Evaluation of Effective Elastic Properties for Wood–Cement Composites: Experimental and Computational Investigations
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mix Design and Extrusion of Wood–Cement Composites (WCC)
2.3. Mechanical Tests
3. Predictive Numerical Modeling
3.1. Analytical Homogenization Models
- VR bounds
- Upper and lower HS bounds, HS+ and HS−
- Mori–Tanaka model
3.2. Numerical Simulations
3.2.1. Mesh of Microstructures
3.2.2. Boundary Conditions and Mesh Density
3.2.3. Estimation of the Effective Elastic Properties
4. Conclusions
- The Young’s modulus of wood–cement composites decreases with the increase in WP content. Two behavioral phases can be observed. An almost linear drop in the normalized modulus of elasticity as a function of the WP rate, up to a rate of 35%. This volume corresponds to the percolation threshold of the wood particles in the mixture. From this level and extending to a volume of 46%, the loss of mechanical properties in compression is considerable. Above a 40% WP volume, the higher WP in WCC exerts a very low influence on the mechanical properties of composites.
- The estimation of the Young’s modulus by homogenization analytical method shows that the Mori–Tanaka model (MT) and upper Hashin and Shtrikman bounds (HS) allow a good approximation of mechanical properties in the case of a low proportion of wood particles in the mixture. Beyond 35% WP volume, conventional homogenization models are not appropriate to approximate the mechanical properties. Indeed, the percolation of wood particles and cement hydration disturbances result in a poor assessment of the modulus of elasticity.
- The numerical homogenization procedure was performed using the finite elements method based on a representative volume element (RVE). The contrast between the numerical results and experimental approach allow a good approximation of mechanical properties up to a 35% threshold volume. Beyond the percolation threshold, the numerical microstructure does not match the actual microstructure. In addition, the inhibition of the cement hydration may be greater. However, this poor estimation can also depend on the experimental sample size, which is no longer representative for large volume fractions. It seems legitimate to question the effect of specimen size on the elastic properties for proportions varying from 40% to 50%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Banthia, N. Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 2016, 68, 96–108. [Google Scholar] [CrossRef]
- John, M.J.; Thomas, S. Biofibres and biocomposites. Carbohydr. Polym. 2008, 71, 343–364. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 2011, 25, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Bui, T.T.H.; Boutouil, M.; Sebaibi, N.; Levacher, D. Effect of Coconut Fiber Content on the Mechanical Properties of Mortars. Acad. J. Civ. Eng. 2019, 37, 300–307. [Google Scholar] [CrossRef]
- Agopyan, V.; Savastano, H.; John, V.; Cincotto, M. Developments on vegetable fibre–cement based materials in São Paulo, Brazil: An overview. Cem. Concr. Compos. 2005, 27, 527–536. [Google Scholar] [CrossRef]
- Silva, F.D.A.; Filho, R.D.T.; Filho, J.D.A.M.; Fairbairn, E.D.M.R. Physical and mechanical properties of durable sisal fiber–cement composites. Constr. Build. Mater. 2010, 24, 777–785. [Google Scholar] [CrossRef]
- Savastano, H.J.; Turner, A.; Mercer, C.; Soboyejo, W.O. Mechanical behavior of cement-based materials reinforced with sisal fibers. J. Mater. Sci. 2006, 41, 6938–6948. [Google Scholar] [CrossRef]
- Tonoli, G.; Savastano, H., Jr.; Fuente, E.; Negro, C.; Blanco, A.; Lahr, F.R. Eucalyptus pulp fibres as alternative reinforcement to engineered cement-based composites. Ind. Crop. Prod. 2010, 31, 225–232. [Google Scholar] [CrossRef]
- Sudin, R.; Swamy, N. Bamboo and wood fibre cement composites for sustainable infrastructure regeneration. J. Mater. Sci. 2006, 41, 6917–6924. [Google Scholar] [CrossRef]
- Chabannes, M.; Bénézet, J.-C.; Clerc, L.; Garcia-Diaz, E. Use of raw rice husk as natural aggregate in a lightweight insulating concrete: An innovative application. Constr. Build. Mater. 2014, 70, 428–438. [Google Scholar] [CrossRef]
- Savastano, H.; Agopyan, V. Transition zone studies of vegetable fibre-cement paste composites. Cem. Concr. Compos. 1999, 21, 49–57. [Google Scholar] [CrossRef]
- Page, J.; Sonebi, M.; Amziane, S. Design and multi-physical properties of a new hybrid hemp-flax composite material. Constr. Build. Mater. 2017, 139, 502–512. [Google Scholar] [CrossRef] [Green Version]
- Page, J.; Djelal, C.; Vanhove, Y. Optimisation of vibrocompaction process for wood-based concrete blocks. Int. J. Adv. Manuf. Technol. 2020, 109, 1189–1204. [Google Scholar] [CrossRef]
- Momoh, E.O.; Osofero, A.I. Recent developments in the application of oil palm fibers in cement composites. Front. Struct. Civ. Eng. 2020, 14, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Bilba, K.; Arsene, M.-A.; Ouensanga, A. Sugar cane bagasse fibre reinforced cement composites. Part I. Influence of the botanical components of bagasse on the setting of bagasse/cement composite. Cem. Concr. Compos. 2003, 25, 91–96. [Google Scholar] [CrossRef]
- Page, J.; Amziane, S.; Gomina, M.; Djelal, C.; Audonnet, F. Using linseed oil as flax fibre coating for fibre-reinforced cementitious composite. Ind. Crop. Prod. 2021, 161, 113168. [Google Scholar] [CrossRef]
- Magniont, C.; Escadeillas, G. Chemical Composition of Bio-Aggregates and Their Interactions with Mineral Binders. In Bio-aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM; RILEM State-of-the-Art Reports; Amziane, S., Collet, F., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–37. ISBN 978-94-024-1031-0. [Google Scholar]
- Page, J.; Khadraoui, F.; Gomina, M.; Boutouil, M. Hydration of flax fibre-reinforced cementitious composites: Influence of fibre surface treatments. Eur. J. Environ. Civ. Eng. 2021, 1–23. [Google Scholar] [CrossRef]
- Wei, Y.M.; Tomita, B.; Hiramatsu, Y.; Miyatake, A.; Fujii, T. Study of hydration behaviors of wood-cement mixtures: Compatibility of cement mixed with wood fiber strand obtained by the water-vapor explosion process. J. Wood Sci. 2002, 48, 365–373. [Google Scholar] [CrossRef]
- Govin, A.; Peschard, A.; Guyonnet, R. Modification of cement hydration at early ages by natural and heated wood. Cem. Concr. Compos. 2006, 28, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Page, J.; Khadraoui, F.; Gomina, M.; Boutouil, M. Influence of different surface treatments on the water absorption capacity of flax fibres: Rheology of fresh reinforced-mortars and mechanical properties in the hardened state. Constr. Build. Mater. 2019, 199, 424–434. [Google Scholar] [CrossRef]
- Ramakrishna, G.; Sundararajan, T. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study. Cem. Concr. Compos. 2005, 27, 547–553. [Google Scholar] [CrossRef]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Glé, P.; Gourdon, E.; Arnaud, L. Acoustical properties of materials made of vegetable particles with several scales of porosity. Appl. Acoust. 2011, 72, 249–259. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Marković, B.; Gojević, A.; Brdarić, J. Effect of hemp fibers on fire resistance of concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Lo, T.Y.; Tang, W.; Cui, H. The effects of aggregate properties on lightweight concrete. Build. Environ. 2007, 42, 3025–3029. [Google Scholar] [CrossRef]
- Delannoy, G.; Marceau, S.; Glé, P.; Gourlay, E.; Guéguen-Minerbe, M.; Amziane, S.; Farcas, F. Durability of hemp concretes exposed to accelerated environmental aging. Constr. Build. Mater. 2020, 252, 119043. [Google Scholar] [CrossRef]
- Filho, R.D.T.; Scrivener, K.; England, G.L.; Ghavami, K. Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cem. Concr. Compos. 2000, 22, 127–143. [Google Scholar] [CrossRef]
- Filho, R.D.T.; Ghavami, K.; England, G.L.; Scrivener, K. Development of vegetable fibre–mortar composites of improved durability. Cem. Concr. Compos. 2003, 25, 185–196. [Google Scholar] [CrossRef]
- Hosseinpourpia, R.; Varshoee, A.; Soltani, M.; Hosseini, P.; Tabari, H.Z. Production of waste bio-fiber cement-based composites reinforced with nano-SiO2 particles as a substitute for asbestos cement composites. Constr. Build. Mater. 2012, 31, 105–111. [Google Scholar] [CrossRef]
- Hosseini, P.; Booshehrian, A.; Farshchi, S. Influence of Nano-SiO2 Addition on Microstructure and Mechanical Properties of Cement Mortars for Ferrocement. Transp. Res. Rec. J. Transp. Res. Board 2010, 2141, 15–20. [Google Scholar] [CrossRef]
- Aigbomian, E.P.; Fan, M. Development of Wood-Crete building materials from sawdust and waste paper. Constr. Build. Mater. 2012, 40, 361–366. [Google Scholar] [CrossRef]
- Sales, A.; de Souza, F.R.; Almeida, F.C. Mechanical properties of concrete produced with a composite of water treatment sludge and sawdust. Constr. Build. Mater. 2011, 25, 2793–2798. [Google Scholar] [CrossRef]
- Engone, J.G.N.; Vanhove, Y.; Djelal, C.; Kada, H. Optimizing mortar extrusion using poplar wood sawdust for masonry building block. Int. J. Adv. Manuf. Technol. 2018, 95, 3769–3780. [Google Scholar] [CrossRef]
- Belhadj, B.; Bederina, M.; Montrelay, N.; Houessou, J.; Quéneudec, M. Effect of substitution of wood shavings by barley straws on the physico-mechanical properties of lightweight sand concrete. Constr. Build. Mater. 2014, 66, 247–258. [Google Scholar] [CrossRef]
- Mohammed, B.S.; Abdullahi, M.; Hoong, C. Statistical models for concrete containing wood chipping as partial replacement to fine aggregate. Constr. Build. Mater. 2014, 55, 13–19. [Google Scholar] [CrossRef]
- Berra, M.; Mangialardi, T.; Paolini, A.E. Reuse of woody biomass fly ash in cement-based materials. Constr. Build. Mater. 2015, 76, 286–296. [Google Scholar] [CrossRef]
- Udoeyo, F.F.; Inyang, H.; Young, D.T.; Oparadu, E.E. Potential of Wood Waste Ash as an Additive in Concrete. J. Mater. Civ. Eng. 2006, 18, 605–611. [Google Scholar] [CrossRef]
- Yasuda, S.; Ima, K.; Matsushita, Y. Manufacture of wood-cement boards VII: Cement-hardening inhibitory compounds of hannoki (Japanese alder, Alnus japonica Steud.). J. Wood Sci. 2002, 48, 242–244. [Google Scholar] [CrossRef]
- Papadopoulos, A.N. An investigation of the suitability of some Greek wood species in wood-cement composites manufacture. Holz Roh Werkst. 2007, 65, 245–246. [Google Scholar] [CrossRef]
- Oyagade, A.O. Effect of Cement/Wood Ratio on the Relationship between Cement Bonded Particleboard Density and Bending Properties. J. Trop. For. Sci. 1990, 2, 211–219. [Google Scholar]
- Okino, E.Y.; de Souza, M.R.; Santana, M.A.; Alves, M.V.S.; de Sousa, M.E.; Teixeira, D.E. Physico-mechanical properties and decay resistance of Cupressus spp. cement-bonded particleboards. Cem. Concr. Compos. 2005, 27, 333–338. [Google Scholar] [CrossRef]
- Beltran, M.S.; Schlangen, E. Wood Fibre Reinforced Cement Matrix: A Micromechanical Based Approach. Key Eng. Mater. 2008, 385–387, 445–448. [Google Scholar] [CrossRef]
- Djelal, C.; Page, J.; Kada, H.; Vanhove, Y. Feasibility study of using poplar wastes as sand in cement mortars. J. Mater. Cycles Waste Manag. 2020, 22, 488–500. [Google Scholar] [CrossRef]
- Bentur, A. Fibre Reinforced Cementitious Composites, 2nd ed.; Modern Concrete Technology Series; Taylor & Francis: London, UK; New York, NY, USA, 2007; ISBN 978-0-415-25048-1. [Google Scholar]
- Wei, Y.M.; Zhou, Y.G.; Tomita, B. Hydration behavior of wood cement-based composite I: Evaluation of wood species effects on compatibility and strength with ordinary portland cement. J. Wood Sci. 2000, 46, 296–302. [Google Scholar] [CrossRef]
- Fan, M.; Ndikontar, M.K.; Zhou, X.; Ngamveng, J.N. Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Constr. Build. Mater. 2012, 36, 135–140. [Google Scholar] [CrossRef]
- Mouhmid, B.; Imad, A.; Benseddiq, N.; Benmedakhène, S.; Maazouz, A. A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation. Polym. Test. 2006, 25, 544–552. [Google Scholar] [CrossRef]
- Voigt, W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 1889, 274, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Met. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Bary, B.; Ben Haha, M.; Adam, E.; Montarnal, P. Numerical and analytical effective elastic properties of degraded cement pastes. Cem. Concr. Res. 2009, 39, 902–912. [Google Scholar] [CrossRef]
- Bentz, D.P. Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development. J. Am. Ceram. Soc. 1997, 80, 3–21. [Google Scholar] [CrossRef]
- Béjaoui, S.; Bary, B.; Nitsche, S.; Chaudanson, D.; Blanc, C. Experimental and modeling studies of the link between microstructure and effective diffusivity of cement pastes. Rev. Eur. Génie Civ. 2006, 10, 1073–1106. [Google Scholar] [CrossRef]
- Bishnoi, S.; Scrivener, K.L. µic: A new platform for modelling the hydration of cements. Cem. Concr. Res. 2009, 39, 266–274. [Google Scholar] [CrossRef]
- Nagai, G.; Yamada, T.; Wada, A. Stress Analysis of Concrete Material Based on Geometrically Accurate Finite Element Modeling. In Proceedings of FRAMCOS-3; AEDIFICATIO Publishers: Freiburg, Germany, 1998; pp. 1077–1086. [Google Scholar]
- Wriggers, P.; Moftah, S. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elements Anal. Des. 2006, 42, 623–636. [Google Scholar] [CrossRef]
- Caballero, A.; López, C.; Carol, I. 3D meso-structural analysis of concrete specimens under uniaxial tension. Comput. Methods Appl. Mech. Eng. 2006, 195, 7182–7195. [Google Scholar] [CrossRef]
- Escoda, J.; Jeulin, D.; Willot, F.; Toulemonde, C. Three-dimensional morphological modelling of concrete using multiscale Poisson polyhedra. J. Microsc. 2015, 258, 31–48. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Guo, Z.; Stroeven, P.; Stroeven, M.; Sluys, L.J. Strategy on Simulation of Arbitrary-Shaped Cement Grains in Concrete. Image Anal. Ster. 2011, 29, 79–84. [Google Scholar] [CrossRef]
- El Moumen, A.; Kanit, T.; Imad, A.; Minor, H.E. Effect of overlapping inclusions on effective elastic properties of composites. Mech. Res. Commun. 2013, 53, 24–30. [Google Scholar] [CrossRef]
- EL Moumen, A.; Kanit, T.; Imad, A.; El Minor, H. Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: Statistical and numerical approaches. Mech. Mater. 2015, 83, 1–16. [Google Scholar] [CrossRef]
- Lippmann, N.; Steinkopff, T.; Schmauder, S.; Gumbsch, P. 3D-finite-element-modelling of microstructures with the method of multiphase elements. Comput. Mater. Sci. 1997, 9, 28–35. [Google Scholar] [CrossRef]
Volume Ratio | Concentrations (kg/m3) | ||||||
---|---|---|---|---|---|---|---|
Mix Design | δ (C +W) | δ (S) | δ (WP) | Cement | Water | Sand | Wood Particles |
WCC0 | 40% | 60% | 0% | 488 | 244 | 1568 | 0 |
WCC23 | 40% | 37% | 23% | 646 | 194 | 985 | 91 |
WCC26 | 40% | 34% | 26% | 646 | 194 | 806 | 114 |
WCC32 | 40% | 28% | 32% | 646 | 194 | 730 | 125 |
WCC35 | 40% | 25% | 35% | 646 | 194 | 653 | 137 |
WCC40 | 40% | 20% | 40% | 646 | 194 | 501 | 159 |
WCC46 | 40% | 14% | 46% | 646 | 194 | 348 | 182 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndong Engone, J.G.; El Moumen, A.; Djelal, C.; Imad, A.; Kanit, T.; Page, J. Evaluation of Effective Elastic Properties for Wood–Cement Composites: Experimental and Computational Investigations. Sustainability 2022, 14, 8638. https://doi.org/10.3390/su14148638
Ndong Engone JG, El Moumen A, Djelal C, Imad A, Kanit T, Page J. Evaluation of Effective Elastic Properties for Wood–Cement Composites: Experimental and Computational Investigations. Sustainability. 2022; 14(14):8638. https://doi.org/10.3390/su14148638
Chicago/Turabian StyleNdong Engone, Jean Gérard, Ahmed El Moumen, Chafika Djelal, Abdellatif Imad, Toufik Kanit, and Jonathan Page. 2022. "Evaluation of Effective Elastic Properties for Wood–Cement Composites: Experimental and Computational Investigations" Sustainability 14, no. 14: 8638. https://doi.org/10.3390/su14148638