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Abstract: Under the pressure of serious environmental pollution and energy shortage, China needs
to improve its energy efficiency to alleviate these problems. Environmental regulation is an impor-
tant constraint on economic development, which has an impact on energy efficiency. Meanwhile,
energy efficiency is a reference factor for adjusting environmental policies, which has an impact
on environmental regulation. Therefore, the relationship between environmental regulation and
energy efficiency needs to be further studied under a unified framework. Based on Chinese provin-
cial panel data, we first use a stochastic frontier model to estimate the energy efficiency of China’s
30 provinces from 2004 to 2019, and then employ a spatial simultaneous equation model to study
the spatial spillover effects of environmental regulation and energy efficiency and their interactions.
The results show that: (1) Both energy efficiency and environmental regulation have significantly
positive spatial spillover effects. Specifically, an overall increase of 1% in energy efficiency in the
surrounding areas can promote an improvement in the local energy efficiency by about 1.0404%, and
an overall increase of 1% in environmental regulation in the surrounding areas can lead to an increase
of about 0.6075% in the local environmental regulation. (2) The impact of environmental regulation
on energy efficiency is significantly positive; i.e., under the current situation in China, an increase of
1% in environmental regulation can promote local energy efficiency by about 0.2777%. (3) The impact
of energy efficiency on environmental regulation is significantly positive; i.e., a 1% increase in energy
efficiency may stimulate local governments to strengthen their environmental regulation by 1.5981%.
Accordingly, some targeted policy suggestions are given.

Keywords: environmental regulation; energy efficiency; stochastic frontier model; spatial simultaneous
equation model

1. Introduction

With the continuous progress of environmental degradation and climate change in
recent decades, environmental sustainability has become one of the most concerning issues
in the world [1]. Emissions from energy consumption are the root cause of environmental
problems [2]. Therefore, improving energy efficiency is a feasible way to reduce fossil fuel
consumption [3–5]. Environmental regulation forms an important constraint on energy
efficiency [6–8]. So, effective environmental regulation is helpful to solve the problem of
environmental sustainability. An in-depth study of environmental regulation and energy
efficiency will help to find more effective environmental regulation policies and contribute
to environmental sustainability.

Since the reform and opening up of China, its economy has achieved great develop-
ment. However, China’s energy consumption has soared in the past decades [9]. According
to the data from the International Energy Agency, China has been the world’s largest energy
user since 2009. In 2019, China’s total energy consumption reached 143.92 exajoules, ac-
counting for 24.5% of the world’s total consumption (Accessed from: https://www.bp.com/
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content/dam/bp/business-sites/en/global/corporate/xlsx/energy-economics/statistical-
review/bp-stats-review-2022-all-data.xlsx (accessed on 1 June 2022)). However, China’s
GDP was only 16.35% of the world’s total GDP in 2019. This shows that China’s energy
efficiency is low and there is still considerable room for improvement. China’s massive
energy consumption has brought serious environmental pollution. According to the China
Ecological and Environmental Bulletin (2019), about 53.4% of China’s cities exceeded
the air pollution standards, acid rain covered an area of 474,000 square kilometers, the
proportion of the inferior V class of the national surface water was 3.4%, and the propor-
tion of substandard drinking water sources in use was as high as 8.0% (Accessed from:
http://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf (ac-
cessed on 1 June 2022)).

In recent years, the haze has seriously affected people’s normal life. Therefore, envi-
ronmental protection has become an important topic in China. A large part of the pollution
problems in the world is caused by energy consumption [2]. However, human life and
economic development cannot be separated from energy consumption. How, then, does
one achieve sustainable economic development while reducing environmental pollution?
One way is to replace traditional energy with clean energy, such as wind energy, water
energy, solar energy, and nuclear energy, and another is to improve energy efficiency [10].
The prospect of replacing traditional energy with clean energy is certainly good, and most
countries in the world are investing heavily in this field. However, due to the limited
progress of energy technologies, there are considerable uncertainties in the short term.
Improving energy efficiency has great potential and is feasible in both the short and long
term [11].

As the world’s largest energy consumer, improving energy efficiency will not only
alleviate China’s energy shortage and improve its environmental quality, but also help save
world energy and contribute to world environmental development [12]. Therefore, it is
necessary to study China’s energy efficiency. In China, the government influences almost
every aspect of household and business activities, so the study of energy efficiency cannot
be separated from environmental regulation of the Chinese government [13].

Environmental regulation affects residents’ energy consumption. Moreover, it also has
important constraints on the production technology, energy input, and energy structure
adopted by enterprises, thus affecting the energy efficiency of the region [7,11]. At the same
time, the change in local energy efficiency is an important factor for the government to
adjust the environmental regulation policies. Therefore, it is one-sided to only study the
impact of environmental regulation on energy efficiency, and it is necessary to discuss their
interactive effects. Meanwhile, due to the political system of “promotion tournament” in
China, local governments compete for economic development [14]. It is a conventional
means to attract investment to boost economic growth by adjusting the intensity of envi-
ronmental regulation, so the environmental regulation of a region is naturally affected by
the environmental regulation policies of neighboring regions [15–17]. Moreover, due to
technology spillover and resource flow, the energy efficiency of this region is also affected
by the energy efficiency of neighboring regions; that is, energy efficiency has the feature of
spatial agglomeration [8,9].

Therefore, unlike the previous literature that only studied the impact of environmental
regulation on energy efficiency, the goal of this paper is to study the interactions between
energy efficiency and environmental regulation and their spatial spillover effects under a
unified framework. Besides that, we will try to reveal the performance pattern of China’s
environmental regulation from the perspective of local government competition.

The rest of this paper is organized as follows. We briefly review the related literature
in Section 2. Section 3 analyzes the mechanism of environmental regulation and energy
efficiency. Section 4 presents the empirical data and provides a measurement of energy
efficiency. Section 5 describes the empirical model. Section 6 reports the empirical results
and then discusses the results. In the final section we offer some policy implications.
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2. Literature Review

The research related to this paper includes the estimation of energy efficiency as well
as empirical research on the relationship between environmental regulation and energy
efficiency. Therefore, we will review the literature from these two aspects. The overview of
relevant literature is shown in Figure 1.
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Figure 1. Overview of the relevant literature.

An objective evaluation of energy efficiency is the key to study energy efficiency.
Currently, the methods to estimate energy efficiency mainly include data envelopment
analysis (DEA) and stochastic frontier analysis (SFA). Data envelopment analysis (DEA) is
a non-parametric method, which has the advantages of extensibility and easy operation,
so it has received a lot of attention and application. Zhao et al. [10] used the three-stage
data envelopment analysis model to estimate China’s energy efficiency between 2008 and
2016. Lu et al. [18] used the dynamic data envelopment analysis model to evaluate the
energy efficiency of European Union countries during the period 2009–2013. Rakshit and
Mandal [19] conducted a more extensive empirical study using the DEA method to estimate
energy efficiency in low-income, middle-income, and high-income economies from 1993
to 2013. There were other scholars who also had made meaningful studies with the DEA
method [20–23].

However, the energy efficiency estimated by the DEA method is the relative efficiency
of an intra-group sample comparison, which is extremely sensitive to the possible abnormal
samples in the data set [24]. Moreover, the usual DEA method is to estimate the cross-
sectional samples, and the estimated energy efficiency is often not comparable between
different years. In view of the disadvantages of DEA, we will use the panel data stochastic
frontier model to estimate energy efficiency. The main reason is that the stochastic frontier
model takes the disturbance of random factors into consideration when determining the
efficiency frontier. The estimation results are more robust; in addition, the panel data
stochastic frontier model can effectively solve the problem of comparability of estimation
results at different times [25].

The stochastic frontier model was proposed by Aigner et al. [26], Battese et al. [27],
and Meeusen et al. [28], and subsequently improved by other scholars [29–31]. It has
been widely used in efficiency estimation. Al-Gasaymeh [32] used SFA to estimate bank
efficiency in the Gulf Cooperation Council countries. Ferreira and Feres [33] employed
SFA to estimate land-use efficiency in the Brazilian Amazon. Miao et al. [34] also used SFA
when studying the technological innovation efficiency of Chinese industrial enterprises.
These studies yielded some meaningful results.

At present, there are few studies on the interaction between environmental regulation
and energy efficiency, while there are many on the impact of environmental regulation on
energy efficiency. Therefore, we mainly review the impact of environmental regulation on
energy efficiency.
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Empirical evidence shows that environmental regulation has different effects on the
energy efficiency of different countries or regions and different industries. Mandal [35]
used DEA to measure the energy efficiency of the cement industry in India. The empirical
results showed that environmental regulation enhanced the energy efficiency. The study of
Bi et al. [36] showed environmental regulation had a positive effect on the energy efficiency
of China’s thermal power plants. Kneller and Manderson [37] showed that environmental
regulation could promote environmental investment of British enterprises, but there was
no evidence that environmental regulation stimulated R&D activities. Wang and Du [38]
and Zhang et al. [39], respectively, used the extended directional distance function and
super-efficiency DEA model to estimate China’s provincial energy efficiency, and the
subsequent empirical studies showed that China’s environmental regulation promoted an
improvement in energy efficiency. Pan et al. [40] used a directed acyclic graph to study the
dynamic relationship between environmental regulation and regional energy efficiency and
found that both market-driven environmental regulation and mandatory environmental
regulation were beneficial to energy efficiency.

Barbera and McConnell [41] and Jorgenson and Wilcoxen [42] proposed that environ-
mental regulation could increase the “compliance cost” of enterprises and force enterprises
to change the optimal production decisions, thereby reducing the energy efficiency of
enterprises. Lanoie’s empirical study of Quebec’s manufacturing sector supports the above
hypothesis [43]. Wang et al. [44] found that China’s command–control and economic
incentive environmental regulations inhibit energy efficiency.

Many scholars believe that the impact of environmental regulation on energy effi-
ciency is complex and uncertain. This view is the synthesis of the above two theories. Lin
and Xu [11] adopted a slacks-based measure (SBM)-undesirable model to calculate the
inter-provincial energy efficiency in China, and used a Tobit panel regression model to
study the effect of environmental regulation on energy efficiency. The results showed that
environmental regulation forced the eastern region to reduce the proportion of fossil energy
and increase the proportion of clean energy, so as to improve the energy efficiency, but the
energy efficiency in the west declined due to preemptive energy extraction. Li et al. [6]
measured the energy efficiency of Xi’an city with the DEA method; they found that environ-
mental regulation had no effect on energy efficiency. Zhu et al. [8] divided environmental
regulation into voluntary environmental regulation and mandatory environmental regula-
tion. Based on a spatial econometric model, they concluded that voluntary environmental
regulation had a positive impact on energy efficiency, while mandatory environmental
regulation had no significant effect on energy efficiency. However, it remains puzzling that
even studies of the effects of environmental regulation on energy efficiency in the same
region have yielded considerable deviations. Yu et al. [45] used the panel dynamic spatial
econometric model to study the impact of environmental regulation on energy efficiency.
The results showed that China’s environmental regulation reduced emissions but did not
improve energy efficiency. Peng [46], however, confirmed that China’s environmental
regulation was conducive to improving energy efficiency. The studies of Gao and You [47]
and Li et al. [48] showed that there was a “U-shaped” relationship between environmental
regulation and energy efficiency in China. In other words, the weak intensity of environ-
mental regulation was not conducive to an improvement in energy efficiency, but it could
promote an improvement in energy efficiency after the environmental regulation intensity
crossed a certain “inflection point”.

To sum up, there are still some areas that can be improved. (1) In the past, the
literatures on the impact of environmental regulation on energy efficiency mostly adopt the
single equation model, setting environmental regulation as exogenous; however, this is not
the case in reality. Environmental regulation and energy efficiency are often interrelated,
so it is necessary to establish a simultaneous equation model to consider their mutual
influence mechanism. (2) Energy efficiency has a spatial spillover effect due to resource
flow and technology spillover. As the environmental policies of local governments in China
are evolving in competition, environmental regulation also has a spatial spillover effect.
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Therefore, it is necessary to use a spatial econometric model to study the spatial spillover
effects of energy efficiency and environmental regulation. On the basis of previous research,
this paper will use the spatial simultaneous equation model to carry out the research.

3. Mechanism Analysis on Environmental Regulation and Energy Efficiency

Before the empirical test, we need to analyze the theoretical mechanism of the interac-
tion between environmental regulation and energy efficiency. The theoretical mechanism
of their spatial spillover effects also needs to be analyzed.

There are three representative views on the impact of environmental regulation on
energy efficiency. The first view is that environmental regulation is detrimental to energy
efficiency, as its logic is the “compliance cost hypothesis”. Due to environmental regula-
tions, enterprises have to invest to control environmental pollution and pay pollution fees.
The increase in costs may squeeze enterprises’ investment in energy utilization [41,42],
which could lead to a decline in energy efficiency. In addition, some scholars proposed a
“green paradox”. Energy producers expect the government to strengthen environmental
regulations in the future, so they exploit more energy at present and sell it at a lower
price. This stimulates enterprises to consume more energy, which leads to a lower energy
efficiency [49]. The second view holds that proper environmental regulations can force
enterprises to innovate in energy technology and improve the energy management level,
which can even cover compliance costs and improve energy efficiency [50]. In addition,
environmental regulation may influence household energy consumption preferences, thus
enabling households to save energy and improve energy efficiency. The third view is a syn-
thesis of the above two; it holds that environmental regulation may not only reduce energy
efficiency due to the compliance cost effect and “green paradox”, but also improve energy
efficiency due to the innovation compensation effect. Therefore, the comprehensive effect
is uncertain and depended on which of the above two influences is dominant [7,11]. From
the above analysis, it can be seen that the impact mechanism of environmental regulation
on energy efficiency is relatively complex. In different regions and different development
stages, environmental regulation may affect energy efficiency through different ways, and
its overall effect may be positive or negative.

There are few studies on the reverse impact of energy efficiency on environmental
regulation, but the impact may exist objectively. Environmental improvement is the goal of
local government’s environmental regulation and also an important reference factor for its
adjustment of environmental regulation policy. However, it is worth noting that economic
growth is the first goal pursued by most countries. People are willing to accept improving
the environment on the basis of economic growth. Economic growth is inseparable from
power, which usually comes from energy consumption. Therefore, under the constraints
of economic growth, improving energy efficiency has become an inevitable choice to im-
prove environmental quality. Therefore, energy efficiency affects environmental regulation
by affecting environmental quality. Specifically, the improvement in energy efficiency
contributes to the improvement in environmental quality under the premise of economic
growth. After the improvement in environmental quality, local governments may continue
to strengthen environmental regulation, or weaken environmental regulation because the
environmental quality meets the standard. Therefore, the effect of energy efficiency on
environmental regulation may be positive or negative.

People in high-income areas have higher requirements for environmental quality,
which may lead to higher environmental regulation intensity in these areas. This is not
friendly to enterprises with high pollution and energy consumption. In order to develop
an economy and attract investment, the adjacent low-income areas tend to maintain a low
intensity of environmental regulation and undertake investment from high-income areas.
However, in order to retain investment, high-income areas may reduce the intensity of their
environmental regulation. This, in turn, may stimulate the surrounding low-income areas
to further reduce the intensity of their environmental regulation [15–17]. In China, due to
the top–down political system, the promotion of lower-level officials is mainly determined
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by the higher-level officials according to certain criteria (similar to KPI). The assessment
standard is mainly the local economic growth rate [14]. Because investment can significantly
stimulate economic growth in the short term, most local government officials in China
focus on attracting investment, and even lower environmental standards in exchange
for enterprise investment when necessary. Therefore, the environmental regulation of a
region will naturally be affected by the environmental regulation policies of neighboring
regions [51]. Specifically, the intensity of environmental regulation in the region and its
surrounding areas may change in the same direction.

Most industries are close to their supporting industries, while similar industries
are synergistic. At the same time, there may be technology spillover and talent flow in
adjacent areas. Therefore, the energy efficiency of a region will be affected by the energy
efficiency of adjacent regions; that is, energy efficiency may have the characteristics of
spatial agglomeration [8,9].

4. Data and Measures
4.1. Data Sources

The data used in this paper are the provincial data of 30 provinces in Chinese Mainland
from 2003 to 2019. Due to a lack of data, Tibet is not included. All data are from the official
website of the National Bureau of Statistics of China, and from the Provincial Statistical
Yearbooks of each province (2004~2020), China Statistical Yearbook (2004~2020), China
Environmental Yearbook (2005~2020), and China Energy Statistical Yearbook (2004~2020).
All nominal economic indicators are adjusted based on 2004.

4.2. Estimation of Regional Energy Efficiency in China

The idea of the stochastic frontier model is similar to the data envelopment analy-
sis (DEA). Both of the methods compare the current output with its possible maximum
output. If the current output is closer to the maximum output, the efficiency will be
higher; otherwise, the efficiency will be lower. An extreme case is that when the current
output equals the maximum output, the efficiency value is 1 [29,30,32]. However, differ-
ent from DEA, the stochastic frontier model assumes that the maximum possible output,
namely, the production frontier, is not a deterministic frontier production function, but a
non-deterministic stochastic frontier production function that may be affected by weather
anomalies or production equipment errors; i.e.,

zi = f (xi; α) + vi, i = 1, · · · , N (1)

where xi represents the p-dimensional nonrandom vector of input of the given i-th producer;
α is the corresponding p-dimensional parameter vector; and zi is the maximum possible
output of the i-th producer under a given input xi, i.e., the production frontier. However,
due to perturbations by random factors vi (such as weather conditions and equipment
failures, and so on), the maximum output of the i-th producer is not the determined quantity
f (xi; α) but a random variable f (xi; α) + vi. It is generally assumed that vi is independent
and identically distributed in the normal distribution with mean 0 and variance σ2

v , denoted
as vi ∼ N

(
0, σ2

v
)
.

However, due to the influence of technical inefficiency and managers’ or employees’
inefficiency, the output of a producer cannot meet the production frontier, and therefore
the stochastic frontier model can be expressed as

yi = f (xi; α) + vi − ui, i = 1, · · · , N (2)

There are several variables different from Equation (1). Here, we assume that yi is
the actual output of the i-th producer; ui follows half-normal distribution, i.e., ui = |Ui|,
Ui ∼ N

(
0, σ2

u
)
; and ui and vi are independent. Therefore, the efficiency of the i-th producer

is measured by yi/[ f (xi; α) + vi], so the efficiency is a real number valued at (0,1).
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This paper adopts the stochastic frontier model improved by Battese and Coelli [30].
By taking labor (L), capital (K), and energy consumption (E) as input factors and real GDP
as output [9], we construct a Cobb–Douglas stochastic frontier production model.

GDPit = ALα1
it Kα2

it Eα3
it evit e−ui , i = 1, · · · , N; t = 1, · · · , T (3)

After logarithmic treatment on both sides of the above equation, and denoting
α0 = lnA, we can obtain a linear form of the Cobb–Douglas stochastic frontier model.

lnGDPit = α0 + α1lnLit + α2lnKit + α3lnEit + vit − ui, i = 1, · · · , N; t = 1, · · · , T (4)

where i denotes province and t denotes period. lnGDPit is the logarithm of the actual GDP
of the i-th province in the t-th period. In order to eliminate the influence of price factors,
the real GDP here is obtained by dividing the nominal GDP by the GDP deflator, and the
base period is 2004. Lit is the amount of labor put into production in period t of the i-th
province. Kit is the capital stock in period t of the i-th province, which is calculated by
the perpetual inventory method (PIM). Here, we adopt the depreciation rate estimated
by Shan [52], and the annual fixed asset investment is adjusted by using the fixed asset
investment price index based on 2004. Eit is the energy consumption of the i-th province in
period t, and different types of energy are converted into standard coal. vit is a random
error, which is assumed to be independent and identically distributed to N

(
0, σ2

v
)
. ui ≥ 0

is a non-negative random error capturing technical inefficiency, which is assumed to be
independent and identically distributed to N+

(
0, σ2

u
)
.

The energy efficiency of the i-th province is defined as

EEi =
actual output

stochastic f rontier
=

GDPit

ALα1
it Kα2

it Eα3
it evit

(5)

Therefore, it is necessary to estimate conditional expectation E(ui|vit − ui) to get
regional energy efficiency, as ˆvit−ui= lnGDPit − ˆlnGDPit; therefore, the inefficiency term
ui needs to be separated from the composite error term vit − ui (Greene [29] solved this
problem theoretically). Further research by other scholars subsequently made the stochastic
frontier model more practical [30,31].

Since the variation in regional energy efficiency is very small in the short term, we use
the panel data time-invariant stochastic frontier model to estimate the energy efficiency of
each year by rolling regression. The rolling window is 3 years (due to data limitation, the
rolling window of the last year was set as 2 years). Specifically, the energy efficiency in 2004
was estimated using data from 2003 to 2005; the energy efficiency in 2017 was estimated
using data from 2016 to 2018; the energy efficiency in 2018 was estimated using data from
2017 to 2019; and the energy efficiency in 2019 was estimated using data from 2018 to 2019.

According to the above method, the energy efficiency of the 30 provinces of Chinese
Mainland from 2004 to 2019 was estimated, and its overview is shown in Figure 2.
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Figure 2. Overview of the energy efficiency of 30 provinces of Chinese Mainland from 2004 to 2019.

As can be seen from Figure 2, the energy efficiency of most provinces fluctuates greatly.
Some provinces’ energy efficiency decreases significantly, and some provinces’ energy
efficiency increases significantly. However, Beijing, Guangdong, and Zhejiang, which have
high energy efficiency, remain relatively stable. Next, we analyzed the basic situation of
China’s energy efficiency from time and space perspectives.

The annual average energy efficiency of the 30 provinces in China from 2004 to 2019 is
shown in Table 1. As can be seen from Table 1, China’s average energy efficiency fluctuates
and declines from a low starting point. This is generally consistent with Lin and Xu [11]
and Li et al. [9]. Due to China’s excessive pursuit of economic growth [14,53], the extensive
economic growth mode driven by investment and energy leads to a gradual decline in
energy efficiency.

Table 1. Annual average energy efficiency (%).

Year Energy
Efficiency (%) Year Energy

Efficiency (%) Year Energy
Efficiency (%) Year Energy

Efficiency (%)

2004 74.134 2008 64.555 2012 63.927 2016 60.163
2005 70.862 2009 63.431 2013 62.992 2017 62.933
2006 67.515 2010 65.305 2014 61.369 2018 65.385
2007 69.296 2011 64.664 2015 60.949 2019 60.407

Data sources: China Provincial Statistical Yearbooks (2004~2020) and China Energy Statistical Yearbook
(2004~2020).

Table 2 shows the provincial average energy efficiency of China from 2004 to 2019. It
can be seen that there are great differences in energy efficiency among the provinces in
China. The energy efficiency is relatively high in the eastern region, where Beijing, Shanghai,
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and Guangdong achieved an efficiency level of 90%, and Jiangsu and Zhejiang achieved an
efficiency level of 80%. The energy efficiency of the central provinces is second, and that
of the western underdeveloped provinces is the lowest; for example, the energy efficiency
of Ningxia and Qinghai is lower than 40%. Our results are consistent with Yu [54] and
Li et al. [9]. The higher energy efficiency in the eastern areas may be attributed to a higher
level of economic development, better infrastructure, and citizens’ higher requirements for
environmental protection. However, the situation in the economically backward central
and western regions is the opposite.

Table 2. Provincial average energy efficiency (%).

Province Energy Efficiency
(%) Province Energy Efficiency

(%) Province Energy Efficiency
(%)

Beijing 97.818 Zhejiang 82.890 Hainan 60.611
Tianjin 74.819 Anhui 65.580 Chongqing 68.315
Hebei 59.888 Fujian 76.842 Sichuan 64.366
Shanxi 54.504 Jiangxi 67.493 Guizhou 49.671

Inner Mongolia 56.933 Shandong 71.294 Yunnan 50.065
Liaoning 64.032 Henan 59.089 Shaanxi 60.569

Jilin 55.462 Hubei 65.345 Gansu 50.073
Heilongjiang 61.014 Hunan 67.503 Qinghai 37.453

Shanghai 93.646 Guangdong 97.431 Ningxia 39.164
Jiangsu 86.410 Guangxi 57.821 Xinjiang 49.939

Data source: Same as in Table 1.

As the provincial average energy efficiency does not show the spatial distribution and
changes in energy efficiency, we depict the spatial distribution of China’s energy efficiency
in representative years (2004, 2011, and 2019) in Figure 3.
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As can be seen from Figure 3, China’s energy efficiency has obvious agglomeration
characteristics; that is, the eastern region has high energy efficiency, followed by the central
region, and the western region has the lowest energy efficiency. However, the energy
efficiency in northeast China shows a downward trend over time. Next, we will conduct a
more detailed empirical study.

5. Empirical Models

Environmental regulation and regional energy efficiency influence each other. On
the one hand, environmental regulation imposes some constraints on the production
technology, energy input, and energy structure adopted by enterprises, thus affecting
energy efficiency in the region [7,11]. On the other hand, a change in regional energy
efficiency is an important factor for the government to adjust environmental regulation
policies, which has been ignored by most studies to date. Therefore, we need to establish
a simultaneous equation model to investigate the interaction between environmental
regulation and regional energy efficiency.
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Meanwhile, due to local government competition, environmental regulation in this
region is influenced by the environmental regulation of neighboring regions [15–17]. More-
over, due to technology spillover and resource flow, the local energy efficiency is also
affected by the energy efficiency of neighboring regions; that is, energy efficiency has the
feature of spatial agglomeration [8,9]. This is verified by the fact that the energy-efficient
regions are clustered in the eastern region and the energy-inefficient regions are clustered
in the central and western regions, as described in the previous section. Therefore, it is
necessary to establish a spatial econometric model to investigate the spatial spillover effects
of environmental regulation and regional energy efficiency.

We constructed the following simultaneous equation model with a spatial spillover
effect. Using the estimation method given by Kelejian and Prucha [55], we analyzed the
interactions between energy efficiency and environmental regulation and their spatial
spillover effects under local government competition. At the same time, we consider the
possible spatial correlation of the error terms.

EEit = β0 + β1 ∑N
j=1 wijEEjt + β2 ∑N

j=1 wijERjt + β3ERit + βX1 + b1i + εit (6)

εit = τ1 ∑N
j=1 wijε jt + εit (7)

ERit = γ0 + γ1

N

∑
j=1

wijERjt + γ2

N

∑
j=1

wijEEjt + γ3EEit + γX2 + b2i + µit (8)

µit = τ2

N

∑
j=1

wijµjt + ϑit (9)

where i and j represent the provinces and t represents period. EE represents the energy
efficiency and ER represents the intensity of environmental regulation. wij is the element
in the i-th row and j-th column of the spatial weight matrix, indicating the spatial cor-
relation between the i-th province and the j-th province. X1 and X2 are the vectors of
control variables in Equations (6) and (8), respectively, and β and γ are the corresponding
coefficient vectors. b1i and b2i denote individual effects, and εit and µit are random errors
in Equations (6) and (8), respectively. Here we consider the possible spatial correlation of
the error term in Equations (7) and (9), where εit and ϑit are independent and identically
distributed random errors, respectively. It is assumed that the spatial weight matrices of
Equations (6)–(9) are the same.

Simultaneous endogeneity and heteroscedasticity may exist in spatial simultaneous
equation models, which makes the estimators inconsistent and inefficient. To deal with
endogeneity, it is necessary to find suitable instrumental variables for the endogenous
variables. Referring to the general method, the instrumental variables used here are all
exogenous variables and their spatial lag terms [51]. For the heteroscedasticity problem, we
use GLS to solve it. Firstly, the residual error is obtained by the estimation of the original
Equations (6) and (8), and the coefficients τ1 and τ2 of the error term are estimated by GMM.
Then, the Cochran–Orcutt transformation is performed on the original equation, and finally
the spherical disturbance term is obtained [55].

In this paper, we use panel data in the analysis. However, the traditional generalized
three-stage least squares (gs3sls) ignores the fixed effect of panel data, which may lead to
biased or even inconsistent estimations. Therefore, we first perform fixed-effect transforma-
tion on the data, then specify the instrumental variables for the endogenous variables after
transformation, and then perform generalized three-stage least squares regression [56].

The simultaneous equation model includes two endogenous variables, EE (regional
energy efficiency) and ER (intensity of environmental regulation). EE was estimated in
Section 3. For ER, the current measurement methods include three categories, such as the
number of policies and regulations [51], pollutant discharge fee [51,57], and the investment
in anti-pollution projects as percentage of GDP [11,40,58], etc. However, we believe that only
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the latter get the key point, because only pollution control actions are true environmental
regulation. Therefore, we measure ER by the investment in anti-pollution projects as a
percentage of GDP.

Based on previous work, the selected control variables X1 that affect China’s regional
energy efficiency include PGDP (regional GDP per capita), CSPW (capital stock per worker),
and URB (urbanization rate), which reflect the regional economic conditions; OWS (owner-
ship structure) and GOV (degree of government participation in economy), which reflect
institutional factors; OFI (openness to foreign investment) and TRO (trade openness), which
reflect openness; ENS (energy structure), which reflects the energy use structure; and IND
(the ratio of industrial output to GDP) and SER (the ratio of service industry output to
GDP), which reflect the industrial structure.

Among them, the level of regional economic development and local capital intensity
affect the local energy production and utilization technology, the scale effect of energy
consumption, energy consciousness, etc., subsequently affecting the energy efficiency.
Therefore, we measured the regional economic development level with PGDP (regional
GDP per capita) and measured the regional capital intensity level with CSPW (regional
capital stock per worker), including both of them in the model as control variables [20,59].
URB (urbanization rate) is also a factor affecting energy efficiency. Due to the scale effect
of urban heating and power supply, the energy efficiency of densely populated cities is
often higher than that of rural areas. However, due to the fact that the per capita energy
consumption in cities is much higher than that in rural areas, there is a great waste of
energy, which may reduce the energy efficiency of cities [9,60,61].

In addition to the above economic factors, institutional factors may also affect regional
energy efficiency. China’s ownership structure is different from that of most countries.
China’s state-owned economy accounts for a large proportion of the national economy,
and state-owned enterprises have a close relationship with the government. We can
see state-owned enterprises get more preferential policies and exemption from pollution
responsibility, which may affect regional energy efficiency. Here, we use “industrial sales
of state-owned holding industrial enterprises divided by industrial sales of industrial
enterprises above designated size” to represent the proportion of state-owned economy in
the whole national economy to characterize OWS (ownership structure) [62]. Due to the
serious waste of government consumption, the higher the GOV (degree of government
participation in economy), the lower the energy efficiency [63]. GOV is measured by the
proportion of fiscal expenditure in regional GDP.

As the energy density of different types of energy is different, ENS (energy structure)
is an important factor affecting energy efficiency. Since China’s energy consumption is
dominated by coal, the proportion of coal consumption in the total energy consumption is
used to represent ENS [9,59].

Foreign investment may improve regional energy efficiency by bringing advanced
production technology and management experience. Meanwhile, foreign investment from
energy-intensive industries in developed countries may also reduce energy efficiency. The
specific impact depends on which impact is dominant. Therefore, OFI (openness to foreign
investment) needs to be controlled in the model; we measured it with the proportion of
FDI to local GDP. As China has been at the low end of the global industrial chain for many
years, and energy intensive products account for a large proportion of imports and exports,
China’s trade openness may reduce the energy efficiency. Here, TRO (trade openness) is
measured by the proportion of the total imports and exports in regional GDP [9].

Finally, because the energy intensity of the three industries is significantly different,
the industrial structure affects the energy efficiency. Here, IND (the proportion of industrial
added value in the GDP) and SER (the proportion of service industry added value in the
GDP) are used to represent the industrial structure [9,64].

The selected control variables X2 that affect the intensity of China’s environmental reg-
ulation include PGDP (regional GDP per capita) and URB (urbanization rate), which reflect
the regional economic conditions; SFC (fiscal self-financing capacity), which reflects the fi-
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nancial situation of the region; OWS (ownership structure) and GOV (degree of government
participation in economy), which reflect the institutional factors; OFI (openness to foreign
investment), which reflects openness; ENS (energy structure), which reflects the energy-use
structure; and GROW (regional economic growth rate) and UEM (unemployment rate),
which reflect economic growth and unemployment.

Generally speaking, in areas with a high level of economic development and high
urbanization rate, citizens have higher environmental requirements. Local governments
may adjust the intensity of environmental regulation according to public expectations and
realistic conditions. Therefore, it is necessary to control PGDP (regional GDP per capita)
and URB (urbanization rate) in the equation of environmental regulation [16].

Meanwhile, the government needs to consider its own financial situation when carry-
ing out environmental regulation. If the local financial resources are insufficient, strength-
ening the environmental regulation may hurt local investment, thus reducing the local
tax revenue and worsening the local financial situation. Therefore, the regions with lower
SFC (self-financing capacity) are more likely to reduce the intensity of environmental
regulation [16]. We used “local fiscal revenue/local fiscal expenditure” to measure SFC.

In addition, environmental regulation in the areas with a higher proportion of state-
owned economy may be reduced by the lobbying of state-owned enterprises. Therefore,
OWS (ownership structure) may affect environmental regulation. However, in China, the
regions with higher GOV (degree of government participation in economy) are mostly
relatively poor, which are resource-based regions in the west. Due to the serious pollution
in these areas, the intensity of environmental regulation has to be strengthened. Therefore,
OWS and GOV need to be controlled [65,66].

It is well known that investment can directly promote economic growth. Since the
Chinese government is keen to pursue economic growth, local governments may reduce
the intensity of environmental regulation to attract foreign investment. Therefore, OFI
(openness to foreign investment) may be a factor to be considered when the government
carries out environmental regulation [53].

At the same time, differences in ENS (regional energy structure) lead to regional
differences in environmental pollution, and then affect their environmental regulation
policies. Therefore, governments tend to consider environmental regulation policies on the
basis of their own energy structure.

Moreover, GROW (the economic growth rate) and UEM (unemployment rate) are
important reference indicators for local governments to formulate policies [13,63,67], so
it may be directly related to environmental regulation policies, but not directly related to
regional energy efficiency. Here, GROW is calculated by the regional GDP index officially
published by the National Bureau of Statistics of China, and UEM is measured by the
registered urban unemployment rate published on this website.

Generally, a spatial econometric model is sensitive to the spatial weight matrix. Based
on previous literature [8,9,15,16,68], we used five types of spatial weight matrices in the
model to select the best model and test the robustness of the estimation results. (1) Con-
tiguity weights: if two regions are adjacent, the weight of each other is 1, otherwise it
is 0 (Guangdong and Hainan are regarded as adjacent regions). (2) Contiguity and eco-
nomic distance weights: if two regions are adjacent, the PGDP (GDP per capita) of the
neighboring region is used to measure the weight of the neighboring region on this region.
(3) Geographical distance weights: the reciprocal of the geographical distance between the
two regions is used as the weight of each other; i.e., wg

ij = 1/dij, where dij is the spherical
distance between the provincial governments in the capital cities of province i and province
j. We use the coordinate picker of the Baidu map to obtain the longitude and latitude
coordinates of the provincial governments in provincial capitals and converted them into
radian form. If the longitude and latitude of the two places were (λ1, φ1) and (λ2, φ2),
respectively, the spherical distance between the two places can be obtained by the equation

d = 2rarcsin(
√

sin2
(

φ2−φ1
2

)
+ cos(φ2) cos(φ1)sin2

(
λ2−λ1

2

)
), where r = 6372 (kilometers)
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is the radius of the earth. (4) Economic distance weights: the reciprocal of the difference
between the two regions’ PGDP (GDP per capita) is used to measure the weight of the two
provinces; i.e., we

ij = 1/
∣∣GDPi − GDPj

∣∣, where the two provinces with a smaller economic
gap have a greater weight because they often compete and cooperate with each other.
(5) Geographical distance and economic distance weights: the weight is wij = wg

ij · w
e
ij,

which is a combination of the geographical distance weight and economic distance weight.
All spatial weight matrices were normalized.

In order to intuitively observe the summary information of each variable, we show
the descriptive statistics of each variable in Table 3.

Table 3. Descriptive statistics of the key variables.

Abbreviation Variables Sample Size Mean Std. Dev. Min Max

EE (%) Energy efficiency 480 64.868 16.930 21.565 98.713
ER (‰) Environmental regulation 480 12.580 6.672 2.020 42.400

PGDP (Ұ) GDP per capita 480 28,094.3 16,411.9 4317.0 97,260.9
CSPW (Ұ) Capital stock per worker 480 155,016.9 104,929.5 18,148.8 559,975.1
URB (%) Urbanization rate 480 53.685 14.223 26.260 89.600
SFC (%) Self-financing capacity 480 50.901 19.207 14.826 95.086

OWS (%) Ownership structure 480 41.271 19.061 9.589 83.746
GOV (%) Government involvement 480 28.915 14.921 7.918 96.012

OFI (%) Openness to foreign
investment 480 41.388 50.060 4.733 570.538

TRO (%) Trade openness 480 29.740 33.903 1.146 166.816
ENS (%) Energy structure 480 52.362 15.328 1.773 80.721
IND (%) Industry 480 45.196 8.373 15.989 59.045
SER (%) Service industry 480 43.897 9.398 28.303 83.688

GROW (%) Economic growth rate 480 10.077 2.935 0.500 19.600
UEM (%) Unemployment rate 480 3.487 0.693 1.200 6.500

Note: The units of the variables are enclosed in parentheses. For ease of observation, the variables reported in the
table were not logarithmically processed.

6. Empirical Results and Discussion

The empirical research follows the framework shown in Figure 4. Firstly, the causality
analysis of environmental regulation and energy efficiency was carried out. If it is confirmed
that environmental regulation and energy efficiency are mutually causal, the simultaneous
equation model can be used. Next, the spatial correlation test of environmental regulation
and energy efficiency was carried out. If it was confirmed that they are spatially correlated,
the spatial simultaneous equation model was used. Then, the model was estimated under
the five spatial weight matrices, and the estimation results were analyzed. Finally, we
tested the robustness of the estimation results.
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6.1. Causality Analysis

Before estimating, we needed to make a causality analysis of the environmental regu-
lation (ER) and energy efficiency (EE). Here, the Granger causality test of panel data was
adopted to verify the causality between ER and EE. The lag order was selected according
to the BIC criterion. The results are shown in Table 4.

Table 4. Testing for Granger non-causality.

Number of Lags Null Hypothesis Wald Test Statistic p-Value Conclusion

1 EE does not
Granger-cause ER 9.9162 0.0016 reject

1 ER does not
Granger-cause EE 17.8381 <0.0001 reject

It is easy to see from Table 4 that “EE does not Granger-cause ER” and “ER does
not Granger-cause EE” are rejected at the significance level of 1%; that is, environmental
regulation and energy efficiency are mutually causal. Therefore, it is reasonable to use a
simultaneous equation model to study their interaction.

6.2. Global Spatial Correlation Test

We use Moran’s I to test the global spatial correlation of regional energy efficiency and
environmental regulation intensity under different spatial weight matrices. Since the test
results are similar, we only report the results under the simple contiguity weight matrix.

Table 5 reports the global correlation test results of regional energy efficiency and
environmental regulation intensity. It can be found that the null hypothesis—that there
is no spatial correlation of regional energy efficiency—is rejected at a significance level of
1% for all years, which indicates that China’s regional energy efficiency has strong spatial
correlation. However, the spatial correlation of environmental regulation is not significant
in 9 of the 16 years, while it is relatively significant in the other 7 years. This shows that the
environmental regulatory competition of local governments in China is sometimes strong
and sometimes weak.

Table 5. Results of the global spatial correlation test.

Period
EE ER

Period
EE ER

Moran’s I Moran’s I Moran’s I Moran’s I

2004 0.455 *** (4.046) 0.229 ** (2.264) 2012 0.364 *** (3.294) 0.062 (0.798)
2005 0.458 *** (4.085) 0.202 * (1.947) 2013 0.349 *** (3.165) 0.271 ** (2.508)
2006 0.461 *** (4.111) 0.263 ** (2.526) 2014 0.345 *** (3.130) 0.339 *** (3.099)
2007 0.437 *** (3.910) 0.212 ** (2.140) 2015 0.381 *** (3.430) 0.225 ** (2.151)
2008 0.501 *** (4.428) 0.151 (1.535) 2016 0.359 *** (3.242) 0.158 (1.592)
2009 0.504 *** (4.455) 0.081 (0.950) 2017 0.429 *** (3.825) 0.085 (0.988)
2010 0.477 *** (4.235) −0.091 (−0.471) 2018 0.399 *** (3.567) −0.069 (−0.292)
2011 0.418 *** (3.747) 0.039 (0.605) 2019 0.463 *** (4.093) 0.131 (1.381)

Notes: To be consistent with the later model estimates, regional energy efficiency and environmental regulation
intensity were treated logarithmically. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively,
and z-values are provided in parentheses.

6.3. Local Spatial Correlation Test

The global Moran’s I only tests the global spatial correlation, but not the local spatial
correlation. Therefore, we report the local Moran scatter plots (MSP) of regional energy
efficiency and environmental regulation in Figure 5 to further explore the local spatial
correlation of the two. Considering that there are many years from 2004 to 2019, and the
spatial correlation characteristics of regional energy efficiency and environmental regulation
intensity are similar in most years, only the representative Moran scatter plots of 2004, 2011,
and 2019 are shown here.
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Figure 5. Moran scatter plots (MSP) for Chinese provincial energy efficiency (EE) and environmental
regulation (ER): (a1) MSP of EE in 2004; (a2) MSP of ER in 2004; (b1) MSP of EE in 2011; (b2) MSP of
ER in 2011; (c1) MSP of EE in 2019; (c2) MSP of ER in 2019.

As can be seen from Figure 5, most observed values of the local Moran’s I of regional
energy efficiency fall into the first quadrant and the third quadrant in all years. Statistically
speaking, the types of spatial correlation are mainly high–high and low–low; that is,
provinces with high energy efficiency are more likely to be surrounded by provinces with
high energy efficiency, and provinces with low energy efficiency are more likely to be
surrounded by provinces with low energy efficiency. This is consistent with the results of
Li et al. [9] and Yu [54]. However, most observed values of Moran’s I of local environmental
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regulation intensity fall into the first quadrant and the third quadrant in 2004 and 2019,
and the distribution of Moran’s I in 2011 is relatively irregular, which indicates that local
governments do not continuously compete in environmental regulation, which is consistent
with the conclusion of the global spatial correlation test.

The above results show that it is necessary to consider spatial correlation in the
empirical study. If we omit the spatial correlation in the empirical model, the estimation
results may be biased or even inconsistent.

6.4. Estimation Results and Analysis

According to the order condition and rank condition of the simultaneous equation
models, Equations (6)–(9), Equations (6) and (8) are over identified, so the model can
be estimated. In order to make the model easier to explain, we log-transformed the
endogenous variables and some economic variables, including EE, ER, PGDP, and CSPW.
The system estimation results of the coefficients are shown in Tables 6 and 7.

Table 6. Estimation results of the model (6).

Variable Contiguity
Weights

Geographical
Distance Weights

Contiguity and
Economic Distance

Weights

Economic
Distance Weights

Geographical and
Economic Distance

Weights

W_EE 0.3415 ***
(4.66)

1.0296 ***
(9.67)

0.2685 ***
(3.65)

1.0498 ***
(9.07)

1.0404 ***
(9.88)

W_ER 0.0059
(0.16)

−0.0865 **
(−2.01)

−0.0433
(−1.22)

0.0794
(1.31)

−0.0869 *
(−1.93)

ER 0.2149 ***
(6.68)

0.2783 ***
(7.99)

0.2524 ***
(8.40)

0.1187 *
(1.89)

0.2777 ***
(7.22)

PGDP 0.4093 ***
(6.97)

0.4180 ***
(7.55)

0.3881 ***
(6.74)

0.6287 ***
(9.40)

0.4254 ***
(7.59)

CSPW −0.3044 ***
(−6.96)

−0.2372 ***
(−6.24)

−0.2889 ***
(−6.78)

−0.4270 ***
(−8.79)

−0.2363 ***
(−6.02)

URB 0.0085 ***
(3.42)

0.0052 **
(2.11)

0.0081 ***
(3.12)

0.0113 ***
(4.34)

0.0050 **
(2.02)

OWS 0.0011
(1.36)

0.0006
(0.75)

0.0012
(1.42)

−0.0003
(−0.36)

0.0004
(0.49)

GOV −0.0083 ***
(−9.08)

−0.0075 ***
(−8.33)

−0.0086 ***
(−9.01)

−0.0076 ***
(−7.54)

−0.0075 ***
(−8.19)

OFI 0.0003 **
(2.41)

0.0002
(1.32)

0.0003 *
(1.89)

0.0004 **
(2.45)

0.0002
(1.38)

TRO −0.0005
(−1.16)

−0.0008 *
(−1.83)

−0.0006
(−1.34)

−0.0010 *
(−1.73)

−0.0008 *
(−1.72)

ENS −0.0018 *
(−1.74)

−0.0033 ***
(−3.29)

−0.0021 **
(−1.97)

−0.0030 ***
(−2.97)

−0.0032 ***
(−3.23)

IND −0.0062 **
(−2.15)

−0.0065 **
(−2.47)

−0.0052 *
(−1.85)

−0.0053 *
(−1.71)

−0.0068 ***
(−2.58)

SER −0.0026
(−0.82)

−0.0035
(−1.24)

−0.0024
(−0.77)

−0.0009
(−0.26)

−0.0038
(−1.36)

CONSTANT 1.8541 ***
(3.73)

−1.4744 **
(−2.25)

2.2120 ***
(4.40)

−1.9477 ***
(−2.60)

−1.5594 **
(−2.41)

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, and t-values are provided in
parentheses. The same below.
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Table 7. Estimation results of the model (8).

Variable Contiguity
Weights

Geographical
Distance Weights

Contiguity and
Economic Distance

Weights

Economic
Distance Weights

Geographical and
Economic Distance

Weights

W_ER 0.4465 ***
(4.60)

0.5968 ***
(5.49)

0.4578 ***
(4.63)

0.6730 ***
(6.22)

0.6075 ***
(5.62)

W_EE −0.8941 ***
(−3.49)

−1.6817 ***
(−3.61)

−0.7942 ***
(−3.25)

−0.6546
(−1.44)

−1.8166 ***
(−4.00)

EE 1.6562 ***
(7.23)

1.6044 ***
(6.70)

1.7868 ***
(8.41)

0.7925 ***
(3.58)

1.5981 ***
(6.78)

PGDP −0.2149 *
(−1.64)

−0.3415 **
(−2.45)

−0.2435 *
(−1.85)

−0.2022
(−1.38)

−0.3563 **
(−2.55)

URB −0.0014
(−0.19)

0.0061
(0.84)

0.0003
(0.04)

0.0090
(1.25)

0.0064
(0.90)

SFC 0.0055
(1.48)

0.0030
(0.89)

0.0044
(1.22)

0.0076 *
(1.95)

0.0031
(0.92)

OWS −0.0047 *
(−1.70)

−0.0035
(−1.26)

−0.0054 *
(−1.94)

−0.0017
(−0.62)

−0.0028
(−1.03)

GOV 0.0191 ***
(5.87)

0.0166 ***
(5.24)

0.0202 ***
(6.18)

0.0124 ***
(3.76)

0.0159 ***
(5.01)

OFI 0.0001
(0.12)

0.0003
(0.65)

<0.0001
(−0.05)

0.0007
(1.41)

0.0003
(0.61)

ENS 0.0030
(0.88)

0.0067 **
(2.01)

0.0024
(0.70)

0.0043
(1.31)

0.0064 *
(1.95)

GROW 0.0125 *
(1.68)

0.0127 *
(1.89)

0.0095
(1.32)

0.0215 ***
(2.82)

0.0130 *
(1.93)

UEM 0.0070
(0.16)

0.0019
(0.05)

0.0044
(0.10)

0.0347
(0.74)

0.0018
(0.04)

CONSTANT −0.5289
(−0.36)

3.4209
(1.54)

−1.1819
(−0.79)

0.5056
(0.20)

4.1088 *
(1.87)

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, and t-values are provided in
parentheses. The same below.

Tables 6 and 7 report the system estimation results of the simultaneous equation
models under five types of spatial weight matrices, where W_EE and W_ER are the spatial
lag terms of EE (regional energy efficiency) and ER (environmental regulation intensity),
respectively. It can be seen from Tables 6 and 7 that the signs of most of the estimated
coefficients of explanatory variables are the same under the five types of spatial weight
matrices, indicating that our model is quite robust. According to the adjusted R-square of
the simultaneous equation model reported in Table 8, the goodness of fit under the five
types of spatial weight matrices is relatively similar. Nevertheless, it is relatively better to
use the spatial weight matrix of geographical distance and economic distance for estimation.
Therefore, we mainly use the estimation results under this spatial weight matrix as the
benchmark when analyzing the estimation results.

Table 8. Adjusted R-square of the estimation.

Variable Contiguity
Weights

Geographical
Distance Weights

Contiguity and
Economic Distance

Weights

Economic
Distance Weights

Geographical and
Economic Distance

Weights

Adjusted
R-squared 0.8939 0.9296 0.9162 0.8098 0.9306

From the estimated results of the regression equation of regional energy efficiency in
Table 6, we find that the coefficients of W_EE and ER are significantly positive, while the
coefficient of W_ER is small and only weakly significant. Under the spatial weight matrix
of geographical distance and economic distance, the coefficient of environmental regulation
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on energy efficiency in this region is 1.0404, which is significantly positive; that is, on
average, if the energy efficiency of the surrounding regions is increased by 1%, the energy
efficiency of the region will be increased by 1.0404%, otherwise the local energy efficiency
may be reduced by 1.0404%. This shows that the energy efficiency has strong spatial
accumulation characteristics, and the surrounding regions can affect the energy efficiency
of the region through resource flow, technology spillover, and other ways. This is consistent
with the empirical results of Li et al. [9] and Du et al. [69]. Meanwhile, environmental
regulation has a significantly positive effect on energy efficiency; that is, under the current
situation in China, strengthening environmental regulation can improve energy efficiency.
In other words, China’s environmental regulation policies are effective. On average, if
the intensity of environmental regulation is increased by 1%, the energy efficiency of this
region can be increased by 0.2777%, which indicates that environmental regulation can
promote Chinese enterprises to save energy or improve energy utilization efficiency. On
the contrary, if the regional environmental regulation intensity is reduced, the regional
energy efficiency will deteriorate [38–40,46,70,71]. However, the coefficient sign of W_ER is
inconsistent and weakly significant, which means that the environmental regulation in the
surrounding regions has no significant direct impact on the energy efficiency of this region.

From the estimated results of the regression equation of environmental regulation
in Table 7, we learned that the coefficients of W_ER and EE are significantly positive,
while the coefficient of W_EE is significantly negative under most spatial weight matri-
ces. Specifically, on average, if the environmental regulation intensity of the surrounding
provinces is increased by 1%, the province’s environmental regulation intensity will be
increased by 0.6075%. On the contrary, if the surrounding provinces reduce the environ-
mental regulation intensity by 1%, the province will generally follow up to reduce the
environmental regulation intensity by 0.6075%. This shows that under the “Promotion
Tournament” mode in China, there is inter-regional competition among local governments
on the whole [14]. This competition of environmental regulation is mainly in the form of
mutual imitation; in other words, environmental regulation intensity tends to rise and fall
at the same time. The coefficient of energy efficiency to environmental regulation in this
region is 1.5981, which is significantly positive. This means that if the local energy efficiency
is increased by 1%, the intensity of local environmental regulation will be increased by
1.5981%. On the contrary, if the local energy efficiency is reduced by 1%, the local envi-
ronmental regulation intensity will be reduced by 1.5981%. This may be due to the fact
that most local governments pay more and more attention to energy efficiency when they
pursue energy efficiency, while energy efficiency is more and more ignored when they
do not pursue energy efficiency. It can be seen from Table 1 that China’s regional energy
efficiency is decreasing year by year. Therefore, local governments in China tend to “race
to the bottom” in environmental regulation. The coefficient of W_EE under most spatial
weight matrices is significantly negative. It means that when the energy efficiency of the
surrounding provinces is improved, the province may significantly reduce the intensity
of environmental regulation. This may be because the local government expects that the
improvement in energy efficiency in surrounding provinces will have a positive impact
on local energy efficiency. For the sake of free riding, the local government significantly
reduces the intensity of environmental regulation.

Combining the coefficients of the two endogenous variables and their spatial lag
terms, we can sketch the story of local government competition, environmental regulation,
and regional energy efficiency in China. Due to China’s top–down political system, the
promotions of lower-level officials are mainly determined by higher-level officials according
to certain criteria (similar to KPI). For the sake of fairness, due to the Chinese people’s
desire for wealth and other aspects, the evaluation standard of Chinese government officials
is mainly the economic growth rate (although in recent years China has claimed to take
environmental improvement as one of the evaluation objectives, the economic growth
rate still occupies the main weight in the evaluation index) [14]. Since it is investment
that can significantly stimulate economic growth in the short term, most of the local
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government officials in China mainly focus on attracting investment, and even lower
energy and environmental standards in exchange for enterprise investment when necessary.
Therefore, in order to attract investment, most provinces tend to reduce the intensity of
environmental regulation [51]. For a province, if the environmental regulation intensity
of the surrounding provinces decreases tentatively, due to local government competition,
the province will also reduce the intensity of environmental regulation in order to retain
investment, which will lead to a decline in energy efficiency in the province. However, due
to the spatial spillover effect of energy efficiency, the decrease in energy efficiency may lead
to a decrease in energy efficiency in the surrounding areas [69]. Because the coefficient of
energy efficiency to environmental regulation is positive, the reduction in energy efficiency
in surrounding areas will make the surrounding areas pay less attention to energy efficiency,
and may continue to reduce the energy efficiency target and the intensity of environmental
regulation. In this way, the vicious circle continues. Although the average intensity of
environmental regulation has increased for several years due to the serious environmental
degradation in China, generally speaking, China’s energy efficiency and environmental
regulation intensity have been declining.

For the common control variables in the two equations, the sign of their coefficients
is mostly consistent with our expectation. PGDP (Regional GDP per capita) and URB
(urbanization) can significantly promote EE (regional energy efficiency), because the areas
with high PGDP and URB generally have high energy utilization technology and the
advantage of a scale economy [8]. However, PGDP cannot promote the strengthening
of ER (environmental regulation). This may be due to the high energy efficiency and
environmental quality in developed areas, where a low-level environmental regulation can
meet the environmental needs. The coefficient of URB on ER is not significant. This may be
because the environmental protection demands of urban residents have not put pressure
on local governments [8]. The coefficient of OWS (ownership structure, measured by the
proportion of the state-owned economy in the national economy) on EE is not significant.
This shows that although China’s state-owned enterprises enjoy preferential policies, they
do not have a negative impact on energy efficiency due to economies of scale (China’s state-
owned enterprises are usually large-scale). This is different from the research results of Zhao
and Lin [62] on China’s textile industry. The coefficient of OWS on ER is negative, but it is
significant under one spatial weight matrix. To some extent, this indicates that state-owned
enterprises may lobby local governments to relax environmental regulation. However, GOV
(degree of local government participation in the economy) significantly inhibits the regional
energy efficiency. This is because the Chinese government’s consumption is unconstrained
and unsupervised, which consumes a lot of energy but creates little value, resulting in a
low energy efficiency. On the contrary, GOV promotes environmental regulation. This is
because most of the regions with big GOVs are underdeveloped resource-based provinces
in the west, and environmental regulation must be strengthened to control heavy pollution
caused by resource exploitation. OFI (degree of openness to foreign investment) promotes
the improvement of regional energy efficiency, but the coefficient is small, indicating
that the effect is limited. Meanwhile, the coefficient of OFI to ER is not significant. This
may be due to the fact that foreign investment is stably concentrated in the developed
eastern coastal provinces, and the overall impact on environmental regulation is relatively
weak [53]. Finally, ENS (energy structure) suppresses regional energy efficiency, because
coal is a common energy with a very low energy density. The higher its consumption
proportion, the lower the energy efficiency [9,59]. The coefficient of ENS to ER is significant
under two spatial weight matrices. Therefore, it can be considered that the influence of
ENS on environmental regulation is limited.

For the other control variables in the regression equation of regional energy efficiency,
CSPW (capital stock per worker) and IND (industry) significantly inhibited the improve-
ment of energy efficiency, because the extensive growth of China’s economy increased the
quantity, but it paid a large energy cost [9,53,59]. However, the impact of SER (service
industry) on EE is not significant, which indicates that the energy efficiency of China’s
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service industry is not yet high. The impact of TRO (trade openness) on EE is also signif-
icantly negative. This is because the bulk of China’s foreign trade is in highly polluting,
energy-hungry industries, which further confirms the energy cost of China’s extensive
growth [72].

For the other control variables in the regression equation of environmental regulation,
SFC (self-financing capacity) has a positive impact on ER, but it is significant only under the
spatial weight matrix of economic distance. This shows that local governments only some-
times weigh the environmental regulation according to their own financial resources [16,53].
Similarly, GROW (regional economic growth rate) is significantly positively correlated with
ER. When the economic growth slows down, local governments will relax environmental
regulation, and when the economic growth speeds up, they will strengthen environmental
regulation. However, the impact of UEM (unemployment) on ER is not significant. On the
one hand, it may be due to the sampling bias of the unemployment rate in China’s urban
survey, which cannot reflect China’s real unemployment rate. On the other hand, it may
be due to China’s top–down political system, and government officials paying insufficient
attention to the welfare of the people.

From the regression results, it can be seen that the energy efficiency of the surrounding
areas, the local economic development level and local environmental regulation are the
most important factors affecting energy efficiency. Therefore, it is effective to promote
environmental sustainability from these aspects.

6.5. Robustness Test

In Section 6.4, we used five different spatial weight matrices and got similar estimation
results. This verifies the robustness of our conclusions to some extent. However, further
robustness tests were necessary. The further robustness tests we designed mainly included
the following two aspects: (1) sensitivity analysis by excluding the data of some years; and
(2) sensitivity analysis by excluding the data of some sample points. Of interest are the
coefficients of the endogenous variables (environmental regulation and regional energy
efficiency) and the coefficients of their spatial lag terms. Meanwhile, we found that the sign
and magnitude of the coefficient estimates of the control variables in the robustness test are
similar to the full sample estimation results. To save space and highlight key points, we do
not report the estimation results of the control variables, but only the estimation results of
the endogenous variables and their spatial lag terms.

We first excluded the data of 2018 and 2019, and retained the panel data of 30 provinces
in Chinese mainland from 2004 to 2017 for estimation. The system estimation results of
the endogenous variables are shown in Table 9. Then, we excluded the data of Chongqing
(a relatively rich region) and Hainan Province (a relatively poor region), and retained the
panel data of the other 28 provinces from 2004 to 2019 for estimation. The system estimation
results of the endogenous variables are shown in Table 10.

The results in Tables 9 and 10 are obvious. After excluding some sample data, the
symbols of the coefficients of endogenous variables and their spatial lag terms estimated by
using five spatial weight matrices are almost consistent with the results estimated by using
full samples. There is only a certain difference in the size of the coefficients. To some extent,
this shows that our conclusions are quite robust in both the time and regional dimensions.
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Table 9. Estimation results using the data from 2004 to 2017.

Variable Contiguity
Weights

Geographical
Distance Weights

Contiguity and
Economic Distance

Weights

Economic
Distance Weights

Geographical and
Economic Distance

Weights

Estimation results of the model (6)

W_EE 0.5135 ***
(6.58)

0.8768 ***
(7.08)

0.4445 ***
(5.62)

0.8573 ***
(7.30)

0.8803 ***
(7.28)

W_ER 0.0693 *
(1.93)

−0.1023 *
(−1.90)

0.0570
(1.64)

−0.0730
(−1.20)

−0.1216 **
(−1.98)

ER 0.1157 ***
(4.04)

0.2082 ***
(6.41)

0.1100 ***
(4.07)

0.1637 ***
(3.47)

0.2133 ***
(4.62)

Estimation results of the model (8)

W_ER 0.2583 *
(1.87)

0.7332 ***
(4.30)

0.0932
(0.69)

0.8322 ***
(4.92)

0.8166 ***
(4.76)

W_EE −1.2061 ***
(−3.33)

−1.1266 **
(−2.21)

−1.1629 ***
(−3.36)

−0.8655 *
(−1.72)

−1.1076 **
(−2.19)

EE 1.3521 ***
(4.64)

1.3170 ***
(5.10)

1.2946 ***
(4.72)

0.8164 ***
(2.72)

1.1182 ***
(3.96)

Adjusted
R-squared 0.7725 0.8267 0.7680 0.7623 0.8157

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, and t-values are provided in
parentheses. The same below.

Table 10. Estimation results using the data from 2004 to 2019, excluding Chongqing and Hainan.

Variable Contiguity
Weights

Geographical
Distance Weights

Contiguity and
Economic Distance

Weights

Economic
Distance Weights

Geographical and
Economic Distance

Weights

Estimation results of the model (6)

W_EE 0.4353 ***
(6.07)

1.0081 ***
(9.78)

0.3138 ***
(4.27)

1.0409 ***
(9.10)

1.0174 ***
(10.21)

W_ER −0.0934 **
(−2.31)

−0.1311 ***
(−2.76)

−0.0916 **
(−2.32)

0.0501
(0.85)

−0.1256 **
(−2.54)

ER 0.2521 ***
(7.67)

0.2764 ***
(7.79)

0.2354 ***
(7.51)

0.1046 *
(1.88)

0.2683 ***
(7.05)

Estimation results of the model (8)

W_ER 0.6140 ***
(5.47)

0.7086 ***
(5.95)

0.6164 ***
(5.37)

0.7397 ***
(6.39)

0.7299 ***
(6.16)

W_EE −1.2186 ***
(−4.58)

−2.0870 ***
(−4.89)

−1.0060 ***
(−3.83)

−1.1607 ***
(−2.58)

−2.1671 ***
(−5.22)

EE 1.9742 ***
(9.03)

1.8915 ***
(9.10)

1.9115 ***
(8.73)

1.1208 ***
(5.49)

1.8810 ***
(9.16)

Adjusted
R-squared 0.9417 0.9514 0.9246 0.8367 0.9494

Notes: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively, and t-values are provided in
parentheses.

6.6. Discussion

Energy efficiency is the key to ensure the coordinated development of the economy
and environment, so it has been highly regarded by governments and scholars all over
the world. Most countries adopt environmental regulation measures to influence energy
efficiency. Scholars also adopt various methods to study the impact of environmental regu-
lation on energy efficiency. Most of these methods are single equation models. However,
changes in energy efficiency can also affect environmental regulation. Therefore, the corre-
lation between environmental regulation and energy efficiency leads to the endogeneity
problem in a single equation model. Although the instrumental variable method can solve
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the endogeneity problem in theory, it is usually difficult to find a satisfactory instrumental
variable in practical research. Besides, due to interregional economic cooperation and
resource flows in reality, local energy efficiency tends to correlate with that of the surround-
ing areas. Moreover, due to the competition and cooperation of local governments, local
environmental regulation is also related to the environmental regulation of surrounding
areas. Therefore, it is necessary to study the interaction between the local environmental
regulation and surrounding environmental regulation, the interaction between the local
energy efficiency and surrounding energy efficiency, and the interaction between the envi-
ronmental regulation and energy efficiency under a unified framework. By using the spatial
simultaneous equation model, this paper studied the spatial effects between environmental
regulation and energy efficiency and their interactions under a unified framework, and
solved the above problems better. These problems cannot be solved well by using single
equation econometric models or non-spatial econometric models. The empirical results
obtained in this study are satisfactory.

The empirical results of this study show that China’s environmental regulation has a
positive effect on energy efficiency. At the same time, energy efficiency also has a positive
effect on environmental regulation. Therefore, strengthening environmental regulation can
effectively improve China’s overall energy efficiency and promote their benign interaction.
The empirical results also show that both environmental regulation and energy efficiency
have positive spatial effects. Therefore, China should create a good interregional incentive
mechanism, promote the positive impact between environmental regulation and energy
efficiency, and avoid the negative effect between environmental regulation and energy
efficiency. In addition, the energy efficiency of the surrounding areas, the level of local
economic development, and the local environmental regulation are the most important
factors affecting energy efficiency. Therefore, strengthening regional economic and technical
cooperation, focusing on the development of local economy and reasonable environmental
regulation, are powerful measures to improve local energy efficiency.

This study discussed the spatial effects of environmental regulation and energy ef-
ficiency and their interactions in China. This provides important empirical evidence for
more reasonable environmental regulation in China, which would lead to sustainable
development of China’s economy and environment. In addition, this study enriches the
research on environmental regulation and energy efficiency.

7. Conclusions and Policy Recommendations
7.1. Conclusions

This paper discussed the decision mechanism of local government environmental
regulation, the interaction between environmental regulation and regional energy efficiency,
and the spatial spillover effects of both under local government competition. The main con-
clusions are as follows. (1) There is a significant positive correlation between environmental
regulation and regional energy efficiency. Strengthening the intensity of environmental
regulation may lead to higher energy efficiency. At the same time, the improvement in
energy efficiency may also stimulate local governments to strengthen the intensity of en-
vironmental regulation. (2) Regional energy efficiency has a significant positive spatial
spillover effect; that is, the improvement in energy efficiency in the surrounding areas is
conducive to the improvement of the local energy efficiency, and vice versa. (3) Environ-
mental regulation has a significant positive spatial spillover effect. In the context of local
government competition, China’s inter-provincial environmental regulation is manifested
in the form of “imitation competition”; specifically, if the surrounding provinces reduce
their environmental regulation intensity, this province will follow up.

7.2. Managerial Implication

Based on the above conclusions and the estimation results, we can get the following
policy inspirations. (1) As a result of interregional exchanges and integration, the improve-
ment in energy efficiency in the surrounding areas benefits the local energy efficiency.
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Therefore, it is necessary to strengthen the interregional industrial development links and
promote a coordinated development of interregional industries. (2) China’s inter provincial
environmental regulation is embodied in the form of “imitation competition”, which may
lead to the fact that the local environmental regulation policy is not optimal. Therefore, local
governments should reasonably formulate environmental regulation policies according
to local economic development and environmental conditions. At present, China should
establish some higher level multi-provincial environmental management departments that
operate independently of local governments. This would prevent local governments from
competing to reduce the intensity of environmental regulation. (3) Due to the positive
interaction between environmental regulation and energy efficiency, improving energy
efficiency and strengthening environmental regulation will help to promote the benign in-
teraction between energy efficiency and environmental regulation in China. Therefore, local
governments should give policy support to enterprises to improve energy technology. At
the same time, the central government should reduce the political cost of local governments
to implement environmental regulation. (4) The increase of urbanization rate is conducive
to the improvement of energy technology and energy intensive utilization. Therefore, China
should reduce the barriers to urbanization and continue to improve the urbanization rate.
(5) Since coal and other fossil fuels are detrimental to China’s energy efficiency, China needs
to continue to reduce the share of fossil fuels in total energy consumption, and increase
the share of new energy sources, such as photovoltaic, wind power, and hydropower.
(6) The level of economic development and openness to foreign investment can promote the
improvement of China’s energy efficiency. Therefore, China should continue to adhere to
reform and opening up, develop its economy, and learn advanced technology and manage-
ment experience from developed countries. However, China needs to change the previous
extensive investment-driven growth model and embrace sustainable development.

7.3. Limitations and Prospects

This study also has some limitations. First, due to data availability, some variables
that may affect energy efficiency and environmental regulation cannot be included in the
empirical study, such as the vintage of the power generation. However, we have done our
best to collect data and include possible influencing factors into the model. Second, our
sample period is 2004–2019. However, the intensified trade friction between China and
the United States in 2018 may have affected the behavior of Chinese economic actors and
disrupted economic laws. Therefore, it is necessary to exclude the data of some special
years for research. We excluded the data of 2018–2019 for the robustness test, and the
findings were similar to the estimates for the full sample period. This shows that our
findings are still valid. Finally, the mechanism of the relationship between environmental
regulation and energy efficiency is revealed through natural language. Compared with
establishing mathematical models and then strictly carrying out logical reasoning, this is
not rigorous enough. However, we have collected a large number of references to explain
their logical relationship.

Future research on environmental regulation and energy efficiency can be carried out
from the following aspects: (1) With the advent of the era of big data, we can collect data
through various technologies and approaches. Issues related to energy efficiency can be
better studied using big data. (2) Mathematical models can be established. Mathematical
models perform rigorous logical reasoning under the given assumptions. This avoids
the uncertainty of verbal derivation. (3) The estimation model of energy efficiency can
be improved to make a more reasonable estimation of energy efficiency. (4) The effect of
different types of environmental regulations on energy efficiency is valuable. The energy
efficiency-related issues of different sub-sectors and different sub-regions are also worthy
of further study.
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