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Abstract: Drought is a major abiotic stress forced by the changing climate that affects plant production
and soil structure and functions. A study was conducted to explore the impacts of ascorbic acid
(AsA) and α-tocopherol (α-toc) on the agro-physiological attributes and antioxidant enzymes of
chickpea grown in water deficit regions. The results of the soil analysis showed that the electrical
conductivity (EC) and pH were decreased from 521 mS/m and 7.08 to 151 mS/m and 6.6 in 20-day
drought regimes, respectively. Agronomic outcomes showed that exogenous application of AsA and
α-toc increased the germination rate index (GRI), mean germination time (MGT), germination energy
(GE), water use efficiency (WUE), germination percentage (GP), and seed vigor index (SVI). However,
all the above attributes experienced a decline under 10- and 20-day drought stress. Similarly, the
Chl. a, Chl. b, carotenoids, proline, protein, sugar, glycine betaine, and hydrogen peroxide contents
were significantly increased. Meanwhile, malondialdehyde, glutathione reductase, and enzymatic
antioxidants (APOX, SOD, and POD) increased during 10- and 20-day drought, except CAT, which
decreased during drought. The exogenous fertigation of these growth regulators improved the
photosynthetic pigments and enzymatic and non-enzymatic antioxidants in stressed plants. The
current research concludes that simultaneous dusting of AsA and α-toc could be an efficient technique
to mitigate the antagonistic impacts of drought, which might be linked to the regulation of antioxidant
defense systems.

Keywords: agronomic characteristics; alpha-tocopherol; ascorbic acid; drought tolerance; secondary
metabolites

1. Introduction

Chickpea (Cicer arietinum L.; Leguminosae) is an essential and protein-rich leguminous
crop with a cosmopolitan distribution, constituting part of the staple diet of more than five
billion people [1]. Chickpeas contribute considerably to global food security by providing
amino acids, calories, unsaturated fats, and vitamins to millions of people throughout the
world. In the production of legumes in agricultural systems, it ranks third after beans and
peas, which is a clear indication of the bulk quantity of chickpeas that is consumed [2].

Sustainability 2022, 14, 8861. https://doi.org/10.3390/su14148861 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14148861
https://doi.org/10.3390/su14148861
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4433-2034
https://orcid.org/0000-0001-5713-4606
https://orcid.org/0000-0002-3131-8703
https://orcid.org/0000-0002-5963-5276
https://orcid.org/0000-0003-3002-935X
https://doi.org/10.3390/su14148861
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14148861?type=check_update&version=1


Sustainability 2022, 14, 8861 2 of 16

After decades of substantial production, chickpea has experienced a steady decline due
to the adverse effects of climate change in developing countries. These effects include
prolonged drought, flooding, fluctuation in seasonal temperatures, rains, and moisture [3].
Adverse changes in the climate make it difficult to achieve the increasing demand for pulses
in the world [3]. Among them, the water deficit problem is the most common adverse
limiting factor affecting chickpea vegetative phase, pollen viability, pod filling, and yield [4].
Drought stress at the vegetative stage and terminal drought reduce yield by around 50%.
In most countries, chickpea is regularly cultivated for rotation purposes in pulse farming
systems that have some residual soil moisture. This frequently results in moisture stress
at the end of the cropping season, along with subsequent drought stress episodes [4]. As
a result, during the vegetative stage, the crop is exposed to stress, resulting in yield loss.
Around 52% of the earth’s scorched and semi-scorched regimes are vulnerable to short or
prolonged drought stress conditions [5].

Water acts as a precursor for several primary and secondary metabolites responsible
for growth and yield; therefore, its deficiency will affect all agronomic, physiological, and
biochemical attributes [1]. Chickpea crops grown in water-limited regimes experience a
nutritional imbalance, ion exchange, impairment in cell division, and changes in primary
and secondary metabolism [6]. Plants’ cellular membranes are vulnerable to the scarcity of
water owing to their complex oxidative stress, which can easily break the biomolecules and
lipids embedded in these membranes. In plants, the adverse consequences of drought stress
are mitigated by several molecular and physiological practices, including maintenance of
cell turgidity, water use efficiency, development of the deep rooting system, inhibition of
transpiration, biosynthesis of osmolytes, and stomatal and osmoregulation. The enzymatic
and non-enzymatic system includes defensive antioxidants such as ascorbate peroxidase
(APOX), superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), tocopherols, and
ascorbic acid (AsA), which are effective in countering the drought-induced overaccumula-
tion of reactive oxygen species (ROS) [5,7]. However, this response is different from crop to
crop and mainly depends on the external environment and genetic makeup of the plant [6].
To alleviate the injurious effects of a drought environment, leaf foliar approaches such as
the exogenous application of growth-stimulating substances have been efficiently applied
by various researchers due to their cost-effective and efficient nature [7,8].

The literature revealed that several exogenous non-enzymatic compounds are used
to alleviate the impacts of drought and recover crop agronomy and physiology [8]. AsA
and α-toc are believed to be the primary growth buffers which guard plant tissues against
scavenging free oxygen radicals [6]. Ascorbic acid acts as a helper for catalysts engaged
in mitigating the biogenesis of phytohormones, regenerating enzymatic antioxidants, and
regulating anabolism and catabolism [8]. Alpha-tocopherol also has a strong antioxidant
function as an inhibitor of lipid peroxidation and is useful in maintaining the integrity of
cellular membranes against oxidative stress. It is mostly present in actively dividing plant
cells and all cellular compartments, including cell walls [9]. The growth and development of
pulses having minimal AsA and α-toc content were expressly affected by abiotic stressors,
especially drought. In a plant’s cellular processes and defense mechanisms, it acts as
a strong metabolite and signaling modulator by detoxifying hydrogen peroxide during
water shortages [10]. Foliar application of these growth regulators has shown efficient
results in boosting cell division and the development of crops through maintaining various
physiological processes such as ionic transport, cell expansion, and phytohormone signaling
and the defense system during stress conditions [11]. The literature revealed the mitigating
impacts of AsA and α-toc foliar spraying on the morphology, physiology, and biochemistry
of various crops, such as in [12–15].

The current research is an attempt to (i) assess the agronomic, molecular, and physio-
biochemical responses of the chickpea variety NIFA-1995 to different levels of exogenously
sprayed AsA and α-toc grown in water-limited regimes; (ii) perform comparative identi-
fication of the strongest and most effective drought stress regulator for the economically
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important chickpea; and (iii) test the hypothesis that chickpea crops which receive exoge-
nously applied AsA and α-toc simultaneously might perform better under drought stress.

2. Materials and Methods
2.1. Site Description and Experiment Layout

A complete randomized block design layout with three pot replicates was accom-
plished in the net house of the Department of Botany, University of Peshawar, Khyber
Pakhtunkhwa, Pakistan, in the 2021 growing season. The experiment site had a sub-humid
climate, about 450 m above sea level, with extreme weather conditions (hot summer:
40.8 ◦C; mild winter: 18.35 ◦C) [16]. To investigate agronomic performance and physio-
logical aspects under vegetative stage drought stress, chickpea seed var. NIFA 1995 was
taken from the Nuclear Institute of Food and Agriculture (NIFA). Seeds were sowed in
earthen pots of 20 cm length, 2 cm thickness, and 18 cm upper-lower diameter filled with
3 kg soil and sand (2:1) after being surface-sterilized with 95% ethanol. After seedling
emergence, the plants were subjected to exogenous growth mediators at a concentration
of 150 mg/L with continuous 10- and 20-day vegetative stage drought. Three pots were
kept controlled and normally irrigated after 5-day intervals. Plants were uprooted from
some pots after ten days of drought and the rest were uprooted after a continuous 20-day
drought period. Data of germination and agronomic parameters of vegetative growth were
recorded. The leftover plants were kept at−4 ◦C in the freezer to assess physio-biochemical
and enzymatic characteristics.

2.2. Soil Assessment

The pot soil before and after the research was examined for different soil attributes,
including temperature (T), electrical conductivity (EC), pH, total dissolved solutes (TDS),
dissolved oxygen (DO), oxidation reduction potential (ORP), resistivity (R), and salinity
(NaCl). A 1:5 soil:water suspension was arranged by weighing 10 g air-dry soil in a
disposable glass containing 50 mL distilled water. The Multiparameter Bluetooth portable
Water Quality Meter HI98494 was used to calculate the soil properties.

2.3. Germination and Agronomic Characteristics

The mentioned germination and agronomic indices were analyzed, including germina-
tion rate index (GRI), mean germination time (MGT), germination energy (GE), and Timson
germination index (TGI), via the methods of Nafees et al. [17]. Water use efficiency (WUE),
germination percentage (GP), seed vigor indices (SVIs), root moisture content (RMC), and
time to 50% germination (T50%) were determined through the protocol of Shah et al. [18]
using the following formulas:

MGT =
∈ f x
∈ f

(1)

where f is the frequency of seeds emerged on day X.

GRI =
G1
1

+
G2
2

+
G3
3

. . .
Gx
x

(2)

where G1 and G2 are the emergence rates on the first and second days after propagating,
respectively, and Gx is the final emergence rate on the final day.

GE =
X1
Y1

+

(
X2− X1

Y2

)
+

(
Xn− Xn− 1

Yn

)
(3)

where X1, X2, and Xn are the number of seeds germinated on days 1, 2, etc., and Y1, Y2,
and Yn are the time from plating to days 1, 2, etc., up to day 10.

TGI =
∈ G

T
(4)
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where G is the grand percentage of emergence on each day and T is the day of emergence.

WUE =
Total Water during Experiment (ml)

Total Biomass (g)
(5)

GP =
Number of seedlings emerged
Total number of seeds sown

× 100 (6)

SVI-I = Seedlings length×Germination %age (7)

SVI-II = Seedling dry weight (mg)×Germintion %age (8)

RMC =
Wet weight of root−Dry weight of root

Wet weight of root
(9)

T50% =
ti + (N/2− ni)(tj− ti)

(nj− ni)
(10)

where N is the final frequency of seeds that emerged and nj and ni are the aggregate
frequency of seeds that germinated after contiguous counts during tj and ti, respectively,
when ni < N/2 > Nj.

2.4. Physiological and Biochemical Attributes
2.4.1. Leaf Photosynthetic Pigment

The various types of chlorophyll (Chl. a and Chl. b) were assessed by the method of
Sonobe et al. [19]. The carotenoid (CAR) contents were assessed by following the protocol
of Ahmad et al. [20]. The quantities were computed using the following equations:

Chl. a = [12.7 (OD 663) − 2.69 (OD 645)] × V/1000 ×W (11)

Chl. b = [22.9 (OD 645) − 4.68 (OD 663)] × V/1000 ×W (12)

Carotenoid = DA480 + (0.114 × DA663) − (0.638 × DA645) (13)

where DA is the optical density at a mentioned wavelength, V is the level of the extract
(mL), and W is the fresh leaf weight.

2.4.2. Total Proline Content (TPC) and Soluble Protein Content (SPC)

The total proline content (TPC) of leaves was found through the method of
Brugière et al. [21]. Meanwhile, the protocol of Zhang et al. [22] was used for the quantifi-
cation of soluble protein. Both contents were computed using Equation (14).

Protein % (W/W) = Cp×V × DF
wt

(14)

where Cp is the protein concentration (mg L−1), V is the volume of the buffer lysis, DF is
the dilution factor, and wt is the weight of leaves (mg).

2.4.3. Soluble Sugar Content (SSC) and Hydrogen Peroxide (H2O2)

The leaves’ sugar content was quantified using the technique of Johnson et al. [23].
Similarly, the H2O2 activity was quantified by following the protocol of Velikova et al. [24].
The OD of sugar and H2O2 was recorded at 420 and 390 nm, respectively.

2.4.4. Malondialdehyde (MDA) and Glycine Betaine (GB) Assay

The MDA content was assessed according to the assay of Zhang and Kirkham [25]
and the OD was recorded at 530 nm. Meanwhile, the Khan et al. [26] method was used
to determine glycine betaine content. The MDA and GB contents were computed via the
following equations:

MDA (nmol) = D (A532 nm − A 600 nm)/1.56 × 105 (15)
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Glycine betaine (GB) = [A × DF ×MW × 1000/ε × L] (16)

where DF is the dilution factor, MW is the molecular weight, and ε is the extinction coefficient.

2.4.5. Antioxidant Enzymatic Assays

The typical protocol of Flohe [27] was used for the estimation of superoxide dismutase
(SOD) activity at 560 nm on a spectrophotometer. Similarly, the activity of peroxidase (POD)
and glutathione reductase (GR) was analyzed via the technique of Ahmad et al. [28] at 420
and 340 nm, respectively. Leaf extract was also used for the quantification of ascorbate
peroxidase (APOX) and catalase (CAT) enzymes via the method of Livingstone et al. [29].

Enzyme Activity = ∆A× Total assay
volume

∆t
× ∈ ×i× Enzyme sample volume (17)

where ∆A is the change in absorbance, ∆t is the time of incubation, and E is the absorbance
coefficient of the substrate.

2.5. Statistical Analysis

Microsoft Excel 2010, US, was used to estimate the mean and standard error from
the collected data. Analysis of variance (ANOVA) was performed using Co-Stat Window
version 6.3 to find significant differences between treatments. The mean and standard
error were calculated using standard techniques; a least significant difference (LSD) test
was performed at the ±0.05 significance level and was shown in letters (AE). Correlation
analysis was performed using R Studio 8.1 software.

3. Results and Discussion

Drought stress has become a major agricultural constraint in recent decades, affect-
ing soil structure and function, plant agronomy and physiology, and allied metabolism.
Drought stress is accountable for amendments in soil properties, such as alteration in soil
temperature due to drought affecting soil organic matter, which leads to decomposition
and the release of excess CO2 [30]. However, when α-toc was exogenously sprayed on
drought-stressed plants, their agronomic, physiological, and biochemical attributes were
dramatically changed and further enhanced (Figures 1–3).
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and (B) 20-day drought stress.
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to drought stress [44]. However, there have been different outcomes of protein 

Figure 2. Effect of AsA and α-toc on C. arietinum (A) Chl. A and Chl. b, (B) carotenoid and sugar con-
tent, (C) protein and proline, and (D) H2O2 and GB under induced 10- and 20-day vegetative drought
stress. Letters A–H represent significant and non dignificant difference in data in mean values.

3.1. Effect on Soil Physicochemical Properties

Physicochemical analysis of the soil before and after the sowing showed decreases in
electrical conductivity from 521 to 151 mS/m, pH from 7.08 to 6.6, and the total dissolved
solutes from 260 to 129 mg/L after 20 days in drought-affected soil (Table 1). Moreover, the
temperature of the soil also altered from 18.6 in the control (To) to 24.4 ◦C after 20 days in
drought soil (T5). Ojuederie et al. reported that decreases in soil water led to a decrease in
the uptake of nutrients by crops, which directly affects turgor pressure and all the water
precursor processes [31]. However, there were no significant differences noticed in the other
properties of soil such as oxidation reduction potential and resistivity (Table 1). Results
obtained from the study conducted by Ali and his colleagues documented that extreme
drought severely affect the structure, function, and productivity of agricultural soil [32].
This leads to disruption in soil nutrients, soil aggregate stability, and porosity.
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Figure 3. Effect of AsA and α-toc on C. arietinum (A) MDA and APOX, (B) SOD and POD, and
(C) CAT and GR under induced drought stress. Letters A–H represent significant and non dignificant
difference in data in mean values.

Table 1. Effect of drought stress on the physicochemical properties of soil before and after 10 or
20 days of drought under the application of treatments.

Treatment T (◦C) pH ORP (mV) Resistivity (Ω·m) EC (mS/m) TDS (mg/L) Salinity DO

Control 18.6 7.96 99.5 1923 521 260 0.25 11.2
10-day drought 21.3 6.6 90.9 2953 290 256 0.25 11.2

D + AsA 19.6 7.2 88.1 2984 151 129 0.24 11.2
D + α-toc 19.6 7.0 86.9 2681 595 298 0.29 11.2

D (AsA + α-toc) 19.6 6.8 85.2 2890 529 264 0.26 11.2
20-day drought 24.4 7.15 82.2 1100 522 160 0.11 11.2

D + AsA 19.4 7.4 82.4 1900 429 129 0.15 11.2
D + α-toc 19.4 8.33 82.9 1789 586 133 0.17 11.2

D (AsA + α-toc) 19.4 7.13 92.3 1823 501 145 0.14 11.2

D: drought; pH = power of hydrogen ion; ORP = oxidation reduction potential; EC = electrical conductivity;
DO = dissolved oxygen; T = temperature, TDS = total dissolved solutes.
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3.2. Morphological Characteristics

Data from the germination and growth attributes revealed that varying levels (10 and
20 days) of drought stress significantly decreased the chickpea crop’s morphological perfor-
mance (Figure 1 and Tables 2 and 3). A significant decrease at p ≤ 0.05 was experienced in
the MGT, GRI, TGI, GE, CVG, FGP, SVI-I, SVI-II, and RMC after 10 and 20 days of induced
drought stress (Tables 2 and 3). The negative effects are due to the higher production of
reactive oxygen species (ROS) and stomatal closure due to drought stress conditions [31].
This condition progressively decreases the CO2 acclimatization rate by decreasing stomatal
conductance and the stability of the cellular membrane, which leads to disruptions in water
relation by degrading water use efficiency [31].

Table 2. Effect of AsA and α-toc on C. arietinum mean germination time, germination rate index,
germination energy, Timson germination index, coefficient of velocity of germination, and water use
efficiency under induced drought stress.

Treatments MGT GRI GE TGI CVG WUE

Control 6.4 ± 0.21 a 75.5 ± 3.5 b 10.1 ± 1.2 a 55.4 ± 3.4 b 6.3 ± 1.2 a 2.3 ± 0.5 a

10-day drought 6.1 ± 0.56 ab 66.2 ± 2.3 ab 7.4 ± 1.0 bc 54.2 ± 5.2 a 5.6 ± 0.6 a 3.5 ± 1.2 cd

D + AsA 5.5 ± 0.34 cd 61.2 ± 3.3 ab 4.6 ± 0.8 cd 54.6 ± 2.5 c 4.3 ± 0.8 ab 6.2 ± 0.5 bc

D + α-toc 5.8 ± 0.22 a 71.7 ± 1.9 ef 5.2 ± 0.5 ac 56.2 ± 4.3 d 4.6 ± 1.5 bc 5.1 ± 1.8 ac

D (AsA + α-toc) 5.7 ± 0.12 c 65.3 ± 2.7 d 6.1 ± 1.5 ab 56.8 ± 6.4 cd 5.4 ± 0.9 bc 5.2 ± 2.1 ae

20-day drought 5.9 ± 0.56 de 67.4 ± 3.5 b 11.3 ± 2.0 b 53.2 ± 3.4 ab 6.4 ± 0.4 cd 4.2 ± 0.5 de

D + AsA 6.2 ± 0.76 cd 64.2 ± 4.0 a 6.7 ± 1.1 cd 51.9 ± 7.3 bc 3.7 ± 1.1 c 3.2 ± 0.7 bc

D + α-toc 6.6 ± 0.23 c 79.4 ± 3.8 cd 5.9 ± 1.0 a 57.2 ± 4.9 a 6.2 ± 0.9d e 6.1 ± 0.3 bc

D (AsA + α-toc) 6.0 ± 0.33 a 77.3 ± 3.1 a 10.0 ± 2.3 ab 53.4 ± 4.5 a 5.4 ± 0.5 a 4.3 ± 0.8 a

D: drought; MGT: mean germination time; GRI: germination rate index; GE: germination energy; TGI: Timson
germination index; CVG: coefficient of velocity of germination; WUE: water use efficiency, Single superscript
letters indicate non-significant data while different letters next to mean values indicate significant difference
in data.

Table 3. Effect of AsA and α-toc on C. arietinum germination percentage, seed vigor index I, seed
vigor index II, root moisture content, and time to 50% germination under induced 10- and 20-day
drought stress.

Treatments GP SVI-I SVI-II RMC T50%

Control 96.1 ± 5.16 ab 2427 ± 458.7 d 11,493.3 ± 598 ab 86.4 ± 1.2 a 5.3 ± 0.2 ab

10-day drought 93.3 ± 4.71 c 937 ± 49.253 c 6616.9 ± 153.2 ab 83.8 ± 0.4 de 5.3 ± 0.2 cd

D + AsA 90.6 ± 4.71 d 1261 ± 107.0 c 6619.23 ± 57.1 bc 67.3 ± 0.4 ef 5.6 ± 0.3 de

D + α-toc 94.6 ± 4.71 a 1217 ± 160.0 b 7322.4 ± 150.4 de 88.7 ± 0.8 d 5.0 ± 0.9 a

D (AsA + α-toc) 96.3 ± 4.71 c 1599 ± 88.41 c 10761 ± 200.5 ab 87.3 ± 0.5 c 4.8 ± 0.2 b

20-day drought 96.6 ± 4.71 ab 1143 ± 50.70 a 7026 ± 161.90 bc 71.21 ± 0.8 a 4.3 ± 0.2 cd

D + AsA 93.3 ± 9.43 ab 1604. ± 112.2 a 11,967 ± 345.4 ab 82.08 ± 0.8 bc 5.1 ± 0.2 ef

D + α-toc 96.3 ± 9.43 a 1471 ± 17.58 ab 7529 ± 76.183 bc 83.6 ± 0.6 a 5.1 ± 0.4 a

D (AsA + α-toc) 86.3 ± 4.71 bc 3319 ± 37.66 a 12,531 ± 308.2 ab 79.8 ± 0.9 ab 4.6 ± 0.2 cd

D: drought; GP: germination percentage; SVI-I: seed vigor index I; SVI-II: seed vigor index II; RMC: root moisture
content; T50%: time to 50% germination, Single superscript letters indicate non-significant data while different
letters next to mean values indicate significant difference in data.

The highest MGT, GRI, and TGI were observed in the 10-day drought regime treated
with AsA+ α-toc (T4) (Table 2). Moreover, the exogenous application of α-toc considerably
enhanced the GE, CVG, FGP, and RMC in 10-day drought regimes (T3). Table 3 shows
that the maximum RMC, SVI-I, and SVI-II values were recorded in the 20-day drought
regime with foliar application of AsA and α-toc (T8). These features declined consistently
with the increasing intensity of the drought level of the growth medium (Figure 1). Similar
results in which drought stress had the same drastic effects were reported in maize [32],
carrot [33], and common vegetables [34]. The chickpea growth performance and develop-
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ment inhibiting effect can be mitigated by AsA and α-toc by accelerating osmolytes and
antioxidant enzyme production. These attributes were reported at a maximum in plants
treated with foliar application of ascorbic acid (150 mg/L) and α-toc as compared to the
control and stressed plants (Tables 2 and 3). However, the variables WUE and T50% showed
improvements with the increase in the interval of drought stress and had the highest values
in plants grown in the 20-day water-deficient regimes. The interactive effect of AsA and
α-toc exhibits that these PGRs have a positive effect on the germination and agronomic
attributes of chickpea (Tables 2 and 3). However, comparatively, AsA is more efficient than
α-toc for ameliorating the hostile effects of drought stress in chickpea. Exogenously applied
AsA and α-toc were also commendably used to ameliorate the drought stress tolerance in
various crops such as wheat [35] and sunflower [36].

3.3. Effects on Physiological Attributes and Antioxidant Activities

Drought stress caused a rapid decrease in all the physiological attributes and an in-
crease in the activity of defense antioxidant enzymes. In comparison with the control (To),
the leaf Chl. a and Chl. b contents were reduced to 0.10 and 0.23 mg/L, respectively, in the
20-day drought regime (Figure 2A). In contrast, the foliar application of both AsA and α-toc
improved the chlorophyll contents in both the 10- and 20-day drought stress conditions
(T1, T5). The foliar application regulates the plant’s photosynthetic pigments by reducing
the production of hydrogen peroxide and elevating the phenolic level, making the plant
perform better under stress conditions [37]. Due to their sensitive nature, the degradation
of plant photosynthetic pigments (Chl. a, Chl. b, and carotenoids) was the primary sign
noticed under the induced drought stress conditions. It is due to the disintegration of the
chloroplast thylakoid membrane [37], which occurs due to the corrosion of amino acids and
photosystem 2 (PSII) linked with the chloroplast membrane [38]. The comparative study re-
vealed that AsA showed a better performance in improving all the chlorophyll contents (T2)
as compared to α-toc (Figure 1A). Drought significantly (p ≤ 0.005) reduced the carotenoid
contents from 2.4 in the control (To) to 0.58 under 20-day drought stress (T5). The induced
drought stress quickly enhanced the concentration of total soluble sugar (1.3 to 2.25) in all
the stressed treatments, and a further increase was observed with increasing the drought
interval (Figure 2B). Plant growth regulators (AsA and α-toc) caused a substantial recovery
in the photosynthetic system by decreasing the production of ROS [31]. Similar results
were reported in wheat [38,39] and pepper [40].

Figure 2C shows that a significantly high proline content (2.25) was observed in
chickpea plants exposed to 20 days of continuous drought stress (T5), while the lowest was
in 20-day drought plants treated with AsA (T6). Proline accumulation under drought stress
has been reported by many researchers [41–43]. It acts not only as a source of nutrition but
also as an osmotolerant by determining protein and membrane structures. The application
of AsA and alpha-tocopherol reduced its concentration under drought stress conditions.
A prominent (p ≤ 0.005) decrease of 3.34 in the control to 0.4 after 20 days of drought
stress was observed in the content of protein as we increased the interval of drought stress
(Table 4) (Figure 2C). However, all the treatments that received foliar application of AsA, α-
toc, or both experienced a relatively high concentration of protein content (Table 4). This is
a clear indication that protein plays an essential role in plant response to drought stress [44].
However, there have been different outcomes of protein accumulation in plants under stress
conditions. For example, research conducted by Xu et al. reported that protein content
increases under drought stress [44], while Savvides et al. documented that it decreases in
plants grown in water deficit regimes [45].

Figure 2D shows that drought stress caused a considerable increase in the H2O2
and GB contents in all the 10- and 20-day stress treatments. The two had maximum
concentrations of 2.77 and 1.43, respectively, observed in the 20-day drought stress regimes
and a minimum of 0.45 and 0.34, respectively, in the 10-day water deficit regime sprayed
with AsA and α-toc. The increase is due to the stress regulatory function of AsA and α-toc.
The H2O2 accumulation is due to a decrease in the soil water content and assimilation
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of CO2. The antioxidants dissolve superoxide ions with H2O2, and other enzymes are
produced into water molecules. MDA acts as a signaling indicator in response to ROS,
which can be used as a signal for drought to assess the plasma membrane injury and
the ability of crops to tolerate drought. A significant upsurge (p ≤ 0.005) was observed
in the content of MDA and GR in all the drought stress-treated plants (Figure 3A). The
content of MDA increased from 0.12 (T8) to 1.76 in 20-day drought stress conditions. The
increase in MDA content under drought stress in chickpea is similar to that reported in
ornamental grass [46] and rice [47]. Glycine betaine also works as an attuned solute which
helps to mitigate the adverse effect of drought stress by taming the cytosol water status
and protecting the cell biological membranes from ROS. The same trend was also observed
for GR, which increased from 1.1 in the control (To) to 3.88 under 20-day drought stress
(T5). GB is believed to be a catalyst for photosynthesis in plants grown in water-deficient
soil by increasing the Hill reaction speed and Ca2+-ATPase in the thylakoid membrane
system. The literature revealed that GB increased the drought stress tolerance threshold in
wheat [48] and cauliflower [49].

Table 4. Analysis of variance calculated for the physiological attributes of C. arietinum grown in water
deficit regimes.

Variables Variation Source SS DF MS F p

Chl. a Treatment 0.067 9 0.231 3.140 0.005 **
Genotype 0.023 2 0.563 2.451 0.000 ***

Treatment × Genotype 0.080 9 1.230 6.340 0.000 ***
Error 0.052 54 1.110 - -

Chl. b Treatment 0.570 9 0.781 13.101 0.005 **
Genotype 0.110 2 0.881 6.231 0.002 **

Treatment × Genotype 0.067 9 1.238 9.671 0.000 ***
Error 0.089 54 1.200 - -

TCC Treatment 0.381 9 2.134 2.341 0.000 ***
Genotype 0.182 2 0.714 1.776 0.015

Treatment × Genotype 0.116 9 0.891 2.341 0.018
Error 0.667 54 0.114 - -

SSC Treatment 0.836 9 0.843 4.674 0.011
Genotype 0.780 2 0.341 2.110 0.000 ***

Treatment × Genotype 0.201 9 1.349 7.890 0.010 **
Error 0.052 54 1.220 - -

TPC Treatment 0.446 9 1.989 11.98 0.005 **
Genotype 0.743 2 0.231 2.778 0.000 ***

Treatment × Genotype 0.890 9 1.228 7.891 0.000 ***
Error 0.520 54 0.231 - -

SPC Treatment 0.667 9 0.667 8.219 0.000 ***
Genotype 0.211 2 1.563 9.220 0.005 **

Treatment × Genotype 0.320 9 1.231 2.667 0.000 ***
Error 0.520 54 1.789 - -

H2O2 Treatment 0.289 9 2.452 11.231 0.001 *
Genotype 0.211 2 1.561 1.781 0.000 ***

Treatment × Genotype 0.856 9 1.892 2.776 0.000 ***
Error 0.052 54 0.553 - -

GB Treatment 0.911 9 0.875 6.889 0.000 ***
Genotype 0.909 2 0.167 3.667 0.005 **

Treatment × Genotype 0.800 9 0.796 2.891 0.017 **
Error 0.775 54 0.231 - -
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Table 4. Cont.

Variables Variation Source SS DF MS F p

MDA Treatment 0.553 9 0.223 8.990 0.000 ***
Genotype 0.218 2 0.190 4.781 0.000 ***

Treatment × Genotype 0182 9 1.231 2.990 0.000 ***
Error 0.562 54 1.681 - -

APOX Treatment 0.239 9 0.990 2.887 0.000 ***
Genotype 0.918 2 1.230 4.871 0.005 **

Treatment × Genotype 0.802 9 0.872 1.091 0.000 ***
Error 0.921 54 0.664 - -

SOD Treatment 0.222 9 0.332 2.998 0.000 ***
Genotype 0.181 2 0.013 2.871 0.018

Treatment × Genotype 0.272 9 0.123 6.889 0.080
Error 0.653 54 0.771 - -

POD Treatment 0.560 9 0.010 17.870 0.010 **
Genotype 0.230 2 0.451 13.761 0.019

Treatment × Genotype 0.080 9 0.087 7.891 0.000 ***
Error 0.052 54 0.171 - -

CAT Treatment 0.521 9 0.871 4.651 0.005 **
Genotype 0.257 2 0.776 3.981 0.005 **

Treatment × Genotype 0.871 9 1.881 2.991 0.004 **

Error 0.233 54 1.761 - -
GR Treatment 0.791 9 0.910 21.2 0.001 *

Genotype 0.270 2 0.334 12.8 0.000 ***
Treatment × Genotype 0.080 9 0.008 - -

Error 0.451 54 0.430 3.87 0.005 **
Chl. a: chlorophyll a; Chl. b: chlorophyll b; TCC: total carotenoid content; SSC: soluble sugar content; TPC:
total protein content; SPC: soluble proline content; APOX: ascorbate peroxidase; H2O2: hydrogen peroxide;
MDA: malondialdehyde; GR: glutathione reductase; SOD: superoxide dismutase; POD; peroxidase; CAT: catalase.
* Significant, ** More significant *** Most significant.

Induced drought stress increases the levels of ROS, lipid peroxidation, and oxidative
damage due to the excitation and conversion of O2 to OH-, H2O2, or O−2. The transfer of
this restricted electron during photosynthesis and respiration makes the plant metabolically
unstable. This overproduced ROS damaging effect can be mitigated by increased activities
of antioxidant enzymes following foliar application of AsA and α-toc. Chickpea grown
in water-limited conditions showed significantly high activities of SOD, POD, and APOX,
while that of CAT decreased with drought stress (Figure 3). The upsurges in all three
antioxidants are due to drought stress and exogenous application of growth regulators
(AsA and α-toc). The SOD activity was enhanced from 2.31 in the control (To) to 2.89
in the 10-day drought regimes (T1) and finally to 3.45 in the 20-day drought conditions
(T5) (Figure 3B). These antioxidant enzymes are a prime solution to rescue crops from
the adverse effect of drought stress [50]. Similarly, the activities of POD and APOX also
increased sharply (p≤ 0.05) from 1.34 and 0.67 to 3.22 and 3.45 following 20 days of drought
stress (T5), respectively.

In contrast, the activity of catalase decreased in all the plants in the 10- and 20-day
drought stress regimes and increased due to the foliar application of AsA and α-toc
(Figure 3C). Figure 3 reveals that the GR content also sharply increased as the drought
stress interval increased to 10 and 20 days. In the current study, exogenous application of
AsA and α-toc under induced drought stress led to significant impacts on the agronomic
and physiological attributes and activation of the plant’s defense system (Figure 3).



Sustainability 2022, 14, 8861 12 of 16

3.4. Principal Components and Correlations

The Pearson correlation coefficient illustrates that all the physiological parameters were
positively correlated at p ≤ 0.05, except antioxidant enzymes which were not correlated
with the other parameters (Figure 4).
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Figure 4. Correlation between different physiological attributes of C. arietinum under drought stress
and applied AsA and α-toc.

This relationship is a clear indication of the high dependency of these attributes on
each other. Principal component analysis was performed to present the relationship of
the physiological attributes under drought stress. Akhtar et al. stated that such statistical
attributes as analysis of variance, principal component analysis, and Pearson correlation are
the keys to calculating the correlation among drought, growth regulators, and agronomic
and physiological attributes [51–58]. Figure 5 shows that the photosynthetic pigments,
carotenoids, catalase, and proline contents showed a negative relation in the database.
Lazic et al. also used PCA to assess the plant response to experimental queries for rape-
seed [59]. PCA can condense a large number of original variables into a new compact set of
principal components with minimal loss of information.
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4. Conclusions

Drought stress induced by the changing climate and global warming is the main obsta-
cle in increasing the agro-physiological growth and production of leguminous plants such
as Cicer arietinum L. The results of the current study conclude that AsA and α-tocopherol
are a prime solution for ameliorating the antagonistic effects of drought stress. Improved
germination rate index, mean germination time, germination energy, water use efficiency,
germination percentage, seed vigor index, and photosynthesis were among the positive
effects. Moreover, AsA and α-toc reduced the ROS-induced oxidative damage by activating
a wide spectrum of antioxidative defense systems (enzymatic and non-enzymatic). Due to
this key role, the foliar application of AsA and α-toc was found to be important for mak-
ing chickpea crops drought-tolerant by curbing various anabolic and catabolic activities.
During the comparative investigation, it was observed that AsA was more applicable and
effective than α-toc in ameliorating the hostile possessions of drought stress in chickpea
(Figure 6). However, further research is needed to investigate the best route of AsA ad-
ministration. Moreover, due to the unavailability of literature on the effects of drought on
soil properties, the current study extensively investigated the physicochemical attributes of
water-limited agricultural soil. The soil results provide a new insight to understand the
extent of soil damage and chickpea response in water-limited regimes.
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