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Abstract: Active remanufacturing is an important technique that is used to reduce the uncertainty of
the quality of remanufactured cores. However, the implementation of active remanufacturing too
early or late will lead to a reduction in economic benefits and an increase in environmental impact dur-
ing the whole life cycle of the product. To this end, an active-remanufacturing-timing decision method
is proposed based on an economic, energy and environmental (3E) analysis of product life cycle. In
this method, the quantitative function of the cost, energy consumption and environmental emissions
of used products in the manufacturing stage, service stage, and remanufacturing stage are firstly
constructed based on life-cycle assessment (LCA) and life-cycle cost (LCC). Then, a multi-objective
optimization method and the particle swarm algorithm are utilized to obtain active-remanufacturing
timing with the optimal economic and environmental benefits of remanufacturing. Finally, a case
study on remanufacturing on used engines is demonstrated to validate the proposed method.

Keywords: active remanufacturing; 3E analysis; LCA; LCC; multi-objective optimization; particle
swarm algorithm

1. Introduction

Remanufacturing is a green manufacturing technology that can effectively utilize
used products and has become an important contributor to the development of a circular
economy [1]. The remanufacturing of used products provides products of the same quality
as new ones, and effectively reduces economic input, resource consumption and environ-
mental pollution [2]. However, the current raw materials for remanufacturing (cores) are
mainly derived from scrapped products, which denotes typical end-of-life cycle reman-
ufacturing [3]. The quality of these cores varies widely due to uncertainty and variation
in the degree of damage forms in the service process of products, leading to a difficult
remanufacturing craftsmanship and inefficient process, which limits the remanufactur-
ing industry’s growth. [4]. Therefore, it is essential to start from a life-cycle perspective,
progressing through comprehensive decision-making, to choose the best time to imple-
ment active remanufacturing during the service period of the product, so as to prevent
the “remanufacturing in advance” or “overuse” of cores, and realize the comprehensive
optimization of technology, economy and environment in the product life cycle.

A lot of research has been conducted in the field of the timing for active remanufac-
turing. Ke et al. [5] identified the active-remanufacturing-timing domain decision method
by analyzing the life-cycle service value of electromechanical products. By defining the
energy-consumption characteristic as the main index, they were able to determine the ideal
active remanufacturing timing. Wang et al. [6] obtained the best active-remanufacturing
temporal arrangement by analyzing the dependability changes in a mechanical device
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product in commission. Liu et al. [7] considered the value-per-unit temporal order to mini-
mize services because of the improvement objective, and acquired the best remanufacturing
recovery temporal order. Gong et al. [8] proposed a non-empirical hybrid multi-attribute
decision-making method, which mitigates well the influence of the subjective factors of
designers. Zhang et al. [9] presented the remanufacturing timing computing method with
the optimal carbon-emission reduction benefit in engines, and the ideal active remanu-
facturing timing for carbon-emission reduction benefit was discovered by studying the
system boundaries of engines. In view of the problems of energy scarcity and the envi-
ronment, Ma et al. [10,11] proposed an energy-efficiency-rating (ege) method based on
energy-efficiency rating (IEE) and a processing system energy-assessment method based
on the data-processing grouping method (GMDH), which is helpful for the energy manage-
ment decisions of manufacturing enterprises. Song et al. [12] comprehensively considered
the fatigue and wear of crankshafts, and obtained the best active remanufacturing temporal
arrangement of crankshafts. Wang et al. [13] provided an online monitoring signals model
to analyze the optimal timing of the active remanufacturing of the crankshafts.

The aforementioned studies provide a useful reference for the timing decision of
active remanufacturing. Nevertheless, a large portion of the research [14,15] has either
focused only a certain damaged characteristic of the product, or only taken cost, energy
consumption, carbon emissions and other single factors into consideration to determine
the timing of active remanufacturing. Few studies [12,16] on the timing of active remanu-
facturing consider both economic and environmental factors, and appropriate integration
methodologies are still lacking. To this end, based on the 3E analysis of product life cycle, a
multi-objective optimization model of active remanufacturing timing decisions is estab-
lished, and the particle swarm algorithm is used to ascertain the ideal remanufacturing
timing for economic and environmental benefits, which provides methodological support
for the remanufacturing of used engines.

The remainder of this paper is organized as follows: the second part introduces
the method of this article, including two stages of product-life-cycle 3E analysis and
multi-objective optimization solutions. The third part is the case study. The fourth part
summarizes the conclusions and future work.

2. Methodology

Active remanufacturing is for products in service, according to the failure rule of
products over time, the bathtub curve (as shown in Figure 1). According to the different
time points of active remanufacturing, it can be divided into “remanufacturing in advance”
and “overuse”. There will also be an optimal time for active remanufacturing between
these two stages. The implementation of remanufacturing at this moment can effectively
prevent the core from being remanufactured in advance or overused.
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Figure 1. Curve of product-failure process.

In this paper, economic, energy and environmental (3E) analysis is used as the
performance indicators of the active-remanufacturing-timing research. However, they
have different curves over time. If the 3E parameters are also used as the basis for the
active-remanufacturing timing decision, three different active-remanufacturing time points
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t1, t2, and t3 will be obtained. Therefore, conflict resolution is needed first, and then the
active remanufacturing timing is obtained from a comprehensive perspective, as shown
in Figure 2.
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2.1. 3E Analysis of Product Life Cycle

Product-life-cycle 3E analysis is a method to quantify the economic, energy, and envi-
ronmental impact of a product during its life cycle [17]. Its advantages include full-process
analysis and extensive coverage. When researching the timing of active remanufacturing,
the manufacturing-stage, service-stage, and remanufacturing-stage cost, energy consump-
tion and environmental emissions in the product life cycle are important factors that need
to be considered. By analysing the functional relationship between them and time, one will
offer effective steering for the choice of active-remanufacturing temporal arrangements.

2.1.1. LCA and LCC Methods

Life-cycle assessment (LCA) is used to evaluate the environmental factors of the
product life cycle and its potential impact technology. It can quantitatively analyze and
calculate the energy consumption consumed throughout the life cycle of a product (e.g.,
mining raw materials, product processing and manufacturing, transportation, recycling
and recycling, etc.) and material consumption and discharged waste, to achieve a series of
processes with the best environmental impact [18,19]. As the performance of products varies
in different stages of the life cycle, LCA needs to be used to analyze the environmental and
energy impacts of each stage. Life-cycle cost (LCC) is a method of systematically evaluating
all the related costs of a project, product, or service in the life cycle. This includes all costs
from the design stage, raw material processing, product manufacturing, transportation
and end-of-life, and even the recycling phase. It is a guideline for evaluating the economic
benefits of a product or making decisions on the modification of the plan by analyzing and
calculating the cost of each stage of the product [20,21]. Through the combination of LCA
and LCC, from the perspective of life-cycle impact assessment and economic analysis, the
practicability of traditional LCA is improved, and the importance of balancing economic
and environmental benefits is reflected.

2.1.2. Energy Analysis

The function of product energy consumption with time has strong regularity, which
can effectively reflect the quality degradation law of products in service, and is an important
index to be considered in the timing decision of active remanufacturing.
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(1) Manufacturing stage

The product producing stage includes: material mining, extraction, forging, machin-
ing, and assembly, etc. In line with the method sort, the energy consumption within
the producing stage EM includes: energy usage of materials processing Ea, and energy
consumption of core processing Eb.

Taking into account that the categories of raw material is n, the mass of the processed
ith raw material is mi and the energy consumption per unit mass is Emi. Consequently, the
energy needed to process raw materials is:

Ea =
n

∑
i=1

miemi, (i = 1, 2, 3 . . . , n) (1)

Suppose the primary processing step is J and the specific energy depletion of the kth
process is ek, Each procedure’s quality of material eliminated is mk. Therefore, the energy
consumption of core processing is:

Eb =
j

∑
k=1

ekmk, (k = 1, 2, 3 . . . , j) (2)

The amount of energy used throughout the production process EM is:

EM = Ea + Eb (3)

(2) Service stage

The energy loss produced by the wear of critical engine parts accounts for the majority
of the energy consumption during the servicing stage. By recording the consumption of
multiple energy types under different usage times, the energy consumption of the service
phase can be linear fitted.

EU(t) = ETi(t)ECFi (4)

where ETi(t) is ith type energy-consumption function, which is related to time and ECFi is
ith type energy-consumption factor.

(3) Remanufacturing stage

The remanufacturing process of used products includes: disassembly, cleaning, re-
pair, subsequent processing, inspection, reassembly, etc. The remanufacturing process of
products under different service periods is very different. The energy consumption in the
remanufacturing period can be calculated depended on the energy-consumption checklist
when the product is completely scrapped:

ER(t) =
n

∑
i=1

Eiλi(t) (5)

where Ei is the total energy used by various procedures throughout the remanufacturing
step, λi(t) is the energy conversion rate, which is the percentage of the energy consumption
of the ith process in the tth year of service to the energy consumption of the ith process
when it is scrapped.

The average annual energy-consumption function is:

f1(t) =
EM + EU(t) + ER(t)

t
(6)

2.1.3. Economic Analysis

Controlling the cost of the product’s life cycle is of great significance for maximizing
economic benefits, and it is also a key factor that cannot be ignored in the study of active
remanufacturing timing.
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(1) Manufacturing stage

The cost of the product-manufacturing stage includes the purchase cost of raw mate-
rials and the cost of electricity consumption. Suppose the unit quality raw material price
is ai CNY, and the unit power consumption cost is b CNY. The cost of the product in the
manufacturing stage is:

CM =
n

∑
i=1

aimi + EMb (7)

(2) Service stage

As the cost of products in the service period mainly includes the cost of using energy
such as electric energy or chemical energy. Suppose the price per unit of energy is bi CNY.
The cost of products in the service phase is:

CU(t) = EU(t)bi (8)

(3) Remanufacturing stage

The cost of the remanufacturing stage mainly includes the cost of using electric en-
ergy. Assuming the price of unit electric energy is d CNY, the cost of the product in the
remanufacturing stage is:

CR(t) = ER(t)d (9)

The annual-average-cost function is:

f2(t) =
CM + CU(t) + CR(t)

t
(10)

2.1.4. Environmental Analysis

In the face of depletion of natural resources and environmental damage, environmental
benefits have received increasing attention from enterprises. Environmental emissions are
also one of the important indicators to be considered when making active remanufacturing
timing decisions.

(1) Manufacturing stage

The consumption of crude oil, coal, and natural gas contributes to environmental
emissions during the product-manufacturing stage, while the consumption of electricity
contributes to environmental emissions during the raw-material-processing stage. Assum-
ing uk

i is the total amount of the ith contaminant generated by the kth energy per unit mass,
the amount of electricity energy expended during core processing is Eb, and wk is the mass
of the kth contaminant created by an electricity-generating unit; there are l categories of
environmental emissions.

WM =

[
n

∑
i=1

miu1
i

n

∑
i=1

miu2
i . . .

n

∑
i=1

miuk
i

n

∑
i=1

miul
i

]T

+ Eb
[
w1 w2 · · · wk wl

]T (11)

(2) Service stage

Assuming that there are n types of environmental emissions produced by the product
during service, bi is the mass of pollutants produced by the combustion of unit mass energy.
The environmental emissions during the service stage are:

WU(t) = EU(t)[b1b2 · · · bkbn]
T (12)
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(3) Remanufacturing stage

The main energy consumption in the remanufacturing craft of used products is elec-
trical energy; ri is the quality of pollutants generated per unit of electricity energy. The
environmental emissions at the remanufacturing stage are:

WR(t) = ER(t)[r1r2 · · · rkrn]
T (13)

The annual average environmental emission function is:

f3(t) =
WM + WU(t) + WR(t)

t
(14)

2.2. Modeling and Solving the Multi-Objective Optimization Problem

Multi-objective optimization problems are common in various subject areas. They
usually use multiple criteria or multiple objectives as research objects. In the actual decision-
making process, each goal is constrained or affected by other goals. Therefore, most
multi-objective optimizations cannot achieve the best results at the same time. The ob-
jective function, decision variables, and constraints are the three major elements of a
multi-objective optimization problem [22].

2.2.1. Normalization of Multiple Objective Functions

For linear function models, converting multiple objective functions into a single objec-
tive function is an effective solution method. In this paper, the cost, energy-consumption
and environmental-emission functions can all be fitted as linear functions. Before the
normalization of multi-objective functions, the functions should be dimensionless so that
they are in the same order of magnitude.

f ′i =
fi

fimax − fimin
(15)

where f ′i is processed function, fi is the function before processing, fimax is the maximum
value of the ith function, and fimin is the minimum value of the ith function.

The multiply–divide method is used to construct the multi-objective function into a one-
objective function, which can optimize the complex models and reduce the calculation amount.

f (t) =
[

f ′1(t)
]α1
[

f ′2(t)
]α2
[

f ′3(t)
]α3 · · ·

[
f ′k(t)

]αk (16)

where f (t) is processed function, f ′k(t) is the kth function, ai is weight value, αi ≥ 0,
1 ≤ i ≤ k, ∑k

i=1 αi = 1.

2.2.2. Objective Function of Optimization

The goal of optimization is to minimize the normalized function value within the
whole service cycle stage of the used products, so the optimized function model can be
expressed as: {

min f (t)
tmin < t < tmax

(17)

where f (t) is the normalized function, t is service time of the product, tmin is the min-
imum service time of the used products, and tmax is the maximum service time of the
used products.

2.2.3. Model Solving with Particle Swarm Optimization

Some global optimization algorithms, such as tabu search, a simulated annealing
algorithm, are limited by their respective mechanisms and structures. Therefore, it is
difficult for them to optimize complex multi-objective functions efficiently [23]. Particle
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swarm optimization is inspired by animal foraging behavior, and its group assistance and
random search can effectively solve complex function-optimization problems. Particle
swarm optimization algorithms address the basic characteristics of biological behavior in
nature using universal, simple survival rules, and then convert these characteristics and
rules into a computer language, achieving the goal of simulating the behavior of individual
organisms and solving complex problems in practice [24,25]. This method has been widely
used in the field of engineering. As a result, to optimize the solution, this work uses the
particle swarm optimization algorithm. The flowchart of particle swarm optimization is
shown in Figure 3.
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3. Case Study

The object of this study is the used engine; its service life is defined as 5 a. If the active
remanufacturing is implemented early, the service value of the product cannot be fully
utilized, so the engine service time t = 2, 3, 4, 5 a is set as the first active remanufacturing
timing. In addition, the system boundary is limited to that not involving the secondary
remanufacturing of the engine.

3.1. Annual Average Energy Consumption

(1) Manufacturing stage

This is the list of raw-material-processing energy usage (as shown in Table 1), and
parts-manufacturing process energy-consumption list (as shown in Table 2).

Table 1. List of energy consumption of raw material processing, kg.

List Substances Steel Cast Iron Aluminum Alloy

Coal 5.19 5.86 66.06 5.71
Crude 0.40 0.37 3.99 0.51

Natural gas 0.19 0.02 2.51 1.16
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Table 2. List of energy consumption in parts manufacturing process, kJ/kg.

Manufacturing Method of Core Casting Forging

Energy consumption 400 71.38

According to the data in the table and Formulas (12) and (13), the production stage’s
energy usage is:

EM = 16100.8 kW · h (18)

(2) Service stage

With the increase in service time, the wear of the key parts of the engine becomes
more and more serious, which leads to the deterioration of engine performance. In order to
ensure enough torque output, the engine’s fuel consumption will rise. When the engine
rated speed is 20, 000 r/min, and annual mileage is 50, 000 km, the energy consumption
during the service stage of the engine is:

EU(t) = 2896.7t3 − 15510t2 + 47093t + 3199.2 kW · h (19)

(3) Remanufacturing stage

The energy consumption of the engine remanufacturing stage depends on the process-
ing technology of each key part. The remanufacturing process of the crankshaft is: cleaning,
testing, remanufacturing, subsequent processing, inspection, etc.; the remanufacturing
course of the cylinder adopts the course of replacement method; the remanufacturing
course of the connecting rod is the replacement of the small end bushing, honing, boring
cutting, milling, etc. The list of energy consumption during the remanufacturing of key
engine components is shown in Table 3.

Table 3. Remanufacturing energy-consumption list of key engine parts, kW · h.

Process Clean Detection Subsequent Processing

Crankshaft 1.61 0.89 6.62
Connecting rod 0.48 2.8 0.11
Cylinder block 3.61 0.7 17.69
Cylinder head 3.09 13.44 0.21

The energy consumption in the remanufacturing phase of the engine is obtained
by fitting:

ER(t) = 103.3t3 − 690t2 + 2026.7t + 3380 kW · h (20)

Therefore, the average annual energy consumption function is:

f1(t) =
3000t3 − 16200t2 + 49119.7t + 22680

t
(21)

3.2. Annual Average Cost

(1) Manufacturing stage

The cost of the manufacturing stage includes raw-material purchase cost, processing
cost and energy-consumption cost. According to current market prices, a ton of coal is
499 Yuan, a barrel of crude oil is 290 Yuan, a cubic meter of natural gas is 3 Yuan, the
price of industrial electricity is 1 Yuan per kilowatt hour, and a ton of steel is 3800 Yuan.
Therefore, the cost of the manufacturing stage is:

CM = 2081.2 Yuan (22)
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(2) Service stage

The additional fuel consumption caused by performance degradation during the
service stage of the engine is the maintenance cost of the engine-maintenance stage. The
present market price of one ton of diesel is 5300 Yuan. The cost during the service stage of
the engine is:

CU(t) = 96.667t3 − 678t2 + 1093.3t + 1432 Yuan (23)

(3) Remanufacturing stage

The cost of the engine-remanufacturing stage primarily includes the use cost of electric
energy, and the purchase cost of nickel chromium and nickel. According to the cur-
rent market price, the price of a ton of nickel is 100, 000 Yuan, and the price of a ton of
nickel–chromium alloy is 135, 000 Yuan. The cost during the remanufacturing stage of the
engine is:

CR(t) = 4066.6t− 1448.2 Yuan (24)

Therefore, the average annual cost function is:

f2(t) =
96.667t3 − 678t2 + 5159.9t + 1565

t
(25)

3.3. Annual Average Environmental Emissions

(1) Manufacturing stage

Coal, crude oil, natural gas, and other raw materials are used in the raw-material
processing process, the core-processing process consumes electricity; these processes will
produce CO, CO2, SO2, NOx, CH4. Environmental emissions during the manufacturing
stage are:

WM =


CO
CO2
SO2
NOx
CH4

 =


3.05× 10−1

1.08× 103

2.88
1.89
2.72

 kg (26)

(2) Service stage

The environmental emissions generated by each ton of diesel consumed by the engine
are shown in Table 4.

Table 4. List of environmental emissions from diesel combustion, kg.

Pollutants CO2 CO CH4 SO2 NOx

Value 3.19 × 103 11.00 5.91 × 10−2 1.00 × 10−1 9.34

During the service stage of the engine, the main consumption is diesel. The environ-
mental emissions generated are CO, CO2, SO2, NOx, CH4

WU(t) =


CO
CO2
SO2
NOx
CH4

 = EU(t)


1.22× 10−4

3.54× 10−2

0.11× 10−6

1.37× 10−4

6.57× 10−5

kg (27)
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(3) Remanufacturing stage

The environmental emissions produced during the engine-remanufacturing stage are
mainly related to the electrical-energy consumption.

WR(t) =


CO
CO2
SO2
NOx
CH4

 = ER(t)


2.28× 10−6

1.01× 10−2

3.52× 10−5

2.91× 10−5

2.99× 10−7

kg (28)

Therefore, the average annual environmental emission function is:

f3(t) =
−0.0017t3 + 78.5t2 + 704.7667t + 708.4

t
(29)

3.4. Multi-Objective Optimization Solution

First, the three functions are characterized so that they are of the same magnitude,
as follows:

f1
′(t) =

f1(t)
23550

, f2
′(t) =

f2(t)
587

, f3
′(t) =

f3(t)
63

(30)

Second, the multi-objective function is transformed to a one-objective function by the
multiply–divide method. In this paper, the weight coefficients of energy consumption, cost,
and environmental emissions were chosen as 0.25, 0.50, 0.25, respectively. Therefore, the
optimization model is:

min f (t) = f1
′(t)0.25 f2

′(t)0.5 f3
′(t)0.25 (31)

s.t.
2 < t < 5

(32)

To put the particle swarm algorithm into practice, a program is written in MATLAB;
the particle swarm algorithm’s parameters are as follows: population size N = 100, particle
dimension D = 1, the number of evolution X = 50, maximum flying speed of particles
Vmax = 0.5 m/s, minimum flying speed of particles Vmin = −0.5 m/s. The minimum
timing for active remanufacturing is t = 2 a; the maximum timing for active remanufac-
turing is t = 5 a. The above data and functions were incorporated into the particle swarm
algorithm, and an iterative flowchart of optimal timing for active remanufacturing based
on the particle swarm algorithm was finally obtained, as shown in Figure 4.
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The iterative flowchart of the particle swarm algorithm shows that the optimal solution
reaches stability at the 30th generation of the population. The optimal timing for active
remanufacturing is t= 3.381 a.

4. Conclusions

This work proposes an active-remanufacturing-timing research method based on a
3E analysis of product life cycle, which effectively prevents remanufactured cores from
being remanufactured in advance or overused. The LCA and LCC are integrated in this
model to analyze the energy, economic and environmental impacts of the product manu-
facturing stage, service stage, and remanufacturing stage. For the active-remanufacturing
timing of average annual energy consumption, a multi-objective optimization model was
also constructed, including cost and environmental emissions, and the model was solved
using a particle swarm approach. A diesel engine of the X15 series manufactured by a
company is used as an example; the efficacy of the proposed strategy was demonstrated.
According to the diesel-engine design manual and the actual working condition of the
X15 series diesel engine, the overhaul time of the general diesel engine is about the third
year after service, and the active-remanufacturing time obtained by the product life cycle
3E analysis is 3.381 years, which is close to the overhaul time of a diesel engine and can
be applied to other diesel engines. The work presented here not only introduces a timing
decision-making method for proactive remanufacturing, but it also provides methodologi-
cal support for a 3E analysis of a product life cycle, which may play an important role in
the cleaner production of enterprises.

In future work, the stages of the life cycle can be analyzed in more detail, covering
topics such as the product transportation process and scrap process. In addition, more
efficient algorithms can be developed to enhance the correctness of outcomes when solving
the model.
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