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Abstract: Grassland vegetation is the largest terrestrial ecosystem in the Qinghai Lake Basin (QLB),
and it is also the most important means of production for herders’ livelihoods. Quantifying the
impact of climate change and human activities on grassland vegetation changes is an essential
task for ensuring the sustainable livelihood of pastoralists. To this end, we investigated vegetation
cover changes in the QLB from 2000 to 2020 using the normalized difference vegetation index
(NDVI), meteorological raster data, and digital elevation and used residual analysis of multiple linear
regression to evaluate the residuals of human activities. The residual analysis of partial derivatives
was used to quantify the contribution of climate change and human activities to changes in vegetation
cover. The results showed that: (1) The vegetation coverage of the QLB increased significantly
(0.002/a, p < 0.01), with 91.38% of the area showing a greening trend, and 8.62% of the area suffering
a degrading trend. The NDVI decreased substantially along the altitude gradient (−0.02/a, p < 0.01),
with the highest vegetation coverage at 3600–3700 m (0.37/a). The vegetation degraded from
3200–3300 m, vegetation greening accelerated from 3300–3500 m, and vegetation greening slowed
above 3500 m. (2) The contribution of climate change, temperature (T), and precipitation (P) to
vegetation cover change were 1.62/a, 0.005/a, and 1.615/a, respectively. Below 3500 m, the vegetation
greening was more limited by P. Above 3500 m, the vegetation greening was mainly limited by T.
(3) Residual analysis showed that the contribution of human activities to vegetation cover was
−1.618/a. Regarding the altitude gradient, at 3300–3500 m, human activities had the highest negative
contribution to vegetation coverage (−2.389/a), and at 3200–3300 m, they had the highest positive
contribution (0.389/a). In the past 21 years, the impact of human activities on vegetation coverage
changed from negative to positive. Before 2009, the annual average NDVIres value was negative; after
2010, the average yearly NDVIres value turned positive. In general, the vegetation greening of the
QLB depends on climate warming and humidification. The positive impact of human activities over
the past decade was also essential for vegetation greening. These findings deepen our understanding
of the QLB vegetation changes under climate change and human activities.

Keywords: NDVI; climate change; human activities; residual analysis; Qinghai Lake Basin

1. Introduction

As a significant component of the land-atmosphere system [1,2], vegetation fundamen-
tally regulates the material cycle and energy flow on the earth’s surface [3,4]—its changes
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may also affect climate through surface hydrothermal regulation and biological evolu-
tion [5–8]. In addition, vegetation is also the basis of economic and social development
in some regions [9], especially in the Qinghai-Tibet Plateau, where animal husbandry is
the primary livelihood [10]. Therefore, studying the relationship between vegetation cover
changes, climate, and human factors is of great significance in evaluating the ecological
security and sustainable livelihood of farmers and herders in the Qinghai-Tibet Plateau.

As the primary vegetation coverage monitoring method used in the past (sampling
method [11], instrument method [12]), field measurement can hardly meet the needs
of obtaining vegetation cover monitoring data covering an extensive range. With the
development of satellite remote sensing technology, RVI (rainfall variability index) [13],
DVI (difference vegetation index) [14], PVI (perpendicular vegetation index) [15], NDVI
(normalized difference vegetation index) [16], SAVI (soil-adjusted vegetation index) [17],
and other vegetation indices obtained from vegetation reflectance spectral characteristics
are widely used for large-scale vegetation monitoring. Among these, NDVI takes into
account the interference of the terrain and the vegetation canopy, eliminating the error
caused by radiation, and can well reflect the biomass and greenness of vegetation. It has
been proved to have high application value in response to environmental changes [18].
Therefore, NDVI has become a standard indicator for monitoring vegetation growth and
coverage density [19].

Vegetation change and its attribution to the Qinghai-Tibet Plateau have always been
hot topics for scholarly research. In the last 30 years, the NDVI of the Qinghai-Tibet Plateau
has increased significantly at a rate of 0.001–0.002/a [20,21]. The alpine grassland and alpine
meadow have been improved [22]. Climate change was considered one of the reasons for
vegetation cover changes [23]. Wu et al. found that temperature (T), precipitation (P), and
radiation energy explained 66.2% of the changes in the alpine grasslands on the Qinghai-
Tibet Plateau [24]. Liu et al. believed that P and active photosynthetic radiation were
the main factors affecting the NDVI variation of different grassland types on the Tibetan
Plateau [25]. In other regions within the Qinghai-Tibet Plateau, the impact of climatic
factors on NDVI exhibits noticeable spatial and temporal differences. In the semi-arid
and cold areas of the upper reaches of the Yarlung Zangbo River, herbs and shrubs were
susceptible to changes in P and T [26], while NDVI in the lower reaches was significantly
and positively correlated with surface T [27]. Chen et al. found that the difference in
climate change in the Qinghai-Tibet Plateau determined the spatial difference in vegetation
response. The correlation between the northern and southern parts of the plateau was
opposite to P and T, respectively. In the south part of the plateau, the greening trend slowed
down due to increased cooling and humidification, and some areas even deteriorated [28].
The IPCC Sixth Assessment Report pointed out that at the current rate of carbon dioxide
and other greenhouse gases emissions, the global T increase would reach or exceed 1.5 ◦C
over the next 20 years [29]. The response of vegetation change to climate change in the
Qinghai-Tibet Plateau would also persist. Fan et al. predicted that the future climate change
intensity would directly affect the rate of vegetation change on the Qinghai-Tibet Plateau,
especially regarding the altitude gradient, where the change of vegetation types in low
altitude and high cold areas could reach 7.54%/10 a–11.32%/10 a, respectively [30].

In addition, human activities are also an essential factor in the vegetation change of
the Qinghai-Tibet Plateau. On the one hand, the impact of human activities on vegetation
in the Qinghai-Tibet Plateau was smaller than that of climate factors [31], and the effect on
vegetation also changed from limiting to promoting. On the other hand, in the southern,
eastern [32], and northeastern [28] regions of the Qinghai-Tibet Plateau, human activities,
such as grazing, engineering construction, and the influx of tourists, have caused significant
disturbance to vegetation [32–34], resulting in a decline in NDVI values, alpine vegetation
degradation, and other issues. In summary, the NDVI and climatic factors of the Qinghai-
Tibet Plateau show spatial non-stationarity and scale dependence [35], which requires us to
pay attention to the dynamics of vegetation changes in different regions within the plateau.
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The human–land relationship is the focus of regional sustainability research [36].
Grasslands are not only the primary carrier of the human–land relationship on the Qinghai-
Tibet Plateau, but are also the most vulnerable to disturbance by human activities. Therefore,
a comprehensive multi-perspective study on the evolution of the grassland resources
environment and its interaction with climate and humans is important to maintain the
coordinated development of the human–nature–economic system. The Qinghai Lake Basin
(QLB) is located in the northeastern part of the Qinghai-Tibet Plateau, and it is a transitional
zone between the alpine region of the Qinghai-Tibet Plateau, the arid and semi-arid region
of the northwest, and the arid region of the Loess Plateau area. However, the specific
changes that have occurred in the vegetation of the QLB, especially the degree to which
climate change and human activities have affected the changes in vegetation cover, and
the main factors affecting the changes in the vegetation cover of the QLB have not been
studied quantitatively. To this end, based on the MODIS NDVI dataset, this research
evaluates the distribution and trend of vegetation cover in the QLB from 2000 to 2020,
reveals the residual trend of changes in vegetation cover caused by human activities over
the past 21 years, and quantifies the contribution of climate change and human activities to
vegetation cover dynamics from the two dimensions of space and altitude. The research
results will promote our understanding of the dynamic changes of the alpine steppe in the
northeastern Qinghai-Tibet Plateau and are significant for the targeted implementation of
regional ecological conservation.

2. Materials and Methods
2.1. The Study Area

The QLB is a closed inland basin (Figure 1), which is located in the northeastern
Qinghai-Tibet Plateau (36◦15′–38◦20′ N, 97◦50′–101◦20′ E), with an area of about
2.96 × 104 km2. China’s largest saltwater lake—Qinghai Lake—is located here. The
topographical altitude of the QLB decreases from northwest to southeast [37], and the
average elevation is above 3000 m. The QLB is distinguished by a typical continental
plateau climate, with intense solar radiation. In most areas, the average annual T is below
0 ◦C, and the average annual P is below 400 mm [38].
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The vegetation types in the QLB show the coexistence of temperate vegetation and
alpine vegetation. The main vegetation types are alpine grassland, alpine meadow, sandy
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vegetation, halophytic meadow, marsh meadow, etc.. Among these, the alpine meadow
is the most widely distributed area, mainly at the altitude of 3000–4000 m, accounting for
70.26% of the size of the QLB. In addition, the vertical zonal distribution of vegetation in
the QLB is apparent. At lower altitudes, the lake basin and river valley are dominated
by grassland vegetation such as Achnatherum splendens L., Stipa capillata L., and Agropyron
cristatum L. In contrast, alpine steppe, alpine shrub, and alpine meadow are the primary
vegetation types in the surrounding mountains and areas at higher altitudes [39].

Relying on the abundant grassland resources, the QLB has become an important
pastoral area on the Qinghai-Tibet Plateau, and grazing is the main livelihood of residents.
By the end of 2019, the total population of the QLB was 108,639, and the animal husbandry
population was 73,937, accounting for 12.03% of the total regional population [40].

2.2. Data Sources and Processing

We used NDVI to indicate the vegetation cover of QLB, which is derived from the
MOD13Q1 data product released by NASA (National Aeronautics and Space Administra-
tion) (https://search.earthdata.nasa.gov, accessed on 15 November 2021), with a temporal
resolution of 16 days and a spatial resolution of 250 m. Due to its higher resolution and
lower uncertainty, the MOD13Q1 data product has been widely used to study vegetation
change on the Qinghai-Tibet Plateau [41]. The digital elevation (DEM) data was sourced
from the China Geospatial Data Cloud Platform (http://www.gscloud.cn/, accessed on
12 January 2022), with a spatial resolution of 90 m. T and P were selected as climatic
elements affecting NDVI, which were obtained from the China’s National Earth System
Science Data Center (http://www.geodata.cn, accessed on 23 December 2021), with a
spatial resolution of 1 km. The population and GDP spatial distribution kilometer grid
dataset were obtained from the Resource and Environmental Science and Data Center of
the Institute of Geographical Sciences and Natural Resources Research, Chinese Academy
of Sciences (https://www.resdc.cn/, accessed on 8 February 2022), with a resolution of
1 km. The livestock data per unit area are derived from the statistical data of the towns in
Haibei, Hainan, and Haixi.

The above data were preprocessed using Python 3.5 software (Python Software Foun-
dation, Beaverton, OR, USA), written to complete splicing, cropping, and data format
conversion. At the same time, all raster data were resampled to a spatial resolution of
250 m × 250 m. The contributions of climate change and human activities to changes in
vegetation cover were calculated by MatLab R2021b (MathWorks, Natick, MA, USA). All
visualizations in this research were processed by ArcGIS Pro 2.8.0 (Esri, Berkeley, CA, USA).

2.3. Research Methods
2.3.1. Trend Analysis of Vegetation Coverage and Climate Factors

The linear trend of T, P, and NDVI from 2000 to 2020 was estimated using the least
squares regression method. The calculation formula of this method is as follows [42]:

Slope =
n×

n
∑

i=1
i× ji −

n
∑

i=1
i

n
∑

i=1
i

n×
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (1)

where slope is the regression equation slope and n is the length of the time series, which
is 21 in this study. If slope > 0, vegetation T, P, and NDVI increase; if slope < 0, T, P, and
NDVI decrease.

2.3.2. Quantifying the Impact of Climate Change and Human Activities on Vegetation Cover

In this research, the residual analysis method based on multiple linear regression
was used to evaluate the influence trend of the QLB human activities on vegetation cover.
This method has been widely used in assessing vegetation cover changes since it was first

https://search.earthdata.nasa.gov
http://www.gscloud.cn/
http://www.geodata.cn
https://www.resdc.cn/
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proposed in 2004 [43,44]. The residual analysis first needs to establish a multiple linear
regression model of T, P, and NDVI at the pixel scale to predict the predicted value of NDVI
(NDVIpre) under the influence of T and P. The difference between the observed values of
NDVI (NDVIobs) and NDVIpre is the residual (NDVIres), that is, the degree of influence of
human activities on vegetation. The calculation formula is:

NDVIpre = a× P + b× T (2)

NDVIres = NDVIobs − NDVIpre (3)

Among these, a is the regression coefficient between NDVI and T, and b is the re-
gression coefficient between vegetation cover and P; if NDVIres < 0, it means that human
activities have caused vegetation degradation; if NDVIres > 0, it means that human activ-
ities have promoted vegetation growth; if NDVIres = 0, the vegetation cover changes are
attributed to climate change.

Although residual analysis based on multiple linear regression can distinguish the ef-
fects of climate change and human activities on vegetation cover, it cannot be quantitatively
assessed. To this end, this research used residual analysis of partial derivatives to quantify
the contribution of climate change and human activities to changes in vegetation cover. At
the same time, the altitudes of the QLB were reclassified into 17 categories according to
the 100 m interval. We then extracted the contribution rates of climate change and human
activities on different altitude gradients. The residual analysis method based on partial
derivatives was proposed by Roderick et al. in 2007 [45] and has been widely used in many
studies [46]. The calculation formula is:

NDVIslope ≈ C_con + H_con = T_con + P_con + H_con

= ∂NDVI
∂T × dT

dt + ∂NDVI
∂P × dP

dt + H_con
(4)

Among these, NDVIslope is the interannual variation slope of NDVI; C_con, H_con, T_con
and P_con represent the contribution of climate change, human activities, T, and P to
vegetation covering NDVI, respectively; The sum of T_con and P_con is C_con; the residual of
NDVIslope and C_con is approximately equal to H_con; ∂NDVI

∂T and ∂NDVI
∂P represent the partial

correlation coefficients of T, P, and NDVI, respectively (excluding the interference of P
and T, respectively); dT

dt and dP
dt are the interannual variation slopes of T and P in the time

variable t, respectively. Among these, partial correlation analysis is an effective method
to study the linear relationship between two factors, while eliminating the interference of
other factors. The calculation formula is [47]:

Rxy,z =
Rxy − Rxz × Ryz√

(1− Rxz2)× (1− Ryz2)
(5)

where Rxy,z is the partial correlation coefficient between x and y under the condition that
when the influence of variable z is excluded, Rxy, Rxz and Ryz are the simple correlations
between x and the other two variables y and z, respectively. The significance test of the
partial correlation coefficient is completed by the t test, and its calculation formula is [48]:

t =
Rxy√

1− Rxy2

√
n−m− 1 (6)

Among these, n is the number of samples (the time series is 2000–2020, that is, n = 21),
and m is the number of independent variables.
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3. Results
3.1. Spatial Distribution Characteristics and Variation Trend of NDVI

From 2000 to 2020, the annual average NDVI value for the QLB was 0.28, fluctuat-
ing and rising between 0.26 and 0.32 (Figure 2), showing a significant increasing trend
(0.017/10a, p < 0.01). In 2004, the annual average NDVI value was the minimum (0.26), and
in 2018, it was the maximum (0.32).
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Figure 2. Variation of NDVI in the QLB from 2000 to 2020.

The mean NDVI across the QLB decreased from southeast to northwest (Figure 3a).
The areas with the most significant NDVI values were distributed in the northern and
southern parts of Qinghai Lake, while the areas with the smallest NDVI values were mainly
distributed in the upper Buha River in the northwest and the Shadao area on the east
bank of Qinghai Lake. The changing trend of the calculated NDVI can be seen (Figure 3b).
Pixels with a positive inter-annual variation slope of NDVI accounted for 91.38% of the
entire study area, and pixels with a negative inter-annual variation only accounted for
8.62%, indicating that the overall vegetation coverage of the QLB in the past 21 years
was dominated by improvement. More specifically, the trend of NDVI value increasing
from the north to the south of the basin was obvious. The areas with the most vegetation
improvement were mainly concentrated on both sides of the Buha River Valley and the
northern part of Qinghai Lake (0.03–0.13/10a). The areas with the most severe vegetation
degradation were mainly distributed around the shores of Qinghai Lake (north bank, east
bank, west bank) and the upper reaches of the Shaliu River.
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3.2. Spatial Distribution Characteristics and Variation Trends of Climate Factors

T and P determined the total input of heat and moisture and were the main climatic
factors for vegetation growth. The spatial distribution and variation trend of the QLB
climate factors are shown in Figure 4. It can be seen that the annual average T of the QLB
ranged from −13.37 ◦C to 1.51 ◦C (Figure 4a), and the distribution was consistent with the
altitude (Figure 1). The average annual T was higher in the areas around Qinghai Lake and
the middle and lower reaches of the Buha River in the south, and lower in the high-altitude
areas in the north. The annual average P showed an increasing spatial distribution pattern
from the west (318.98 mm) to the east (629.56 mm) (Figure 4b). During the 21 years, the
pixels with reduced T only accounted for 5.19% of the watershed area (Figure 4c) and were
mainly distributed in the northwest of the study area. The pixels with elevated T accounted
for 94.81% of the watershed area, and the areas with the fastest warming were mainly
around Qinghai Lake (0.02–0.06 ◦C/a). From 2000 to 2020, the annual average P of the
QLB generally increased at a rate of 3.08–7.08 mm/a (Figure 4d) and showed a spatially
symmetrical distribution pattern, with the slope of P gradually increasing along the center
to the southeast and northwest.

3.3. Residual Trends of Human Activities

Figure 5 shows the changing trend of NDVIres from 2000 to 2020. The annual average
NDVIres value of the QLB ranged from −0.02 to 0.03 (Figure 5a), showing a significant
upward trend (R2 = 0.48, p < 0.01). From 2000 to 2009, NDVIres was mainly negative,
and only in 2006 was NDVIres positive. After 2010, NDVIres was mainly positive, which
indicated that the adverse effects of human activities on vegetation coverage had gradually
weakened in the past 21 years, and the favorable effects on vegetation coverage have
continued to increase. Further analysis of the spatial variation of NDVIres can be seen
(Figure 5b). A total of 89.74% of the pixel NDVIres increased, mainly distributed in the Buha
River basin and along the periphery of Qinghai Lake. In comparison, 10.22% of the pixel
NDVIres decreased, distributed primarily in the northeast of the basin.
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3.4. Contribution of Climate Change and Human Activities to Vegetation Cover

To determine the relationship between vegetation cover and climate factors, we ana-
lyzed the partial correlation between T, P, and NDVI (Figure 6). Throughout the QLB, the
partial correlation coefficients of T, P, and NDVI were 0.21 (p > 0.05) and 0.37 (p > 0.05),
respectively. As shown in Figure 6a, 80.68% of the regional annual T in the study area was
positively correlated with NDVI. Only 15.65% of the pixels reached the significance level of
p < 0.05 (Figure 6b), while the area where P was positively correlated with NDVI reached
91.88% (Figure 6c), and 44.47% of the areas showed p < 0.05 (Figure 6d).
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Figure 7 shows the residual analysis based on partial derivatives. The contribution of
T (T_con) to the interannual variation of NDVI was 0.005/a, and T_con values ranged from
−0.03–0.04/a (Figure 7a). The area with T_con > 0 accounted for 82.78% of the QLB area,
mainly distributed around Qinghai Lake and the middle and lower reaches of the Buha
River; the area with T_con value < 0 accounted for only 17.72% of the QLB area, mainly in
the northwest of the study area. The contribution of P (P_con) to the interannual variation of
NDVI was 1.615/a, with P_con values ranging from −4.019–4.983/a (Figure 7b). The area
with P_con > 0 accounted for 91.88% of the basin area, and the highest values were mainly
distributed in the eastern part of the study area and the middle and upper reaches of the
Buha River. The area with P_con value < 0 only accounted for 8.12% of the watershed area,
and was mainly distributed on the edge of the study area and the north, east, and west
shores of Qinghai Lake.

Based on the results of T_con and P_con, the spatial distribution contribution of climate
change (C_con) and human activities (H_con) to the interannual variation of NDVI is obtained
(Figure 8). From 2000 to 2020, the average annual C_con value was 1.62/a, ranging from
−4.023–4.988/a (Figure 8a). The area with C_con > 0 accounted for 91.91% of the watershed
area, and the area with C_con < 0 only accounted for 8.09% of the watershed area. Compared
with C_con, human activities showed a strong negative impact on NDVI changes (Figure 8b):
the area with H_con < 0 accounted for 91.9% of the watershed area, and the area with H_con
> 0 accounted for 8.1% of the watershed area. Overall, in 2000–2020, H_con was −1.618/a,
ranging from −4.985–4.021/a.
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3.5. Distribution and Greening of Vegetation along the Altitude Gradient

Figure 9 shows the distribution of NDVI along the altitude gradient and the greening
trend in the QLB. NDVI decreased significantly along the elevation gradient (R2 = 0.73,
p < 0.01), and NDVI decreased by 0.02 for every 100m of increase in altitude. Among these,
NDVI rises rapidly below 3600 m, reaches the highest value (0.37/a) at 3600–3700 m, and
then decreases continuously. Above 4600 m, NDVI is less than 0.1, and almost no vegetation
grows. This can be seen from the trend of vegetation greening according to the altitude
gradient. Vegetation at 3200–3300 m shows a trend of degradation, vegetation greening at
3300–3500 m is accelerated, and vegetation greening above 3500 m is slowed down.
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Figure 10 shows the change slopes of the climatic factors and the distribution of their
contributions to vegetation cover changes along the altitudinal gradient. The mean values
of T_con and P_con over the altitude gradient are 0.0032/a and 1.296/a, respectively. For
every 100m increase in altitude, T_con and P_con decreased by 0.0792/a (R2 = 0.27, p < 0.01)
and 0.0006 (R2 = 0.27, p < 0.05), respectively. In terms of the changing trend, from 3200
to 3300 m, the T rises faster, and the P increases less, and T_con and P_con were −0.006/a
and −0.39/a, respectively. Water limitation may be the main reason for vegetation growth.
From 3300 to 3400 m, the obvious climate warming and humidification led to a rapid
increase in T_con and P_con. From 3400 to 3500 m, T rises slowly, T_con remains at the
maximum value (0.009/a), P continues to increase, P_con increases to the maximum value
(2.383/a), and the increase in precipitation may be the main reason for vegetation greening.
Above 3500 m, P increased rapidly, but temperature decreased rapidly, and T_con and P_con
continued to decrease. T was the main reason for the limiting of vegetation greening.
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Figure 11 shows the distribution of C_con and H_con over the altitude gradient. At
3200–3300 m, C_con and H_con reached the lowest value (−0.39/a) and the highest value
(0.389/a), respectively. From 3300 m to 3500 m, C_con rises rapidly, and H_con falls quickly,
reaching the maximum value (2.392/a) and the minimum value (−2.389/a), respectively.
Above 3500 m, the importance of C_con > 0 and H_con < 0 continued to decrease, and the
absolute value of the former was greater than that of the latter, indicating that vegetation
greening was mainly affected by climate change. Overall, the favorable impact of climate
change on vegetation cover (C_con = 1.299/a) along the altitude gradient was higher than
the unfavorable impact of human activities (H_con = −1.298/a).
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4. Discussion
4.1. Three-Dimensional Distribution Pattern of Vegetation Cover

A multi-dimensional assessment of vegetation cover changes in the Qinghai-Tibet
Plateau is essential for understanding the sustainability of the livelihoods of the pastoralists.
This study explored the changes in vegetation cover in the QLB from the three dimensions
of temporal, spatial, and altitudinal aspects and obtained many interesting results. From the
temporal dimension, the vegetation coverage of the QLB increased significantly, consistent
with the research results of Xiong and Han et al. [21,49], further confirming the greening
trend of the QLB vegetation. From the spatial dimension, the vegetation has only been
degraded in the northern part of the QLB and a small part of the lakeshore over the
past 21 years. Compared with the areas with degraded vegetation, the area of greenery
is much larger. Interestingly, the areas with low vegetation coverage in the QLB did
not degrade significantly, but showed a greening trend, and the spatial heterogeneity of
different vegetation coverage degradation levels also existed in other areas of the Qinghai-
Tibet Plateau [50]. The QLB is the same as the Qinghai-Tibet Plateau from the altitudinal
dimension. The altitude determines the vegetation distribution pattern [51], which is also
the main reason for the heterogeneity of vegetation greening along the altitude gradient [52].
Therefore, analyzing the influence of altitudinal factors on vegetation changes is of great
significance to better understand the interaction mechanism of vegetation–climate–human
on the Qinghai-Tibet Plateau.
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4.2. Methods to Quantitatively Assess Changes in Vegetation Caused by Climate Change and
Human Activities

Quantitatively assessing the relative contributions of climate change and human ac-
tivities from complex long-term changes in vegetation is challenging. Hence, this study
selected NDVI as the evaluation index of vegetation coverage. It used multiple regression
and partial derivative residual analysis to determine the main factors of vegetation change
in alpine regions. We found that using one of the residual methods alone to determine the
factors contributing to changes in vegetation cover is insufficient, and the resulting data
may “lie”. The vegetation coverage of the QLB showed extensive and significant growth
from 2000 to 2020. From the partial derivative residual analysis results (Figure 8), human
activities did not seem to contribute positively to the greening of the QLB. The residual anal-
ysis based on multiple regression shows that the time difference of the intensity of human
activities on vegetation coverage is the main reason for this “wrong” result. Yin et al. [53]
also confirmed that unreasonable human activities were the main reason for the decline in
vegetation cover in the QLB in the first decade of the 21st century. Still, on the whole, the
positive impact of human activities on vegetation cover is increasing [28]. Therefore, the
combined use of multiple regression and partial derivative residual analysis is superior to
the results obtained by using a single method because it can quantify the contribution of
influencing factors and monitor the impact of influencing factors on vegetation changes,
but also avoid neglecting the impact of human activities on vegetation cover change in tem-
poral and spatial dimensions in research. The effect of human activities on vegetation cover
changes over time and space provides a new attempt to guide the sustainable development
of the human–land relationship in grassland ecosystems.

4.3. The Impact of Climate Change on Changes in Vegetation Cover

As the “magnifying glass” of global climate change, the effects of T and P changes on
vegetation coverage in the Qinghai-Tibet Plateau have been confirmed in many
studies [54,55]. Previous studies have shown that climate warming may alter vegeta-
tion phenology, leading to an earlier vegetation growth season and promoting vegetation
growth in high-latitude cold and wet areas [56]. However, we found that the increase in
T of the QLB is limited, and the T_con to the growth in vegetation cover is not significant.
T_con was positive only in regions where T was higher and became warmer (Figure 4a,c).
On the contrary, due to the cold and rainy climate characteristics of the QLB [57], C_con
humidification contribution to the increase in vegetation cover is higher, with P_con more
than 300 times that of T_con. Previous studies also came to the same conclusion that the
alpine steppe in the northeastern Qinghai-Tibet Plateau showed a strong response to P
changes [58,59]; water availability was the main factor limiting vegetation growth of the
QLB [44], and P increase was the main climatic factor of greening in the QLB [38].

The vegetation coverage in the QLB shows a degradation trend in the area with the
lowest altitude (3200–3300 m), and the negative contribution of P (−0.389/a) is much higher
than that of T (−0.006/a), which may be due to the high water consumption of vegetation.
While precipitation increases but still cannot meet the water demand of vegetation, an
increase in temperature instead leads to a decrease in available water for vegetation.
Wang et al. [37] showed that the water consumption of the QLB vegetation decreases
significantly along the altitude gradient and is higher at 3200–3300 m (more than 300 mm).
In addition, it is generally believed that the coastal gradient greening of vegetation will be
subject to more low-temperature restrictions, and the hydrothermal conditions required for
its growth will also change significantly [60]. However, we found that climate warming
caused the limitation of vegetation greening along the altitude gradient of T in the QLB to be
narrowed, with vegetation greening displayed above 3300 m above sea level (NDVIslope > 0).
This phenomenon also exists in other areas of the Qinghai-Tibet Plateau [52,61], mainly
due to the increase in T rise in the alpine region, which increases the melting of permafrost,
ice, and snow [62].
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4.4. The Impact of Human Activities on Changes in Vegetation Cover

As the external driving force for the change in the QLB grassland ecosystem, human
activities showed a change process of “continuous-deterioration long-term fluctuation-
benign maintenance” over the 21 years (Figure 5a). From 2000 to 2004, the population
density of QLB increased rapidly, from 2.97 persons/km2 to 6.94 persons/km2 (Figure 12).
Herders had to raise more livestock to ensure their livelihoods, resulting in the highest
number of animals per unit area in the past 21 years (Figure 12). All these may be the
reasons for the continuous deterioration of vegetation cover. Wang et al. showed that the
population of the QLB increased rapidly before 2005, resulting in unreasonable land use,
increased grazing intensity, desertification, environmental pollution, and other serious
problems becoming more prominent, which caused the vegetation cover to deteriorate
continuously [63]. From 2005 to 2014, the Chinese government successively implemented
ecological, environmental protection, and comprehensive management projects, such as the
return of grazing land to grassland, wetland protection, degraded grassland management,
and seasonal grazing prohibition. The population also declined rapidly (Figure 12), and
vegetation degradation began to decrease. However, due to factors such as industrial
structure, livelihood habits, and ecological engineering periodicity, the H_con was < 0
most of the time. From 2015 to 2020, the continuous decline in population and livestock
numbers reduced direct pressure on vegetation. On the other hand, with the income
from grassland subsidies, grazing prohibition subsidies, tourism development, etc., the
livelihood structure of QLB herders is gradually diversifying, which is also conducive to the
continuous greening of vegetation. By 2021, the proportion of the primary industry in the
QLB had dropped to 24.62%, while the proportion of the tertiary industry, dominated by
eco-tourism, had reached 51.27%, completing the structural transformation of livelihoods
in the QLB. In general, once human activities adversely affect vegetation cover, the speed
of recovery will be prolonged. This has important implications for further understanding
the fragility of the QLB ecosystem.
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Spatially and altitudinally, the vegetation greening of the QLB under the influence of
human activities seems to be fragile. The favorable impact of climate warming and wetting
on vegetation greening is almost equivalent to the adverse effects of human activities
(C_con and H_con are 1.62/a and −1.618/a, respectively). In other words, if the intensity of
climate warming and wetting is weakened, the vegetation cover of the QLB may deteriorate
rapidly, even if the intensity of human activities remains unchanged, which will affect
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regional ecological security and herders’ livelihoods. Furthermore, our study found that
H_con reached the highest value (0.389/a) at 3200–3300 m, while these areas are located
around the shore of Qinghai Lake and belong to the core protected areas of the QLB, where
ecological engineering and grazing prohibition may be the main reasons for increased
vegetation cover. From 3300–3500 m, H_con drops rapidly to reach the minimum (−2.389/a).
There are four towns in these areas (Figure 1), two of which are county towns (Gangcha
County and Tianjun County), and the population is nearly three times that of low-altitude
areas (below 3300 m, Figure 13a). Studies have shown that the rapid development of cities
and towns, and the population increase over the past 21 years, are the main reasons for the
lowest H_con value [64]. Above 3500 m, the altitude increase in the QLB neither restricts
human activities, nor reduces their intensity. For example, in the middle and upper reaches
of the Buha River, where population density is low (Figure 13b), the negative contribution
of human activities remains high, which is mainly determined by the livelihood patterns of
local pastoralists, where pasture and water distribution are the main factors in the choice of
grazing location.
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As in other parts of the world, the vegetation of the QLB is facing dual pressures from
climate change and human activities [54,65]. However, the factors affecting vegetation
cover are multifaceted. This research selected only T and P as the variable climate factors,
ignoring other natural factors, such as solar radiation [46], snow-covered areas [66], and
the impact of human activities on vegetation cover. Additionally, the impact of the rising
lake level of Qinghai Lake on vegetation coverage cannot be ignored. Recent studies have
shown that the lake area of Qinghai Lake increased by 156.31 km2 from 2000 to 2014, the
total length of the shoreline increased by 8.01 km, and the maximum advancing distance
of the shoreline reached 2.5 km [67], especially in the east, north, and west areas of the
lakeshore, which is essential for the vegetation degradation around Qinghai Lake over the
past 21 years (Figure 3b). All of the above need to be further quantified in future research.

5. Conclusions

From 2000 to 2020, the NDVI of the QLB increased significantly (0.002/a, p < 0.01),
with 91.38% of the area showing a greening trend, and only 8.62% of the area showing a
degrading trend. T_con and P_con were positive to vegetation greening, and P_con was more
than 300 times that of T_con. C_con and H_con were 1.62/a and −1.618/a, respectively. There
are obvious differences in the distribution and change of vegetation cover along the altitude
gradient. Vegetation coverage decreased significantly along the altitude gradient (−0.02/a,
p < 0.01), with the highest vegetation coverage at 3600–3700 m (0.37/a). C_con, H_con, T_con,
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and P_con were 1.299/a, −1.29/a, 0.003/a, and 1.296/a, respectively. From 3200 to 3300 m,
the negative contribution of climate change was the highest (−0.39/a), and the positive
contribution of human activities was the highest (0.389/a). At 3400–3500 m, the positive
contribution of climate change and the negative contribution of human activities were the
highest, 2.392/a and −2.389/a, respectively.

In general, the temporal difference in the intensity of human activities was the main
reason for the lower H_con value over the past 21 years. The greening of vegetation in the
QLB depends not only on warming and humidification caused by climate change, but also
on the increase in the positive impact of human activities after 2010.
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