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Abstract: Urbanisation development affects urban vegetation both directly and indirectly. Since this
process usually involves a dramatic change in land use, it is seen as likely to cause ecological pressure
on local ecosystems. All forms of human activity, including urbanisation of areas close to residential
buildings, significantly impact air quality. This study aims to identify and characterise different
measurement solutions of VOCs, allowing the quantification of total and selective compounds in
a direct at source (in situ) manner. Portable devices for direct testing can generally be divided
into detectors, chromatographs, and electronic noses. They differ in parameters such as operating
principle, sensitivity, measurement range, response time, and selectivity. Direct research allows us to
obtain measurement results in a short time, which is essential from the point of view of immediate
reaction in the case of high concentrations of tested compounds and the possibility of ensuring the
well-being of people. The paper also attempts to compare solutions and devices available on the
market and assess their application.
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1. Introduction
1.1. The Main Contents in This Review

This manuscript contains the results of the initial literature search of the terms “urban
areas” and “VOCs” in five academic databases, as well as a bibliometric analysis of the
records from the Scopus database. As part of this analysis, overlay a visualisation of the
Scopus results with LinLog normalisation was made, as well as a network graph between
the most cited papers. Moreover, the paper reviews the solutions and devices of various in
situ methods to monitor VOC concentrations in urban areas available on the market with
an evaluation of their application, their strengths, and weaknesses.

1.2. VOCs in Urban Areas

The intensive development of cities around the world is inseparable from municipal
and industrial infrastructure [1]. The process of urbanisation is characterised by many dif-
ferent aspects, among which are demographic, economic, and sustainability aspects [2–6].

Urbanisation development affects urban vegetation both directly and indirectly. Since
this process usually involves a dramatic change in land use, it is seen as likely to cause
ecological pressure on local ecosystems [7–9]. All forms of human activity, including urban-
isation of areas close to residential buildings, significantly impact air quality. An increasing
number of pollutants, including volatile organic compounds (VOCs), originates, among
other things, from municipal (landfills, sewage treatment plants, mechanical-biological
waste treatment plants) and industrial (refineries, breweries, distilleries, paper, wood, or
meat-processing plants) facilities, but also from motor vehicle exhausts [10–13]. The listed
sources are of anthropogenic origin. However, some sources of VOC emissions are also
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natural, represented mainly by green vegetation [14,15]. The term VOC should be under-
stood as a broad group of organic chemical compounds, including natural compounds such
as terpenes and alcohols, carbonyl compounds such as ketones, aldehydes, ethers, and
aromatic hydrocarbons, and acids, characterised by vapour pressure at 0.01 kPa at 20 ◦C
and boiling point from 50–100 ◦C to 240–260 ◦C [16–20]. The temperature ranges given are
based on the type of VOC. WHO has classified VOCs, found mainly indoors, into three
groups based on the volatility of their compounds, such as very volatile (gaseous) organic
compounds (VOCs, example compounds: propane, butane, methyl chloride), volatile
organic compounds (VOCs, example compound: formaldehyde, d-Limonene, toluene,
acetone, ethanol (ethyl alcohol), 2-propanol (isopropyl alcohol, hexanal)), and semi-volatile
organic compounds (SVOCs, example compounds: pesticides (DDT, chlordane, plasticisers,
fire retardants)) [21]. In addition, VOCs are poorly soluble in water, and in the atmospheric
zone, they participate in photochemical reactions and thus may contribute to photochemical
smog pollution [22]. Some volatile organic compounds consume ozone in the stratosphere
and cause ozone holes. Others, e. g., benzene, toluene, and formaldehyde are toxic and
harmful to human health, due to carcinogenic, teratogenic, and mutagenic effects [23,24].

The compounds of most interest to scientists are aromatic compounds such as benzene,
toluene, xylene, and ethylbenzene, commonly known as BTEX.

The World Health Organization (WHO), in its published guidelines for air quality
in Europe [25], establishes maximum concentration values for selected substances in the
air: 260 g/m3 within 1 week for toluene, 100 g/m3 within 30 min for formaldehyde, and
250 g/m3 within one year for tetrachloroethylene. In addition, the WHO guidelines also
indicate guide values for benzene corresponding to concentration levels associated with an
excess mortality risk of 1/10,000, 1/100,000, and 1/1,000,000, equal to 17, 1.7 and 0.17 g/m3,
respectively. Almost all plants can synthesise a variety of VOCs, numbering up to hundreds
of thousands, and subsequently emitting these compounds into the atmosphere. VOCs
synthesised and emitted by plants include simple forms, such as methanol (CH3OH), and
very complex ones, such as (1S,3aR,4S,8aS) decahydro-4,8,8-trimethyl-9-methylene-1,4-
methanoazulene, or longifolene, a tricyclic member of the C15H24 family of sesquiterpenes.
Biogenic volatile organic compounds, BVOCs, play an essential role as signals and protec-
tants against biotic factors, as well as abiotic stress [26,27]. Most BVOCs are synthesised by
one of the three main metabolic pathways, i.e., isoprenoid, lipoxygenase, or chiacid [28–32].
BVOCs are emitted by both above- and below-ground plants, with the most significant
emission occurring through the leaves. Increased emission of the mentioned compounds
also occurs when plants are damaged [33,34].

A wide range of plants, mainly flowers, is characterised by the emission of VOCs,
inducing a positive olfactory sensation. For this reason, they are deliberately planted in
urban areas (urbanised areas). In addition to visual considerations, their task is also to
improve the well-being of residents through smell [35,36].

Plant odours are generally experienced differently in herbaceous waste, which usually
undergo a composting process [37]. Characterisation of VOCs emitted by green waste
during composting was carried out in work by Kumar et al. [38]. The researchers detected
100 types of VOCs during the study, including those belonging to the BTEX group, in the
emitted process gases.

The implementation of sustainable urban development should involve the minimisa-
tion of environmental pollution [39]. Therefore, environmental monitoring is crucial [40].
Some VOCs are also classified as pollutants, mainly due to their negative impact on human
health (e.g., skin and respiratory diseases) and comfort of living (e.g., odour nuisance). Cor-
rect assessment of air quality is not an easy task due to the dynamics of changes. Therefore,
performing frequent measurements at the source seems to be a suitable method to conduct
VOC monitoring [41–43].

Large quantities of VOCs are emitted into the troposphere from anthropogenic and
biogenic sources—for example, large quantities of oxygenated VOCs are emitted from
vegetation, while non-methane organic compounds are emitted by combustion sources
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(vehicle and fossil-fueled power plant emissions), fuel storage and transport, solvent usage,
emissions from industrial operations, landfills, and hazardous waste facilities [44]. As
Atkinson wrote, advances in our knowledge of the kinetics, products, and mechanisms
of the tropospheric reactions of VOCs does not only result in more accurate chemical
mechanisms for use in urban and regional airshed models, but also in more accurate
estimates of VOC reactivities [44].

This study aims to identify and characterise different measurement solutions of VOCs,
allowing the quantification of total and selective compounds in a direct-at-source (in situ)
manner. Direct research allows us to obtain measurement results in a short time, which
is vital from the point of view of immediate reaction in the case of high concentrations
of tested compounds and the possibility of ensuring the well-being of people. The pa-
per also attempts to compare solutions and devices available on the market and assess
their application.

2. Bibliometric Analysis

The initial literature search conducted on 1 April 2022 was based on a current search
for the terms “Urban areas” and “VOCs” in titles, abstracts, and keywords in five academic
databases: Web of Science, Scopus, Science Direct, PubMed, and SAGE. The data range was
set to “published all years to the present”. The document type was set to “scientific articles
and review articles”, and the language was set to “English”. The results are presented in
Figure 1. Of the five databases used, Scopus recorded the highest number of publications of
a specific type related to the occurrence of VOCs in urban areas, with 875 articles. Ultimately,
records from the Scopus database were selected to continue the review.
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The temporal distribution of the collected bibliographic records on VOCs in urban
areas was examined. The earliest related work was published in 1989. The number of
publications published each year is shown in Figure 2.
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Figure 3 contains an overlay visualisation of the Scopus results with LinLog/modularity
normalisation, prepared using VOSviewer software to analyse and visualise the rela-
tionships among the authors, countries, journals, co-citations, and terms [45,46]. The
energy-based (force-based) technique has advantages such as good layout quality, ease
of implementation, and code flexibility. It is based on the assumption that there is an
attraction force between the connected vertices while all vertices repulse each other [47].
The LinLog model is an energy algorithm to provide an efficient way to minimise the
energy in our force-directed cluster graph. The lowest energy is achieved by minimising
the ratio between the average edge length to average distance to all nodes. The LinLog
model provides the minimal ration of the arithmetic mean of the edges to the geometrical
mean of node distances. Therefore, the nodes were assigned in a network to clusters. A
cluster is a set of closely related nodes. Each node in a network is assigned to exactly one
cluster, while the number of clusters is determined by a resolution parameter—the higher
the value of this parameter, the larger the number of clusters.
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The set is divided into 20 clusters—the largest contains 86 items, the smallest 6 items.
Colours mark individual time periods.

Among the articles on volatile organic carbons in urban areas, the number of articles
published in 2020–2021 was much higher than in previous years, reaching 118 in 2020. The
bibliographic analysis showed that more and more attention is being paid to this topic.
Figure 4 provides a summary of documents by author, subject area, and country/region.
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The most articles on VOCs in urban areas were written by Shao M. (18 articles),
Wang J.L. (16), Warneke C. (14), Ho K.F. (10), and Wei W. (10). As many as 771 articles fell
into the subject area of environmental science, compared with 343 in earth and planetary
science, 102 in chemistry, and 53 in pharmacology and toxicology. A total of 316 articles
were affiliated with China, 276 with the United States, and 53 with the United Kingdom.
Among the articles that are most cited are:

• Atkinson R. (2000) [44]—cited by 2182 authors.
• Carter W.P.L. (1994) [48]—cited by 1101 authors.
• Khalili N.R., Scheff P.A., Holsen T.M. (1995) [49]—cited by 1093 authors.
• Hoek G et al. (2008) [50]—cited by 920 authors.
• Volkamer R. et al. (2006) [51]—cited by 766 authors.
• Li K. et al. (2019) [52]—cited by 613 authors.
• Watson J.G. et al. (2001) [53]—cited by 442 authors.

The connections between Atkinson [44] and highly cited articles are presented in Figure 5.
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A citation network graph contains green nodes representing the most cited papers
using the phrases “urban areas” and “VOCs” in the Scopus database, and blue nodes
representing what in this case are citations of Atkinson [44]. Each line connecting the nodes
represents a citation relationship between the papers. As of the nodes themselves, intensity
of the colours is based on recency, and the size of the blue nodes is based on the number of
connections they have with the green ones. Since some of the green nodes are not citations
of that publication, there are no connections between them.

3. Characteristics of Various Methods for VOC Determination

Over the years, there have been rapid developments in the scientific field, including
devices measuring VOCs [54–60]. Portable devices for direct testing can generally be
divided into detectors, chromatographs, and electronic noses. They differ in operating
principle, sensitivity, measurement range, response time, and selectivity [61–64]. The
individual measurement solutions are discussed in more details later in this paper.

3.1. Portable Gas Detectors

Portable gas detectors are devices equipped with more sensors to quantify one or
more gases [1,58]. There are several primary and commonly used types of sensors avail-
able on the market: photoionisation (PID), electrochemical (amperometric, EC), metal
oxide semiconductor (MOS), nondispersive infrared (NDIR), and thermal (PELLISTOR).
They can immediately detect a disturbance in a process, the environment, or health con-
ditions [65]. The emphasis is on new column heating techniques requiring no convection
oven [8–11,66–69], microscale inline preconcentrators and inlet devices [12,70], arrays of
partially selective sensors [13–18,71–76], and methods of micromachining to produce small
and efficient columns [10,19,20,68,77–79]. Table 1 presents the characteristics of the different
types of sensors.
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Table 1. Characteristics of basic types of sensors.

Sensor Type Operation Principle Quantification Advantages Limitations References

PID

Sensor operation is based on
the ionisation phenomenon;

photons of high energy,
usually in the UV range, are

used; ionisation of
molecules occurs after

excitation of molecules by
UV light; the photon energy

is typically 10.6 eV

0–20,000 ppm
depending on the

manufacturer

Low level of
quantification, as low

as one ppb

Lack of possibility to
detect compounds

with high ionisation
energy (e.g.,

acetylene—-11.40 eV,
chloroform—11.37 eV,

chloromethane—
11.26 eV; usually
lacks selectivity—
ionisation of all

compounds with
energy lower or

equal to the
lamp energy

[80–86]

EC

An electrochemical reaction
results from the transfer of
charge from the electrode to

the electrolyte. The
electrolyte may be in a

solid, gel, liquid, or gaseous
state. Electrochemical cells

are equipped with two,
three, or four electrodes

depending on the
manufacturer. The gas to be
measured diffuses into the
measuring electrode via the

diaphragm sensor.
According to Nernst’s law

for electrochemical
reactions, the transfer of

electrons induces a current
whose measure is

proportional to the gas
concentration.

0–100 ppm
depending on the

manufacturer

Low purchase cost,
energy-saving,

compact; response
time is approx. 120 s

dependent on the
temperature

Not much selectivity;
lower limit of
quantification

typically at
0.1 or 2 ppm.

[87–89]

MOS

The principle of the sensor
is based on the receptor and

transducer function. The
function of the receptor is

based on the recognition of
a given gas at the gas–solid

interface by an electron
change on the surface of the

metal oxides. The role of
the transducer is to transfer
the surface phenomenon to

a change in electrical
resistance in the sensor.

There are two main types of
semiconducting metalic
oxides: n, the primary

carrier is an electron, and p,
in which the leading carrier

is a hole.

0–5000 ppm
depending on the

manufacturer

Small size, low
purchase cost, low

energy consumption,
good sensitivity.

Low selectivity. [90–94]
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Table 1. Cont.

Sensor Type Operation Principle Quantification Advantages Limitations References

NDIR

The principle of operation
is based on the absorption
of infrared radiation waves
(IR) of a specific length by
individual gases. If there is

a particular gas in the
radiation area, some of the
radiation is absorbed. The
sensor consists of a source

of IR radiation and a
detector that measures its
intensity. The decrease in

intensity of the IR radiation
corresponds to the

concentration of the gas.

0–100%
Possibility to work in

conditions without
access to oxygen.

Low selectivity; rapid
temperature changes
may cause erroneous
measurement results.

The presence of
corrosive gases can
damage the sensor.

[73,95]

PELLISTOR

The PELLISTOR consists of
two spirals of thin platinum

wire embedded in
aluminium beads and

connected to a Wheatstone
bridge. One of the beads is
impregnated with a unique

catalyst to promote the
oxidation of combustible
gases, while the other is

modified to inhibit
oxidation. Platinum spirals

are passed through an
electric current and heated

to a temperature that
oxidises the combustible
gases on the catalyst. The

temperature rise is a
measure of the

concentration of
flammable substances.

0–100% LEL (lower
explosion limit)

depending on the
manufacturer

Low cost of purchase;
fast response
time; stability

Sensor activity
requires 10% oxygen

content in the
tested gases

[78,96,97]

There are several companies manufacturing gas detectors, for example, Alpha-Sense (Great Notley, UK), Dräger
(Lübeck, Germany), Ion Science (Cambridge, UK), Mocon-Baseline (Lyons, CO, USA), and RAE System (San Jose,
CA, USA). Manufactured detectors and dedicated sensors differ mainly in purchase cost, detection range, and
ability to work with sensors of other gases.

3.2. Portable Gas Chromatographs

Portable gas chromatographs, otherwise known as micro-GC or portable GC, are excit-
ing analytical devices from the point of view of environmental monitoring, the chemical
industry, medicine, as well as system failure detection [98,99]. The GC–MS systems can
accurately identify and quantify different types of substances even at very low concen-
trations. In addition, they have a high potential for differentiating individual substances.
The different GC–MS solutions on the market differ in the performance of the gas and
steam analysers [100,101]. The main assumption of portable gas chromatograph manufac-
turers is to create a small-sized device with detection capabilities comparable to laboratory
chromatography. Microsensors are often used in this kind of device due to their low
carrier gas consumption, small size, low power consumption for operation, and quite
good sensitivity compared to standard sensors. Examples of microsensors include the
solid-state thermal conductivity detector (TCD or SSD) [102–104], photoionisation detector
(PID), [105,106], surface acoustic wave (SAW) detector [107–109], and the flame ionisation
detector (FID) [99,110–112].

GC–MS is one of the most sought-after methods for identifying chemical substances.
In the literature, this method is referred to as the gold standard [113–115]. Integration of
these systems requires two independent technologies. The mixtures are separated into
their individual components using GC and MS. The GC–MS combines fast analysis, high
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resolution, excellent quantitative results, and moderate costs. MS systems require few
samples to provide qualitative and quantitative data [116].

The most critical component of the gas chromatograph system is the separation col-
umn. Traditional conventional columns have a circular cross section, while microcolumns
usually have a rectangular cross section [107]. Portable chromatographs usually use open
columns. The low thermal weight of the open tubular column GC allows the analysis of the
temperature program at relatively low power when the heating is limited to the column
itself, as with resistance-heated columns. Thanks to this arrangement of the columns, a sig-
nificant temperature increase is possible, even if the device is operated with a battery. The
resulting fast analysis speeds increase the ability to perform GC analyses in the field [117].

Compared with the traditional GC system, the separation performance of the µGC
system decreases greatly, mainly because the channel length of the chromatographic col-
umn is reduced, and the control accuracies of temperature and carrier gas pressure are
much less than those of the traditional GC system [118]. Chen et al. proved that for
low-carbon mixtures, the integrated µGC chip has a separation effect similar to that of
heating with a column thermostat. With low power consumption and a small size, the
integrated µGC chip may be applied to a portable gas chromatograph for detecting the
low-carbon mixtures [119].

Studies conducted by Wang et al. [99] on µFID showed its much better sensitivity
and higher signal-to-noise ratio due to its ability to operate at high polarisation voltage
than conventional FID. In their study, the researchers also obtained a reduction in gas
consumption of about 30% compared to the conventional counterpart. The authors note
that features such as reduced operating costs and energy savings make this type of detector
suitable for portable GCs when conducting field and in situ studies.

Zampetti et al. [120], in their work, presented the development and application of
micro cartridge-based µPID in chromatography. This system is characterised by its small
size, light weight (about 1 kg), ease of handling, low production cost (about 1000 €), simple
operation, low power consumption, and good accuracy and selectivity for BTX substances.

Miresmailli et al. [121] performed a quantitative analysis to compare the results ob-
tained with a portable GC equipped with a SAW detector (zNoseTM, Electronic Sensor
Technology, Newbury Park, CA, USA), an electronic nose, and a conventional GC. The
researchers′ results show correct identification of compounds by zNoseTM and consistent
results with conventional GC, despite environmental conditions, which is extremely impor-
tant for fieldwork. Due to its fast analysis time of about 3 min per complete cycle, it can
be applied to monitoring changes in VOCs emitted by plants and other organisms [122].
The main disadvantage of this analysed portable GC is its relatively short column (at about
1 m), limiting the resolution of peaks when there are many of them in the sample.

A few years later, a study on the same device was performed by Li et al. [123]. During
the analysis of different aromatics, they compared the results of VOCs with a carbon content
of 4 to 16 molecules obtained using two instruments: a portable GC with SAW detector and
a conventional GC. The results obtained from the two devices show a correlation of 95%,
which, according to the authors, allows the conventional GC to be replaced by a portable
GC in aromatics testing.

Another portable GC zNose® (model 4300) was presented in work by Meciarova et al. [124].
The researchers used the device to analyse the composition of indoor air in a model
room. The device used allows the determination of VOCs with a carbon content of 4 to
24 molecules. Similarly to Miresmailli et al. [121], the authors point out a weakness of the
device, in the form of a short column, which reduces the resolution of VOCs with similar
retention times.

GC–MS systems are particularly in demand for military applications where the weight
and speed of marking are critical [125].
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3.3. Electronic Noses (E-Noses)

Electronic noses are instruments designed to mimic the human sense of smell and
detect and characterise complex or straightforward odours. One way e-noses can work is
to characterise gaseous mixtures by providing their odour pattern without identifying indi-
vidual odour-forming compounds, like the human nose [126–128]. E-noses are equipped
with sensor arrays where each element responds to several different chemicals or classes of
chemicals. Selective operation of each component is not required, since the main goal of
the sensor system is to have as much chemical diversity as possible, allowing the device
to respond to as many chemicals as possible [95]. These devices are characterised by high
sensitivity, and their main disadvantage is the restriction of concentration measurements to
“learned” ones [129,130].

Portable electronic noses, often used in outdoor environments, require real-time calcu-
lations to obtain data analysis results. Common pattern recognition methods that rely on
high-performance computers tend to fail in mobile devices, resulting in the need to develop
online computing algorithms that can run on embedded e-nose portable systems [131].

The research conducted by scientists is focused on implementation of the e-nose with
the possibility of high-performance recognition algorithms. However, as algorithms become
more and more complex, making quick calculations becomes more and more difficult. An
alternative could be to transfer data to servers for real-time computing, but it can make
other problems and difficulties related to internet network coverage [132,133].

3.4. Gas Detectors with GC Function

An innovative solution for the in situ determination of VOCs is a gas detector equipped
with a PID sensor (10.6 eV) and a chromatographic column. Dräger introduced such a
solution in 2019. The PID sensor allows the detection of VOCs at ppm and ppb levels,
being widely used in GC systems due to high sensitivity and a large dynamic range [134].
A xenon lamp within PID sensor generates 9.6 eV photon energy, deuterium lamps 10.2 eV,
and krypton lamps 10.6 eV, while argon lamps produce 11.7 eV energy [135–137]. The
device can operate in two modes. The first is detection, which allows to initially and
broadly survey an area to pinpoint measurement points. It allows continuous and direct
measurement of TVOCs. The second mode is the analysis mode, which allows making
selective measurements for specific compounds selected from a list of approximately
40 compounds, including BTEX. Results are obtained after about 30 s, depending on
the retention time of the test compound. The device shows readiness for the following
determination after 60 s. The PID sensor is equipped with a hydrophobic membrane
to protect it in industrial environments. Calibration of the device is carried out using
isobutylene. The device allows setting the sensitivity to a substance using reaction factors.
In fact, before each use of the device, a function test with the regulating (calibration)
gas is required, which takes about 60 s and is valid for 24 h. A disadvantage of the
device, as with portable GC, is that compounds with similar retention times cannot be
determined simultaneously [138]. A PID sensor was also used for miniaturised GC to
real-time detections of BTEX [139] and fast GC to total OH reactivity measurements [140].
Pang et al. [141] tested PID sensors as parallel secondary detectors in a GC–Q–TOF–MS
system to evaluate response factors and response times relative to MS, and quantify this
for seventeen species of VOCs and six toxic reagents used in insecticides and chemical
weapons. Those researchers proved that simple PID sensors offer potential as GC detectors
for toxic chemicals, tested here on organic sulphide and organic phosphonates.

Unfortunately, there is a lack of work in the scientific literature that compares the
results obtained with the device with those obtained with conventional GC.

4. Summary and Future Research Work

The process of urbanisation contributes to increased VOC emissions. Many of these
compounds have been shown to have very adverse effects on living organisms. Therefore,
VOC monitoring is essential. There are many devices available on the market for measuring
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VOCs, which differ in their technical parameters and the way they are used. Portable
devices allow us to measure VOCs in situ, in order to obtain results virtually instantly.
In the context of future work, it is interesting to compare results obtained from different
devices in different facilities, because the operation of the devices and the reliability of
the obtained results may depend on the characteristics of the plant and area. In situ
measurement solutions are increasingly in demand due to their speed of analysis and ease
of use.

5. Conclusions

This paper presents different methods for determining VOCs, which can be applied to
studies in urban areas. Field studies using in situ methods allow more samples to be taken
than laboratory methods and provide immediate information on the concentration levels
of the test substances. This is critical to monitoring toxic substances in the air and ensuring
the well-being of people.
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63. Szulczyński, B.; Gębicki, J. Currently commercially available chemical sensors employed for detection of volatile organic
compounds in outdoor and indoor air. Environments 2017, 4, 21. [CrossRef]
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