as an input factor [45].
Due to the difficulty in obtaining and unifying the data of mineral resources, although
resource input is proposed, t many quantitative measurements have been completed.

The second is the measurement method of GTFP spatial association. The spatial
correlation of spatial units is measured by a spatial weight matrix. In some studies, the
thresholds for the spatial correlation were determined using subjective empirical judgments
or multiple regression tests [29,46]. This is reasonable to a certain extent; however, it is
not rigorous enough. In contrast, taking the ranges of the space–time semivariogram as
threshold improves the accuracy.
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Therefore, this study attempts to make breakthroughs in the above two aspects. First,
mineral resource input is fully considered. The gross industrial output value of raw ore
is used to represent the resource input and is completely measured. The second is the
space–time semivariation, which is used to calculate the spatial range of GTFP, which is
used as the threshold of the spatial weight matrix for impact response analysis to improve
the accuracy of the space–time effect analysis.

5. Conclusions

In this paper, the space–time semivariogram is used to calculate the threshold of
the spatial correlation distance of GTFP, which is used to construct the spatial weight
matrix of the SPVAR model to analyze the space–time impact responses among GTFP, IMD,
and RD in the mineral resources industry. It is worth mentioning that resource input as
an independent variable is introduced in the GTFP measurement, which improves the
comprehensiveness and accuracy of GTFP for the mineral resources industry. The main
conclusions include:

(1) The space–time semivariation is used to calculate the space–time variability of the
GTFP of the mineral resources industry. The maximum correlation distances of time
and space are 12.28 years and 635.28 km, respectively. This is used as the threshold of
the spatial weight matrix in space–time impact response analysis, which improves the
accuracy of spatial analysis;

(2) The impact response results among IMD, RD, and GTFP is as follows: IMD has an
obvious positive effect on GTFP in local and neighboring provinces. The impact from
IMD to RD in local and surrounding provinces first shows as negative and then turns
to positive. GTFP has obvious negative effects on IMD in the local and neighboring
provinces, and then turns to positive. GTFP, at first, has positive effects on local
RD, and then turns to negative, while RD in neighboring provinces mainly shows
as negative. The RD has obvious positive effects on GTFP in local and neighboring
provinces. RD has a certain negative effect on IMD in local and neighboring provinces;

(3) The neighboring provinces’ response degree is large in the eastern region, medium in
the central region, and small in the western region. The coastal provinces’ response is
greater than that in inland provinces. The neighboring provinces that are closer to the
impact source have a greater response.

According to the above conclusions, to improve the GTFP in mineral resource industry
could, by increasing the import on high quality mineral products, increase R&D investment
to improve the technical level, strengthening different regulations in various regions to
limit resource and environment input.

The study also suggests several avenues for future research. Firstly, although the
selection of the input–output factors of the mineral resources industry in this paper is more
comprehensive, it can still only represent the real GTFP to a certain extent. Secondly, the
space–time semivariogram is used to calculate the time and spatial range of the GTFP of the
mineral resources industry. However, in order to simplify the model and facilitate analysis,
the spatial range is used in the construction of the SPVAR model with reference to the time
range. In the next step, the accurate time lag term can be added to the model to improve
the accuracy of model analysis.
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