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Abstract: Some inventory items deteriorate and lose their useful life while in storage due to evapora-
tion, spoilage, pilferage, and chemical or mechanical breakdown. Some examples of this phenomenon
are the inventories of fresh food, batteries, electronic items, and petroleum products (such as gasoline
and turpentine). Economic and environmental sustainability requires minimizing deterioration losses
in inventories throughout the supply chain while optimizing the ordering decisions. This is especially
important for food items because, globally, about one third of the food that is produced for human
consumption is wasted, causing economic, environmental, political, and societal problems. Food
production consumes large amounts of resources such as land, freshwater, fossil fuels, and labor.
The same is true for items such as petroleum and chemical products. Exponential deterioration is a
commonly used approach to model this phenomenon, which results in an exponentially decreasing
inventory level function. An important extension of the basic economic order quantity (EOQ) model
is its application to exponentially deteriorating items. In the exponentially deteriorating items model,
the rate of deterioration per unit time for the stocked items is proportional to the amount of available
physical inventory at any given time. This results in an exponentially declining inventory level
over time. This problem normally does not lend itself to a closed-form optimal solution due to the
coexistence of polynomial and exponential terms; hence, approximations are used, but the existing
approximations yield closed-form solutions that are far from intuitive. In this research, we develop
new approximate closed-form solutions for the basic problem and its backordering extensions that
are intuitive and very easy to interpret, as well as more accurate; therefore, they are very attrac-
tive to practitioners. We provide extensive experimental results to demonstrate superiority of our
approximate closed-form solutions.

Keywords: inventory; EOQ; deteriorating items; exponential decay; optimal order quantity; backordering
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1. Introduction

Food waste is a significant global problem that causes myriad environmental, eco-
nomic, political, and societal issues. Food waste in landfills produces greenhouse gases
such as methane and carbon dioxide, significantly contributing to climate change. Further-
more, resources such as land, freshwater, fossil fuels, and human resources are also used
in producing these products, which is wasted [1–4]. According to a report published by
the United Nations Food and Agricultural Organization (FAO) [5], one-third of the food
produced for human consumption is wasted globally, which is approximately 1.3 billion
metric tons per year. In developed countries, this waste usually occurs at the retail and
consumption phases, i.e., during storage. Challenges such as global wars, pandemics,
and climate change are likely to cause food shortages on a global scale in the near fu-
ture. Deterioration losses in petroleum and chemical products are similarly detrimental to
economic and environmental sustainability, which requires minimizing losses and waste
while optimizing inventory ordering decisions at the same time. In order to optimize the
inventory ordering decisions, the economic order quantity (EOQ) model has been widely
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used in practice in its standard, as well as extended versions [6]. Despite its widespread
adoption and use in practice, the EOQ model’s origins have been somewhat of a folklore
for many decades. According to the research by Erlenkotter [7], the basic EOQ model was
developed by Ford Whitman Harris [8]. The basic EOQ model assumes a constant deter-
ministic demand and exploits the trade-off between ordering costs and inventory holding
costs to calculate an optimal order quantity. In the basic EOQ model, it is also assumed
that the items can be stocked indefinitely, without any physical losses. However, many
inventory items deteriorate while in storage, which is the phenomenon in which a portion
of the items lose their useful life due to evaporation, spoilage, pilferage, and chemical or
mechanical breakdown. Some examples of deteriorating items are fresh food, batteries,
electronic items, and petroleum products (such as gasoline and turpentine). Exponential
deterioration is a commonly used approach to model deterioration, which results in an
exponentially decreasing inventory level function.

In this paper, we propose a number of approximate closed-form solutions for the
optimal order quantity as well as optimal order interval for deteriorating (perishable) items
for the basic model and for its back-ordering extension. Though our closed-form solutions
are not the first ones to be proposed for these problems, as we will demonstrate, they are
the most accurate ones, in terms of both the optimal order quantity and the optimal total
cost. They are also the most intuitive closed-form solutions that have nice interpretations
and they are as easy to remember as the famous basic EOQ formula. This makes them
attractive for adoption in practice by managers and decision makers in business who may
not be well-versed in mathematical analysis and in the theoretical development of models.
Our derivations of the optimal solutions are also succinct, concise, elegant, and easily
understandable by practitioners.

2. Literature Review

In the exponentially deteriorating items model, the rate of deterioration per unit time
for the stocked items is proportional to the amount of available physical inventory at any
given time. This results in an exponentially declining inventory level over time. Finding
the optimal order quantity for exponentially deteriorating items normally does not result
in a closed-form optimal solution due to the coexistence of polynomial and exponential
terms in the total cost function.

Ghare and Schrader [9] first introduces this problem and develops a heuristic solution
procedure but no closed-form solution. Çalışkan [10] derives the same solution without
using derivatives, and shows that the heuristic procedure actually converges in two it-
erations. Nahmias [11] and Raafat [12] provide excellent reviews of the deteriorating or
perishable items models until 1982 and 1991. Goyal and Giri [13] and Li et al. [14] classify
the various extensions of the deteriorating items model in their reviews until 2001 and 2010,
respectively. Bakker et al. [15] provide an extensive bibliography of the deteriorating items
inventory literature until 2012. There have been numerous extensions of the basic model of
Ghare and Schrader [9] in this time frame.

Elsayed and Teresi [16] study the production version of the basic model with constant
and random demand, but no closed-form equation is developed. Schmidt and Nahmias [17]
develop optimal policies for a single item with Poisson demand. Dave and Patel [18], Bahari-
Kashani [19], Chung and Ting [20,21], Kim [22] study the classical deteriorating items model
with linearly increasing demand and propose heuristics for optimal replenishment times
and quantities. Çalışkan [23] shows that the approximate model of Chung and Ting [21]
results in an intuitive approximate closed-form solution for the order quantity as opposed
to the order interval, and Çalışkan [24] develops an approximation model based on order
interval and solves it without using differential calculus. Dave and Patel [18] does not
propose a closed-form solution but a numerical solution procedure, whereas Sachan [25]
modifies this approach.

Wee [26] study the economic production quantity (EPQ) model for deteriorating items
with partial backordering, whereas Wee [27] consider the EOQ model for exponentially de-
teriorating items with exponentially declining demand. Hariga and Benkherouf [28] study
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the problem with exponentially changing demand over time whereas Benkherouf [29]
studies the linearly decreasing demand version, Benkherouf and Mahmoud [30] study
the linearly increasing version with backordering, and Balkhi and Benkherouf [31] study
the linearly increasing demand with backorders and non-instantaneous replenishment
(production) models. Giri et al. [32] extend the deteriorating items model to a ramp-type de-
mand and Weibull deterioration distribution with backordering. They propose a numerical
solution procedure and provide sensitivity analysis on the solutions. Chang and Dye [33]
consider the case where the backordering cost is proportional to the time of backordering.
Wang [34] improves the backordering rate calculation in the Chang and Dye [33] model,
whereas Goyal and Giri [35] improve the heuristic solution procedure.

Widyadana et al. [36] develop closed-form equations for both the standard dete-
riorating items model and its extension to backordering, using a different approxima-
tion than the one in Ghare and Schrader [9]. Çalışkan [37] simplifies the derivation in
Widyadana et al. [36] and develops an identical but more intuitive approximate closed-
form solution. Haijema [38] considers the model for items with a short shelf life and that has
upper and lower bounds on the order quantity. Mishra et al. [39] consider the exponential
deterioration with time-dependent demand and the inventory holding cost, but propose no
closed-form solution. Mahajan and Diatha [40] similarly consider exponential deterioration
with compound interest, but propose no closed-form solution. Çalışkan [41] develop an
intuitive and accurate closed-form solution for the compound interest extension of the
exponential deterioration model.

We develop accurate and intuitive approximate closed-form solutions for both the
basic model and its planned backordering extension and prove the uniqueness of the
solutions. This is a departure from the literature; no other previously published paper
provides a convexity proof for either version of the problem, i.e., neither for the exact total
cost function, nor their approximate total cost functions. By their nature, exact closed-form
solutions are not possible for these problems because total cost equations contain both
exponential and polynomial terms. Therefore, approximations are necessary. We develop
six approximate closed-form solutions for the basic model and compare them to those of
Ghare and Schrader [9], Chung and Ting [21], and Widyadana et al. [36], and also develop
four approximate closed-form solutions for the planned backorders extension and compare
them to the model by Widyadana et al. [36]. To our knowledge, these are the only closed-
form equations in the literature for these problems. Our approximate closed-form equations
are the most accurate among these, and they are very intuitive and easy to understand and
interpret by managers and decision makers in the industry who may not be well-versed in
mathematical analysis.

3. Materials and Methods

In this research, we develop a mathematical inventory management model for a dete-
riorating item. The model assumes that the demand is constant and deterministic, and the
items deteriorate according to a constant deterioration rate. We develop the on-hand inven-
tory level as a continuously decreasing mathematical function. We then derive the total per
unit time (typically annual) inventory-related costs as another mathematical function and
optimize it to obtain intuitive and easy-to-interpret approximate minimum cost solutions
that could easily be used by practitioners. The notation that we use throughout the paper
is in Table 1.
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Table 1. The parameters (top) and the variables (bottom) of the model.

D the demand of the item in number of units per unit time
S the cost of ordering per order
c the unit price of the item
δ the rate of deterioration for one unit of the item per unit time
h the inventory holding cost per unit of the item per unit time
b the cost of backordering per unit per unit time

T the length of an inventory ordering cycle (order interval)
Q the order quantity
TI the length of time the demand is fulfilled from the inventory

in a cycle (fulfillment interval)
B the number of units to backorder in each ordering cycle
t the elapsed time since the beginning of an ordering cycle

I(t) the number of units in the inventory at time t

It is essential to explain δ in a little bit more detail here. δ does not represent deteriora-
tion as a fraction of the inventory level, so it does not have to be less than 1. The average
lifetime of a unit is 1/δ, and the inverse of the lifetime is the rate of deterioration per unit
time for that unit. Let us say D = 10,000 units/year, δ = 10 per year, and I(t) = 1000 units
at time t. This means that the average lifetime of a unit is 0.1 year and in a given year, on
average, 10 of these units will complete their lifetime (i.e. they will deteriorate) if we hold
on to a single unit at all times and replenish as soon as they deteriorate. For 1000 items at
time t, the total rate of deterioration for the entire inventory is δI(t)= 10,000 units/year,
which is equal to the annual demand rate. That corresponds to a daily deterioration rate of
27.4 units/day. That is essentially equivalent to a 2.7% rate of loss at that time. In most of
the literature, δ < 1 has been implicitly assumed, but it is certainly not the case, as δ could
be much higher than 1, corresponding to a small rate of deterioration. It is probably better
to explain δ in terms of the expected life for one unit of the item, 1/δ. In the case of δ = 10
per year, the expected life of the item is 0.1 year.

4. The Basic Model

The demand is constant and deterministic and occurs uniformly at rate D throughout
time. Q is the order quantity, and T is the length of an inventory ordering cycle. The
inventory level is represented by I(t) and it deteriorates at a per unit time rate of δI(t) at
time t, where δ is the constant rate of deterioration. This leads to the following first-order
differential equation with an initial condition [9,21]:

I(0) = Q (1)

I′(t) = −D− δI(t), 0 ≤ t ≤ T. (2)

The solution of this differential equation is as follows:

I(t) = Qe−δt − D
δ
(1− e−δt). (3)

The fact that I(T) = 0 leads to the following solutions for T and Q, in terms of
one another:

T =
1
δ

ln
(

D + δQ
D

)
(4)

Q =
D
δ
(eδT − 1). (5)

In the literature, the total relevant cost per unit time is usually calculated as the sum
of the purchasing cost, ordering cost, and inventory holding cost per unit time. We drop
the part of the purchasing cost that is constant, i.e. the amount that satisfies the demand
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(which is constant), and use a waste cost instead. The waste cost is the cost of deteriorated
items that have to be thrown away. The waste cost per cycle can be calculated as follows:

Wc =
∫ T

0
cδI(t)dt = −cQe−δt

∣∣∣∣T
0
− cDt

∣∣∣∣T
0
− cD

δ
e−δt

∣∣∣∣T
0
= c(Q− DT). (6)

Equation (6) could be determined intuitively as well. The total amount of items
purchased in a cycle is Q, and the total satisfied demand in a cycle of length T is DT. The
difference between the two is the amount of items wasted due to deterioration. Given
Equation (6), the inventory holding cost per cycle could be easily calculated:

Ic =
∫ T

0
hI(t)dt = h

∫ T

0
I(t)dt =

h
δ
(Q− DT). (7)

It can be shown that when δ is zero, the deteriorating items model reduces to the
classical EOQ model. Specifically, the following holds:

lim
δ→0

I(t) = lim
δ→0

[
Qe−δt − D

δ
(1− e−δt)

]
= Q− Dt (8)

lim
δ→0

T = lim
δ→0

[
1
δ

ln
(

D + δQ
D

)]
=

Q
D

(9)

lim
δ→0

Ic = lim
δ→0

∫ T

0
hI(t)dt = h

∫ T

0
(Q− Dt)dt = h

Q2

2D
(10)

lim
δ→0

[Q− DT] = 0. (11)

The total cost per inventory ordering cycle could then be calculated as the sum of the
ordering cost, waste cost, and inventory holding cost:

TCc(Q, T) = S + c(Q− DT) +
h
δ
(Q− DT) = S +

h + cδ

δ
(Q− DT). (12)

Because there are 1
T cycles per unit time, the total cost per unit time will be as follows:

TC(Q, T) =
S
T
+

h + cδ

δT
(Q− DT). (13)

By substituting Equation (5) in the above, we obtain:

TC(T) =
S
T
+

h + cδ

δT

[
D
δ
(eδT − 1)− DT

]
(14)

Lemma 1. TC(T) in Equation (14) is convex for T > 0.

Proof. Equation (14) can be written in the following form:

TC(T) =
S
T
+

(h + cδ)D
δ2

[
eδT − 1

T

]
− (h + cδ)D

δ
(15)

The first term of TC(T) in Equation (15) is a convex function, and the last term is
constant; furthermore, the coefficient of the second term is a positive constant. Therefore,
we only need to prove the convexity of the second term.

d2

dT2

[
eδT − 1

T

]
=

eδT [(δT − 1)2 + 1]− 2
T3 =

f (T)
T3 (16)

T3 > 0 for T > 0, f (0) = 0, and f ′(0) = 0. Moreover, f ′′(T) = δ3T2eδT > 0. Therefore,
f ′(T) is monotone increasing and f (T) > 0 over T > 0.
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By setting the first derivative of TC equal to zero, we obtain:

T∗ =
1
δ

ln
[

δ2S− (h + cδ)D
(h + cδ)D(δT∗ − 1)

]
(17)

but Equation (17) is not a closed-form solution. It still requires an iterative algorithm such
as Newton’s method. The total cost function can also be expressed in terms of Q:

TC(Q) =
δS

ln
(

D+δQ
D

) + (h + cδ)

 Q

ln
(

D+δQ
D

) − D
δ

 (18)

Lemma 2. The first term in Equation (18) is a convex function and the second term is a concave
function over the interval Q ≥ 0.

Proof. Let x = δQ
D . Then, the first term in Equation (18) becomes δS 1

ln (1+x) . Because δS > 0
and constant, it is sufficient to prove the convexity of the rest of the expression:

d2

dx2

[
1

ln (1 + x)

]
=

ln (1 + x) + 2
(1 + x)2 ln3 (1 + x)

> 0 (19)

Applying the same change in variables to the variable part of the second term in
Equation (18) results in (h+cδ)D

δ
x

ln (1+x) . Again, the coefficient is positive, so we prove the
concavity of the rest of the term:

d2

dx2

[
x

ln (1 + x)

]
=

2x− (x + 2) ln (1 + x)
(1 + x)2 ln3 (1 + x)

=
g(x)

(1 + x)2 ln3 (1 + x)
(20)

The denominator of Equation (20) is positive for all x ≥ 0 and g(0) = 0. We will now
prove that g(x) is monotone decreasing for x ≥ 0: g′(x) = x

x+1 − ln (1 + x), so g′(0) = 0.
Furthermore, g′′(x) = 1

(1+x)2 − 1
1+x ≤ 0 for x ≥ 0, meaning that g′(x) ≤ 0 for x ≥ 0.

Theorem 1. TC(Q) in Equation (18) is (i) convex over 0 ≤ Q ≤ Q∼; (ii) concave over Q ≥ Q∼;
and (iii) has a unique minimum Q∗ < Q∼ where Q∼ is the inflection point of Equation (18)
that satisfy:

Q∼ =
D
δ

e

(
2(h+cδ)Q∼+2δS

(h+cδ)Q∼+2 (h+cδ)D
δ −δS

)
− 1

 (21)

Q∗ =
D
δ

e

(
(h+cδ)Q∗+δS

(h+cδ)Q∗+ (h+cδ)D
δ

)
− 1

 (22)

Proof. Let a = δS and b = (h + cδ)D
δ , and x = δQ

D . Then, the second derivative of
Equation (18) is determined as follows:

TC′′(x) =
d2TC(x)

dx2 =
(−bx + a− 2b) ln (1 + x) + 2(a + bx)

(1 + x)2 ln3 (1 + x)
(23)

the denominator of TC′′(x) is positive for 0 < x < +∞ and limx→0+ TC′′(x) = +∞.
Solving TC′′(x) = 0 results in:

x∼ = e
( 2bx∼+2a

bx∼+2b−a

)
− 1 = φ(x∼) (24)
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Next, we will prove that x∼ is the unique solution of TC′′(x) = 0. Clearly, φ(0) = e
2a

2b−a − 1
and limx→∞ φ(x) = e2 − 1. Furthermore,

• if 2b− a > 0

◦ φ(0) > 0 and φ(x) is monotone increasing and approaches e2 − 1 from below.

• If 2b− a < 0

◦ φ(x) < 0 for all 0 ≤ x < a−2b
b ;

◦ there is an asymptote at x = a−2b
b > 0;

◦ lim
x→ a−2b

b
+ φ(x) = +∞;

◦ lim
x→ a−2b

b
− φ(x) = −∞;

◦ φ(x) is monotone decreasing for x > a−2b
b and approaches e2 − 1 from above.

• If 2b− a = 0

◦ the asymptote is at x = 0;
◦ limx→0+ φ(x) = +∞;
◦ limx→0− φ(x) = −∞ (which is of no interest to us);
◦ φ(x) is monotone decreasing.

In all cases, φ(x) intersects y = x once at a positive x. Therefore, x∼ is unique and
positive. Substituting a and b in Equation (24), we obtain Equation (21).

To find the optimum solution to the function TC(Q) defined in Equation (18), we set
its first derivative to zero and obtain:

x∗ = e

(
bx∗+a
bx∗+b

)
− 1 = γ(x∗) (25)

obviously, γ(0) = e
a
b − 1 > 0 and limx→∞ γ(x) = e− 1. Furthermore,

• If a > b, γ(x) is monotone decreasing and approaches e− 1 from above.
• If a < b, γ(x) is monotone increasing and approaches e− 1 from below.
• If a = b, γ(x) = e− 1 for all x, i.e., γ(x) is constant.

In all cases, it intersects y = x once at a positive x. Therefore, x∗ is unique and positive.
Substituting a and b in Equation (25), we obtain Equation (22). We will now prove that
x∼ > x∗:

e
( 2bx+2a

bx+2b−a

)
> e

( bx+a
bx+b

)
⇒ 2bx+2a

bx+2b−a > bx+a
bx+b ⇒ (2bx + 2a)(bx + b) > (bx + 2b− a)(bx + a)

⇒ 0 > −a2 − 2abx− b2x2 = −(a + bx)2.

Thus, if x > 0 and bx + 2b− a > 0, it is guaranteed that φ(x) > γ(x) which means that
φ(x) intersects y = x later than γ(x); in other words, x∼ > x∗. We know that x∼ > a−2b

b
from earlier in this paper, which is to say that bx∼ + 2b− a > 0, and therefore x∼ > x∗.

It should be noted that limQ→∞
d2TC(Q)

dQ2 = 0, so the right side of the total cost curve
gradually becomes linear (see Figure 1). As we have shown in this section, the minimum is
unique for either version of the total cost function. However, there is no exact closed-form
equation for T∗ (Q∗) due to exponential (logarithmic) terms in Equation (14) (Equation (18)).
Therefore, we propose approximations of the total cost function that are close and result in
intuitive closed-form solutions.
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Figure 1. Total Cost function for D = 1000, S = 50, h = 3, c = 10 and δ = 10.

4.1. Existing Closed-Form Solutions

Three different approximate closed-form solutions have been proposed in the literature
for the basic exponentially deteriorating items EOQ problem. Ghare and Schrader [9]
introduce this problem and use the Taylor series expansion of eδT to approximate the order
quantity, thus deriving the following equation for the optimal order interval T∗:

T∗ =

√
S

cδD
2 + hD + hδDT∗

(26)

They propose a heuristic approach to solve this recursive equation: T∗ is first calculated
without the last term in the denominator, and then iteratively updated by substituting the
result in place of T∗ in the denominator. It is hypothesized that this will converge in about
two iterations. Bahari-Kashani [19] proposes the following approximate solution, which is
equivalent to applying the iterative procedure for two iterations:

T∗ =

√√√√√ S
cδD

2 + hD + hδD
√

S
cδD

2 +hD

(27)

In both Ghare and Schrader [9] and Bahari-Kashani [19], the inventory holding cost
is calculated on the entire order quantity for each order interval, which is an overestima-
tion. This could be an attempt to include the opportunity cost for both good items and
deteriorated items in each order cycle, but it is still an overestimation because at the time of
deterioration, the item is lost and taken out of the inventory. In contrast, our approach calcu-
lates the opportunity cost from the time the shipment arrives until the item deteriorates (see
Equation (7)), at which point the purchase cost of the deteriorated item becomes a real cost
as opposed to an opportunity cost and it is incorporated into the waste cost (see Equation (6)).
Chung and Ting [21] modify the model of Ghare and Schrader [9] so that the inventory
holding cost per cycle is calculated on the approximate average inventory level that is equal
to one half of the order quantity. This results in the following modified solution:
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T∗ =

√
2S

cδD + hD + hδDT∗
(28)

Equation (28) can be restated as a nested radical as follows:

1
T∗

= N∗ =

√√√√√α +
β√

α + β√
α+

β
...

, where α =
(h + cδ)D

2S
, β =

hδD
2S

(29)

Squaring both sides of Equation (29) results in a depressed cubic equation:

N3 − αN − β = 0 (30)

Equation (30) has a closed-form solution and it has at least one real root [42]. It
has three real roots and one of them is positive while the other two are negative. The
corresponding total cost function for Equation (26) is convex for T > 0 (see Ghare and
Schrader [9] for the equation), which means that N∗ is unique; therefore, the other two
roots must be negative. The positive real solution to Equation (30) is as follows:

N∗ = 2
√

α

3

(
cos

[
1
3

arccos

(√
27β2

4α3

)])
(31)

Equation (31) is due to François Viète [42–44]. By substituting the values of α and β,
the optimal order interval will be as follows:

T∗ =

[
2

√
(h + cδ)D

6S

(
cos

[
1
3

arccos

(√
27Sh2δ2

2D(h + cδ)3

)])]−1

(32)

Chung and Ting [21] propose their own approximate closed-form solution based on a
different approximation than Ghare and Schrader [9] and Bahari-Kashani [19]:

T∗ =
2
[√

(2cδD + 2hD)S− δS
]

2cδD + 2hD− δ2S
(33)

Widyadana et al. [36] develop a closed-form equation for Q∗ instead of T∗, based on
the assumption that the inventory level curve can be approximated by a straight line that
has a slope of −(D + δ):

Q∗ =

√
2S(D + δ)

h
(34)

The heuristic approach of Ghare and Schrader [9] or Bahari-Kashani [19] are neither
intuitive nor easy to use due to the fact that one has to iterate until convergence. The exact
closed-form solution based on a depressed cubic function is too complicated and difficult
to understand for practitioners. The closed-form solution by Chung and Ting [21] is also
too complicated to be intuitive and is not easy to use by practitioners. There is a clear
need for intuitive, easy-to-understand, easy-to-use, and accurate closed-form solutions for
practitioners so that they can make quick decisions and what-if analyses.

4.2. New Closed-Form Solutions

In this section, we develop new closed-form solutions that are more intuitive and more
accurate. We compare them against the existing solutions in Section 6.
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4.2.1. Closed-Form Solution 1

The exponential term in Equation (14) is making a closed-form solution for T∗ impos-
sible. We can use its Taylor series expansion instead to simplify the total cost function:

eδT = 1 + δT +
δ2T2

2!
+

δ3T3

3!
+

δ4T4

4!
. . . (35)

because δT is usually small, we can ignore the terms higher than the second-order term in
Equation (35). This results in the following total cost function:

TC(T) =
S
T
+

h + cδ

δT

[
D
δ

(
1 + δT +

δ2T2

2
− 1
)
− DT

]
=

S
T
+

(h + cδ)DT
2

(36)

It is important to note that Equation (36) has not been previously developed by
Ghare and Schrader [9] or by Bahari-Kashani [19], even though they both use the same
approximation in the development of their model. Their total cost function does not
immediately lend itself to a closed-form solution and requires an iterative approach for the
exact T∗. As in Çalışkan [24], the closed-form solution for Equation (36) is immediate from
the function and is intuitive:

T∗ =

√
2S

(h + cδ)D
(37)

Equation (37) is intuitive because it is the same as the economic order interval (EOI)
equation in the basic EOQ model, except that h in the basic EOQ model is replaced by
h + cδ. Deterioration can be treated like a type of inventory holding cost, which is added
on top of the actual holding cost h.

4.2.2. Closed-Form Solution 2

As in Çalışkan [23], one idea for making the Taylor series expansion-based approxima-
tion in (35) more accurate is to increase the quadratic term slightly to account for the omitted
higher-order terms. The following is one way to do that, and it is a close approximation of
eδT for small δT:

eδT ≈ 1 + δT +
δ2T2

2− δT
=

2− δT
2− δT

+
δT(2− δT)

2− δT
+

δ2T2

2− δT
=

2 + δT
2− δT

(38)

By substituting Equation (38) in Equations (4) and (5), we obtain:

T =
2Q

2D + δQ
(39)

Q =
2DT

2− δT
(40)

Substituting Equations (39) and (40) in Equation (13) results in the following total
cost function:

TC(Q) =
SD
Q

+
Sδ

2
+ (h + cδ)

Q
2

(41)

TC(Q) in Equation (41) is obviously convex and the optimal order quantity is easily
obtained as follows:

Q∗ =

√
2DS

h + cδ
(42)

This is also very intuitive. Again, the deterioration cost is treated like a type of
inventory holding cost, and this is the same as the EOQ equation from the basic EOQ model,
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except that h is replaced by h + cδ. It should be noted that Equations (37) and (42) do not
correspond to the same optimal solution like the basic EOQ and basic EOI (Economic Order
Interval) solutions do, despite the fact that they both have an “effective” inventory holding
cost rate h + cδ, because Equations (37) and (42) are based on two different approximations
of eδT .

4.2.3. Closed-Form Solution 3

Another possible approximation is the logarithmic term in Equation (18), whose Taylor
series expansion is as follows:

ln
(

D + δQ
D

)
= ln

(
1 +

δQ
D

)
=

δQ
D
− δ2Q2

2D2 +
δ3Q3

3D3 −
δ4Q4

4D4 + . . . . (43)

Because Q is usually much smaller than D for the optimal order quantity in practice,
and because δ is usually small, we will ignore the terms higher than the second order. By
substituting the approximation in Equation (18), we obtain the total cost function as follows:

TC(Q) =
2SD2

2DQ− δQ2 +
2(h + cδ)D2

2δD− δ2Q
− (h + cδ)D

δ
(44)

The optimal solution to Equation (44) is as follows:

Q∗ =
√

δ2S2 + 2(h + cδ)SD− δS
h + cδ

(45)

This is not as intuitive as Equation (42), and it is not quite as accurate either, as we
show in Section 6.

4.2.4. Closed-Form Solution 4

We can make the approximation in Section 4.2.1 (Closed-Form Solution 1) more
accurate by including the third-order term in the Taylor series expansion, which results in:

TC(T) =
S
T
+

(h + cδ)DT
2

+
δ(h + cδ)DT2

6
(46)

TC(T) in Equation (46) is also convex, because it is the same as Equation (36), plus a
positive quadratic term that is convex. We can find the equation for T∗ as follows:

T∗ =

√
6S

3(h + cδ)D + 2δ(h + cδ)DT∗
(47)

Note that Equation (47) reduces to Equation (37) when the second term in the denomi-
nator is dropped, which comes from the extra third-order term included from the Taylor
series expansion. Equation (47) is recursive like Equation (26). We can either employ the
same iterative procedure as in Ghare and Schrader [9], or embed the first two iterations in
the closed-form equation as in Bahari-Kashani [19]. This results in the following:

T∗ =

√√√√ 6S

3(h + cδ)D + 2δ(h + cδ)D
√

2S
(h+cδ)D

(48)

The iterative procedure indeed converges in two iterations as in Ghare and Schrader [9],
so using Equation (48) is sufficient. Alternatively, we can use the nested radicals and the
cubic equation for this case as well, as in Equations (30)–(32).
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4.2.5. Closed-Form Solution 5

Closed-Form Solutions 1 and 2 can be hybridized to obtain a better approximate
solution. Solution 1 results in an order quantity higher than the actual optimal order
quantity, whereas Solution 2 becomes lower than the optimal order quantity. Let T∗1 be
the optimal order interval from Solution 1 and Q∗2 be the optimal order quantity from
Solution 2. Then, the following solution lies in between the two solutions:

Q∗ =
1
2

[
D
δ

(
eδT∗1 − 1

)
+ Q∗2

]
(49)

4.2.6. Closed-Form Solution 6

We can hybridize Solutions 1 and 2 from the T∗ side as well. This results in the
following optimal order interval:

T∗ =
1
2

[
T∗1 +

1
δ

ln
(

1 +
δQ∗2
D

)]
(50)

5. The Planned Backorders Model

Backordering satisfies the customer’s demand late when the item is out of stock and
the customer is willing to wait, at the expense of a backordering cost per unit of the item.
When the customer is willing to wait, it is always optimal to backorder a portion of the
demand, as long as the per unit backordering cost is reasonably small. The backordering
model is the general case of the basic model; it reduces to the basic model when the per
unit cost of backordering approaches infinity. It is important to study it in addition to the
basic model because it is a generalization of it. On the contrary, lost sales occur when the
item is out of stock and the customer isn’t willing to wait. In this case, for deterministic
demand, it is optimal to never allow lost sales, which means using the basic model [45].

B is the amount of demand left unfilled in a given cycle to be satisfied in the next cycle
(i.e., backordered demand), and b is the cost of backordering per unit per unit time. Each
cycle starts with a backorder amount of B units, which is immediately fulfilled from the
received order. Thus, in the planned backorders model, the order quantity is Q, but the
maximum inventory level is Q− B (See Figure 2). This changes the inventory level and
order quantity equations, as well as the waste cost per cycle and the inventory holding cost
per cycle as follows:

t

I (t)

- B

Q - B

0 TI

T

Figure 2. Inventory level over time in the planned backorders model.

I(t) = (Q− B)e−δt − D
δ
(1− e−δt), 0 ≤ t ≤ TI (51)

Q =
D
δ
(eδTI − 1) + B (52)

B = D(T − TI) (53)

TI =
1
δ

ln
[

D + δ(Q− B)
D

]
(54)
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Wc = c(Q− B− DTI) (55)

Ic =
h
δ
(Q− B− DTI) (56)

where TI ≤ T is the length of time when the inventory level is non-zero during a cycle. It
should be noted that I(t) represents the on-hand inventory level and it is never negative.
In Figure 2, the part of the graph below zero represents accumulating backorders, it does
not represent negative on-hand inventory. Then, the exact unit time total cost for the
deteriorating items with planned backorders model will be as follows:

TC(T, TI) =
S
T
+

h + cδ

δT

[
D
δ
(eδTI − 1)− DTI

]
+

bD(T − TI)
2

2T
(57)

Lemma 3. TC(T, TI) in Equation (57) is convex over (T, TI) ≥ 0.

Proof. The first term of TC(T, TI) in Equation (57) is obviously strictly convex. The second
term can be rearranged as follows:

(h + cδ)D
δ2

[
eδTI − δTI − 1

T

]
=

(h + cδ)D
δ2 f (T, TI) (58)

The Hessian of f (T, TI) is as follows:

H f (T, TI) =

[
fTT fTTI
fTI T fTI TI

]
=

[
2(eδTI−δTI−1)

T3 − δ
T2 (eδTI − 1)

− δ
T2 (eδTI − 1) δ2eδTI

T

]
(59)

fTT ≥ 0 and fTTI = fTI T < 0 for (T, TI) ≥ 0 because eδTI = 1+ δTI +
δ2T2

2 + . . ., due to
Taylor series expansion. fTI TI > 0 for (T, TI) ≥ 0. The determinant of the leading principal
minor is fTT ≥ 0. Furthermore, the other principal minor, fTI TI > 0. fTT = 0 if and only
if TI = 0, in which case fTTI = 0 as well. Using the Taylor series expansion of eδT again,
det (H f (T, TI)) ≥ 0 reduces to the following inequality that obviously holds:

(δTI)
3

3
+

(δTI)
4

3
+

11(δTI)
5

60
+ . . . +

(2n − 2n)(δTI)
n

n!
+ . . . ≥ 0 (60)

The Hessian Hg(T, TI) of the third term of Equation (57) should satisfy the following
inequality to be positive semi-definite:

[
x y

][ 2T2
I

T3 − 2TI
T2

− 2TI
T2

2
T

][
x
y

]
=

2T2
I

T3 x2 − 4TI

T2 xy +
2
T

y2 ≥ 0, x, y ∈ R (61)

Equation (61) holds because for a fixed y, ∆x = y2(
16T2

I
T4 −

16T2
I

T4 ) = 0 and 2T2
I

T3 ≥ 0. If
2T2

I
T3 = 0, Equation (61) holds for any x and y. Similarly, for a fixed x, ∆y = x2(

16T2
I

T4 −
16T2

I
T4 ) = 0

and 2
T > 0.

We can alternatively express the total cost function in terms of Q and B as follows:

TC(Q, B) =
δS

ln x + δ B
D

+
h + cδ

ln x + δ B
D

[
Q− B− D

δ
ln x

]
+

δbB2

2D
(

ln x + δ B
D

) (62)

where x = 1 + δ(Q−B)
D . It can be similarly shown that Equation (62) also has a unique

minimum. Like in the basic model, there is no exact closed-form equation in the planned
backorders model for T∗ and T∗I (Q∗ and B∗) due to exponential (logarithmic) terms in
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Equation (57) (Equation (62)). Therefore, we propose approximations of the total cost
function that are close and result in intuitive closed-form solutions.

5.1. Existing Closed-Form Solutions

Widyadana et al. [36] develop the following equations based on the same approxima-
tion as in their basic model:

Q∗ =

√
2SD(D + δ)

[hr2 + b(1− r)2][D + δ(1− r)]
(63)

B∗ =
(

b
b + h

)
Q∗ (64)

where r = b
b+h is the optimal “fill rate”, which is the fraction of the cycle demand that is

immediately satisfied from the available inventory. Obviously, this optimal order quantity
equation is far from being intuitive. In Section 6, we will show that it is also far from being
accurate. Substituting r = b

b+h in Equation (63), we obtain the following, which is still not
intuitive (the last square root term is dubious):

Q∗ =

√
2S(D + δ)

h

√
b + h

b

√
D(b + h)

D(b + h) + hδ
(65)

5.2. New Closed-Form Solutions

In this section, we develop new approximations of the total cost function similar to
the basic model and derive closed-form equations for the optimal solution of the planned
backorders model.

5.2.1. Closed-Form Solution 1

By once again substituting the Taylor series expansion of eδTI = 1 + δTI +
δ2T2

I
2 in

Equation (57), we obtain the following total cost function:

TC(T, TI) =
S
T
+

(h + cδ)DT2
I

2T
+

bD(T − TI)
2

2T
(66)

Equation (66) is the same as the approximate total cost function in Çalışkan [24], who
derives and optimizes it without using differential calculus.

Lemma 4. TC(T, TI) in Equation (66) is convex over (T, TI) ≥ 0.

Proof. The Hessian of TC(T, TI) is as follows:

HTC(T, TI) =

[
TCTT TCTTI
TCTI T TCTI TI

]
=

[
2S
T3 +

(h+cδ+b)DT2
I

T3 − (h+cδ+b)DTI
T2

− (h+cδ+b)DTI
T2

(h+cδ+b)D
T

]
(67)

TCTT > 0 and TCTTI = TCTI T ≤ 0 for (T, TI) ≥ 0. TCTI TI > 0 for (T, TI) ≥ 0. The
determinant of the leading principal minor is TCTT > 0. Furthermore, the other principal
minor, TCTI TI > 0. Finally, det (HTC(T, TI)) =

2(h+cδ+b)SD
T4 > 0.

The Optimal Inventory Interval (TI)

Setting TCTI equal to zero yields the following equation for T∗I :

T∗I =

(
b

b + h + cδ

)
T∗ (68)
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The Optimal Order Interval (T)

We can eliminate TI from Equation (66) by substituting Equation (68) in Equation (66).
The resulting total cost equation is as follows:

TC(T) =
S
T
+

[
(h + cδ)b
b + h + cδ

]
DT
2

(69)

Equation (69) has the same form as Equation (36). Therefore, the optimal order interval
can be determined as follows:

T∗ =

√
2S

(h + cδ)D

√
b + h + cδ

b
(70)

The optimal order and backorder quantities (Q∗, B∗) can then be calculated using
Equations (52) and (53).

5.2.2. Closed-Form Solution 2

We now consider Equation (62) and use the Taylor series expansion of ln (1 + x) =
x− x2

2 + x3

3 −
x4

4 + . . . with x = δ(Q−B)
D . Because δ is usually small in practice, and Q− B is

usually much smaller than D for the optimal solution, we will ignore the terms higher than
the second order. By substituting this approximation in Equation (62), we obtain:

TC(Q, B) =
1

δQ
D −

δ2(Q−B)2

2D2

(
δS + (h + cδ)

[
δ(Q− B)2

2D

]
+

δbB2

2D

)
(71)

In Equation (71), we can further ignore the quadratic term in the denominator because,
in practice, 2D2 � δ(Q− B)2, especially around the optimal solution. This results in the
following total cost function:

TC(Q, B) =
SD
Q

+
(h + cδ)(Q− B)2

2Q
+

bB2

2Q
(72)

TC(Q, B) in Equation (72) can be shown to be convex similar to how we prove the
convexity of Equation (66).

The Optimal Backorder Quantity (B)

Setting TCB equal to zero yields the following equation for B∗:

B∗ =
(

h + cδ

b + h + cδ

)
Q∗ (73)

The Optimal Order Quantity (Q)

We can eliminate B from Equation (72) by substituting Equation (73) in Equation (72).
The resulting total cost function is as follows:

TC(Q) =
SD
Q

+

[
(h + cδ)b
b + h + cδ

]
Q
2

(74)

Equation (74) has the same form as Equation (41), except for the constant term. There-
fore, the optimal order quantity can be determined as follows:

Q∗ =

√
2DS

h + cδ

√
b + h + cδ

b
(75)
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5.2.3. Closed-Form Solution 3

Closed-Form Solutions 1 and 2 can be hybridized to obtain a better approximate
solution. Solution 1 results in an order quantity higher than the actual optimal order
quantity, whereas Solution 2 results in an order quatity lower than the optimal order
quantity. Let T∗I1

, T∗1 be the optimal inventory and order intervals from Solution 1, and let
(Q∗2 , B∗2 ) be the optimal order and backorder quantities from Solution 2. Then, the following
solution lies in between the two solutions:

Q∗ =
1
2

[
D
δ

(
eδT∗I1 − 1

)
+ D(T∗1 − T∗I1

) + Q∗2

]
. (76)

Then, B∗ can be calculated using Equation (73).

5.2.4. Closed-Form Solution 4

We can also hybridize Solutions 1 and 2 from the (T, TI) side as well. This results in
the following optimal solution:

T∗I =
1
2

[
T∗I1

+
1
δ

ln
(

1 +
δ(Q∗2 − B∗2 )

D

)]
. (77)

T∗ can then be calculated using Equation (68).

6. Results

In this section, we test the accuracy of our proposed approximation models against the
existing ones as well as the approximated numerical solution of the exact model. In order
to find the exact optimal solutions, we use the generalized reduced gradient (GRG) solver
by Frontline Systems. The GRG solver is based on the nonlinear optimization algorithm
by Lasdon et al. [46]. In the experiments, we analyze the change in Q∗, B∗, and TC(.) with
respect to δ, S, D, and h, where we use c = 10.

6.1. The Basic Model

We summarize the results of the numerical experiments for the basic model in Tables 2 and 3,
where the following is the notation to refer to different solutions:

GRG : The exact optimal solution obtained by the GRG algorithm

E1 : The closed-form solution of Ghare and Schrader [9]

E2 : The closed-form solution of Chung and Ting [21]

E3 : The closed-form solution of Widyadana et al. [36]

Ni : The proposed closed-form solution i in this paper where i = 1, 2, 3, 4, 5, 6

The Q∗ values in Table 2 for different models are determined using their respective
closed-form solutions (and then using Equation (5) if the closed-form solution is used for
T∗). The TC(Q∗) values in Table 3 are calculated using Equations (4), (5) and (13). Among
all closed-form solutions, Widyadana et al. [36] stands out as the most inaccurate. A closer
look at Table 2 shows that for the Widyadana et al. [36] model, Q∗ is slightly increasing
with δ, but it should really decrease significantly. This is also apparent in Equation (34),
which is an increasing function of δ. If we compare Q∗ as it varies with respect to S, the
solution introduced by Widyadana et al. [36] is approximately double the other solutions
for every value of S; with respect to D, it is about seven to eight times the other solutions
for every value of D; and with respect to h, it is about six times the others for a very small h
and gradually becomes closer to others, but it is still 1.5 times the others, even for an h as
large as 7.5 (which corresponds to an inventory holding cost rate of 75%).
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Table 2. The optimal order quantity of the GRG algorithm and the existing and proposed closed-form
solutions for the basic model.

Optimal Order Quantity Q∗

Parameters Existing Solutions New Solutions

D S h δ GRG E1 E2 E3 N1 N2 N3 N4 N5 N6

500 100 3.5 0.1 149.81 149.57 149.06 169.05 151.32 149.07 146.87 149.81 150.18 150.19
500 100 3.5 1.25 81.62 85.40 78.82 169.24 87.41 79.06 71.63 81.66 82.96 83.10
500 100 3.5 2.5 62.09 67.53 58.86 169.45 68.94 59.23 51.11 62.17 63.62 63.85
500 100 3.5 3.75 52.35 58.67 48.92 169.66 59.77 49.39 41.08 52.44 53.96 54.27
500 100 3.5 5 46.25 53.17 42.69 169.87 54.09 43.23 34.89 46.36 47.91 48.28

500 10 3.5 1 27.46 27.77 27.21 53.51 27.97 27.22 26.49 27.46 27.59 27.59
500 60 3.5 1 68.13 70.03 66.57 131.06 71.32 66.67 62.37 68.15 68.89 68.94
500 110 3.5 1 92.94 96.49 90.04 177.46 98.93 90.27 82.49 92.99 94.34 94.47
500 160 3.5 1 112.75 117.97 108.48 214.02 121.63 108.87 97.66 112.82 114.79 115.02
500 210 3.5 1 129.81 136.74 124.15 245.19 141.66 124.72 110.13 129.92 132.50 132.84

1000 50 3.5 5 44.76 47.89 43.08 169.45 48.26 43.23 38.81 44.79 45.57 45.66
2000 50 3.5 5 62.68 65.71 61.03 239.34 66.06 61.14 56.65 62.70 63.48 63.54
4500 50 3.5 5 93.26 96.21 91.64 358.77 96.55 91.71 87.16 93.27 94.05 94.09
9000 50 3.5 5 131.25 134.16 129.65 507.23 134.49 129.70 125.11 131.26 132.04 132.07

100,000 50 3.5 5 433.89 436.73 432.32 1690.35 437.04 432.34 427.69 433.90 434.67 434.68

10,000 50 0.3 1 313.20 316.35 311.56 1825.83 316.49 311.59 306.77 313.21 314.02 314.03
10,000 50 0.8 1 305.83 308.61 304.27 1118.09 308.97 304.29 299.70 305.83 306.61 306.62
10,000 50 2.5 1 284.17 286.06 282.82 632.49 286.88 282.84 278.87 284.18 284.84 284.85
10,000 50 5 1 259.31 260.43 258.18 447.24 261.56 258.20 254.89 259.31 259.87 259.87
10,000 50 7.5 1 240.00 240.68 239.03 365.17 241.93 239.05 236.21 240.00 240.47 240.48

% Difference of Q∗ vs. GRG

Parameters Existing Solutions New Solutions

D S h δ GRG E1 E2 E3 N1 N2 N3 N4 N5 N6

500 100 3.5 0.1 0.00 −0.16 −0.50 12.84 1.01 −0.49 −1.96 0.00 0.25 0.25
500 100 3.5 1.25 0.00 4.63 −3.43 107.35 7.09 −3.14 −12.24 0.05 1.64 1.81
500 100 3.5 2.5 0.00 8.76 −5.20 172.91 11.03 −4.61 −17.68 0.13 2.46 2.83
500 100 3.5 3.75 0.00 12.07 −6.55 224.09 14.17 −5.65 −21.53 0.17 3.08 3.67
500 100 3.5 5 0.00 14.96 −7.70 267.29 16.95 −6.53 −24.56 0.24 3.59 4.39

500 10 3.5 1 0.00 1.13 −0.91 94.87 1.86 −0.87 −3.53 0.00 0.47 0.47
500 60 3.5 1 0.00 2.79 −2.29 92.37 4.68 −2.14 −8.45 0.03 1.12 1.19
500 110 3.5 1 0.00 3.82 −3.12 90.94 6.45 −2.87 −11.24 0.05 1.51 1.65
500 160 3.5 1 0.00 4.63 −3.79 89.82 7.88 −3.44 −13.38 0.06 1.81 2.01
500 210 3.5 1 0.00 5.34 −4.36 88.88 9.13 −3.92 −15.16 0.08 2.07 2.33

1000 50 3.5 5 0.00 6.99 −3.75 278.57 7.82 −3.42 −-13.29 0.07 1.81 2.01
2000 50 3.5 5 0.00 4.83 −2.63 281.84 5.39 −2.46 −9.62 0.03 1.28 1.37
4500 50 3.5 5 0.00 3.16 −1.74 284.70 3.53 −1.66 −6.54 0.01 0.85 0.89
9000 50 3.5 5 0.00 2.22 −1.22 286.46 2.47 −1.18 −4.68 0.01 0.60 0.62

100,000 50 3.5 5 0.00 0.65 −0.36 289.58 0.73 −0.36 −1.43 0.00 0.18 0.18

10,000 50 0.3 1 0.00 1.01 −0.52 482.96 1.05 −0.51 −2.05 0.00 0.26 0.27
10,000 50 0.8 1 0.00 0.91 −0.51 265.59 1.03 −0.50 −2.00 0.00 0.26 0.26
10,000 50 2.5 1 0.00 0.67 −0.48 122.57 0.95 −0.47 −1.87 0.00 0.24 0.24
10,000 50 5 1 0.00 0.43 −0.44 72.47 0.87 −0.43 −1.70 0.00 0.22 0.22
10,000 50 7.5 1 0.00 0.28 −0.40 52.15 0.80 −0.40 −1.58 0.00 0.20 0.20
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Table 3. The optimal total cost of the GRG algorithm and the existing and proposed closed-form
solutions for the basic model.

Optimal Total Cost TC(Q∗) or TC(T∗)

Parameters Existing Solutions New Solutions

D S h δ GRG E1 E2 E3 N1 N2 N3 N4 N5 N6

500 100 3.5 0.1 674.15 674.15 674.15 679.00 674.18 674.15 674.28 674.15 674.15 674.15
500 100 3.5 1.25 1305.93 1307.14 1306.65 1628.75 1308.72 1306.53 1316.13 1305.93 1306.08 1306.12
500 100 3.5 2.5 1769.62 1775.08 1771.84 2576.62 1778.08 1771.34 1799.27 1769.62 1770.08 1770.22
500 100 3.5 3.75 2146.32 2158.16 2150.54 3464.35 2162.33 2149.43 2200.74 2146.33 2147.16 2147.50
500 100 3.5 5 2474.27 2494.17 2480.90 4307.94 2499.36 2478.96 2557.50 2474.28 2475.55 2476.16

500 10 3.5 1 370.74 370.76 370.76 453.41 370.80 370.76 370.98 370.74 370.75 370.75
500 60 3.5 1 919.79 920.11 920.02 1108.11 920.68 919.99 923.16 919.79 919.84 919.85
500 110 3.5 1 1254.75 1255.55 1255.33 1499.45 1256.99 1255.24 1263.00 1254.75 1254.87 1254.90
500 160 3.5 1 1522.11 1523.52 1523.14 1808.10 1526.06 1522.96 1536.41 1522.11 1522.33 1522.38
500 210 3.5 1 1752.38 1754.49 1753.93 2071.55 1758.34 1753.63 1773.66 1752.38 1752.71 1752.80

1000 50 3.5 5 2394.92 2399.84 2396.51 4479.47 2401.05 2396.23 2417.11 2394.92 2395.26 2395.34
2000 50 3.5 5 3353.40 3356.87 3354.51 6436.92 3357.70 3354.36 3369.43 3353.40 3353.65 3353.69
4500 50 3.5 5 4989.27 4991.58 4990.00 9806.59 4992.13 4989.94 5000.15 4989.27 4989.44 4989.46
9000 50 3.5 5 7021.86 7023.49 7022.37 14,014.64 7023.88 7022.34 7029.64 7021.86 7021.98 7021.99

100,000 50 3.5 5 23,213.25 23,213.74 23,213.40 47,686.78 23,213.85 23,213.40 23,215.63 23,213.25 23,213.29 23,213.29

10,000 50 0.3 1 3225.99 3226.14 3226.03 9438.50 3226.16 3226.03 3226.67 3225.99 3226.00 3226.00
10,000 50 0.8 1 3302.96 3303.09 3303.00 6402.80 3303.13 3303.00 3303.63 3302.96 3302.97 3302.97
10,000 50 2.5 1 3552.16 3552.24 3552.20 4727.92 3552.32 3552.20 3552.78 3552.16 3552.17 3552.17
10,000 50 5 1 3889.61 3889.65 3889.65 4472.61 3889.76 3889.65 3890.18 3889.61 3889.62 3889.62
10,000 50 7.5 1 4199.93 4199.95 4199.97 4570.20 4200.07 4199.97 4200.46 4199.93 4199.94 4199.94

% Difference of TC(Q∗) or TC(T∗) vs. GRG

Parameters Existing Solutions New Solutions

D S h δ GRG E1 E2 E3 N1 N2 N3 N4 N5 N6

500 100 3.5 0.1 0.00 0.00 0.00 0.72 0.00 0.00 0.02 0.00 0.00 0.00
500 100 3.5 1.25 0.00 0.09 0.06 24.72 0.21 0.05 0.78 0.00 0.01 0.01
500 100 3.5 2.5 0.00 0.31 0.13 45.60 0.48 0.10 1.68 0.00 0.03 0.03
500 100 3.5 3.75 0.00 0.55 0.20 61.41 0.75 0.14 2.54 0.00 0.04 0.05
500 100 3.5 5 0.00 0.80 0.27 74.11 1.01 0.19 3.36 0.00 0.05 0.08

500 10 3.5 1 0.00 0.01 0.00 22.30 0.02 0.00 0.06 0.00 0.00 0.00
500 60 3.5 1 0.00 0.04 0.03 20.47 0.10 0.02 0.37 0.00 0.01 0.01
500 110 3.5 1 0.00 0.06 0.05 19.50 0.18 0.04 0.66 0.00 0.01 0.01
500 160 3.5 1 0.00 0.09 0.07 18.79 0.26 0.06 0.94 0.00 0.01 0.02
500 210 3.5 1 0.00 0.12 0.09 18.21 0.34 0.07 1.21 0.00 0.02 0.02

1000 50 3.5 5 0.00 0.21 0.07 87.04 0.26 0.05 0.93 0.00 0.01 0.02
2000 50 3.5 5 0.00 0.10 0.03 91.95 0.13 0.03 0.48 0.00 0.01 0.01
4500 50 3.5 5 0.00 0.05 0.01 96.55 0.06 0.01 0.22 0.00 0.00 0.00
9000 50 3.5 5 0.00 0.02 0.01 99.59 0.03 0.01 0.11 0.00 0.00 0.00

100,000 50 3.5 5 0.00 0.00 0.00 105.43 0.00 0.00 0.01 0.00 0.00 0.00

10,000 50 0.3 1 0.00 0.00 0.00 192.58 0.01 0.00 0.02 0.00 0.00 0.00
10,000 50 0.8 1 0.00 0.00 0.00 93.85 0.01 0.00 0.02 0.00 0.00 0.00
10,000 50 2.5 1 0.00 0.00 0.00 33.10 0.00 0.00 0.02 0.00 0.00 0.00
10,000 50 5 1 0.00 0.00 0.00 14.99 0.00 0.00 0.01 0.00 0.00 0.00
10,000 50 7.5 1 0.00 0.00 0.00 8.82 0.00 0.00 0.01 0.00 0.00 0.00

Closed-Form Solution 4 stands out as the most accurate one, which is almost identical
to the exact solution in all of the cases. This is because it uses a more accurate approxi-
mation of eδT that includes the cubic term from the Taylor series expansion. Closed-Form
Solutions 5 and 6, which are both hybrids of Solutions 1 and 2, are the next closest to the
exact solution. This is due to Solutions 1 and 2 alternately overestimating and underes-
timating Q∗, so it is natural that their average would be closer to the exact solution. The
solution of Chung and Ting [21] and Closed-Form Solution 2 are very close, because they
both use the same approximation for eδT . The difference is caused by the calculation of Q∗

from T∗ that uses the exact equation for Q(T) (Equation (5)). They are similarly accurate,
but our closed-form solution is much more intuitive than that of Chung and Ting [21].
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The solution of Ghare and Schrader [9] and Closed-Form Solution 1 are also very close
to one another, because they use the same approximation of eδT . However, the latter is much
more intuitive than the former. The difference in Q∗ and TC(Q∗) is due to the fact that Ghare
and Schrader [9] assume that the inventory holding cost is simply hQ (which we use h Q

2 as
in Chung and Ting [21] to avoid an unfair comparison), whereas Closed-Form Solution 1
is based on an exact integration-based modeling of the holding cost. This seemingly small
issue leads to a depressed cubic equation in Ghare and Schrader [9] that fails to result in a
simple and intuitive closed-form equation.

Finally, apart from Widyadana et al. [36], Closed-Form Solution 3 is the least accurate
among all approaches, which is based on the Taylor series expansion of ln (1 + x). It might
be more accurate if the third-order term is included, but then it does not lend itself to a
simple closed-form solution. The closed-form solution with the present approximation is
also not very intuitive, which is similar in its form to the closed-form equation of Chung
and Ting [21], because they both come from the quadratic equation for the roots.

The conclusion for the basic model is that all of our closed-form solutions are reason-
ably accurate, and some of them (Equations (37), (42) and (48)) are very intuitive compared
to the existing ones. Equation (48) is very accurate, almost identical to the exact optimal
solution. Equations (37) and (42) are reasonably accurate in addition to being intuitive.
Finally, the two hybrids, Equations (49) and (50), are very accurate as well. The closed-form
solutions of Ghare and Schrader [9] and Chung and Ting [21] are reasonably accurate but
not very intuitive, and Widyadana et al. [36] is somewhat intuitive but completely wrong.

6.2. The Planned Backorders Model

We summarize the results of the numerical experiments for the planned backorders
model in Tables 4 and 5, where the following is the notation to refer to different solutions:

GRG : The exact optimal solution obtained by the GRG algorithm

E3 : The closed-form solution of Widyadana et al. [36]

Ni : The proposed closed-form solution i in this paper where i = 1, 2, 3, 4

The Q∗ and B∗ values in Table 4 for different models are determined using their
respective closed-form solutions (and then using Equation (52) and (53) if the closed-
form solution is used for T∗I and T∗). The TC(Q∗, B∗) values in Table 5 are calculated
using Equations (52), (53), (54), and (57). Widyadana et al. [36] again stands out as the
most inaccurate.

As it is shown in Tables 4 and 5, both Closed-Form Solution 1 and Closed-Form
Solution 2 are very close to optimal values. One of them is above and the other is below as in
the basic model (in terms of Q∗ and B∗). Hybrid solutions (Closed-Form Solutions 3 and 4)
are almost identical to one another and they are closest to the exact optimum solution. In
terms of total cost, they are almost identical to the exact total cost in all cases. Closed-Form
Solutions 1 and 2 are almost identical in terms of total cost, and they are not very far from
the optimal cost, either.

Keeping all parameters constant but varying S produces the biggest difference between
the different models in terms of Q∗, especially as S becomes larger. However, when we
look at B∗ and TC(Q∗, B∗), the differences are much smaller. The next greatest difference
happens with respect to δ. For varying D, differences are much smaller and they almost
disappear as it becomes larger. Finally, for varying h, differences are much smaller and they
do not change much between small or large values of h.

We do not include experiments for varying b, but our experience is that all closed-form
solutions approach their counterpart basic model as b becomes larger. This is apparent
from the factors b+h+cδ

b and b
b+h+cδ that appear in both of our closed-form solutions and

b+h
b and b

b+h in the Widyadana et al. [36] model, as they all approach 1 as b→ ∞.
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Table 4. The optimal order quantity and optimal backorder quantity of the GRG algorithm and the
existing and proposed closed-form solutions for the planned backorders model.

Optimal Order Quantity Q∗ Optimal Backorder Quantity B∗

Parameters Existing New Solutions Existing New Solutions

D S h δ b GRG E3 N1 N2 N3 N4 GRG E3 N1 N2 N3 N4

500 100 3.5 0.1 20 165.59 170.52 166.82 164.99 165.91 165.91 30.42 25.40 30.30 30.30 30.30 30.47
500 100 3.5 1.25 20 107.46 170.68 110.63 106.07 108.35 108.34 47.76 25.42 47.14 47.14 47.14 48.15
500 100 3.5 2.5 20 93.38 170.86 96.10 92.24 94.17 94.16 54.87 25.45 54.20 54.20 54.20 55.33
500 100 3.5 3.75 20 87.18 171.03 89.47 86.25 87.86 87.85 58.60 25.47 57.97 57.97 57.97 59.05
500 100 3.5 5 20 83.66 171.21 85.63 82.88 84.25 84.25 60.90 25.50 60.33 60.33 60.33 61.32

500 10 3.5 1 20 35.37 53.96 35.67 35.22 35.45 35.45 14.25 8.04 14.19 14.19 14.19 14.29
500 60 3.5 1 20 87.14 132.18 89.03 86.28 87.65 87.65 35.12 19.69 34.77 34.77 34.77 35.32
500 110 3.5 1 20 118.39 178.97 121.92 116.83 119.37 119.37 47.71 26.66 47.08 47.08 47.08 48.10
500 160 3.5 1 20 143.16 215.85 148.39 140.90 144.64 144.63 57.69 32.15 56.78 56.78 56.78 58.28
500 210 3.5 1 20 164.37 247.29 171.33 161.42 166.37 166.35 66.24 36.83 65.05 65.05 65.05 67.04

1000 50 3.5 5 500 46.86 169.51 50.01 45.49 47.75 47.74 4.53 1.18 4.40 4.40 4.40 4.40
2000 50 3.5 5 500 65.71 239.43 68.76 64.33 66.55 66.54 6.35 1.66 6.22 6.22 6.22 6.22
4500 50 3.5 5 500 97.88 358.89 100.86 96.49 98.68 98.67 9.46 2.49 9.33 9.33 9.33 9.33
9000 50 3.5 5 500 137.86 507.41 140.78 136.46 138.62 138.62 13.33 3.53 13.19 13.19 13.19 13.19

100,000 50 3.5 5 500 456.28 1690.94 459.13 454.88 457.01 457.01 44.10 11.75 43.97 43.97 43.97 43.97

10,000 50 0.3 1 20 384.58 1827.20 386.75 383.52 385.14 385.14 130.73 27.00 130.37 130.37 130.37 130.92
10,000 50 0.8 1 20 378.61 1120.32 380.65 377.61 379.13 379.13 132.76 43.09 132.41 132.41 132.41 132.94
10,000 50 2.5 1 20 361.37 636.42 363.03 360.56 361.80 361.79 138.99 70.71 138.68 138.68 138.68 139.15
10,000 50 5 1 20 342.20 452.79 343.48 341.57 342.52 342.52 146.66 90.56 146.39 146.39 146.39 146.80
10,000 50 7.5 1 20 327.83 371.94 328.86 327.33 328.09 328.09 152.99 101.44 152.75 152.75 152.75 153.11

% Difference of Q∗ and B∗ vs. GRG

Optimal Order Quantity Q∗ Optimal Backorder Quantity B∗

Parameters Existing New Solutions Existing New Solutions

D S h δ b GRG E3 N1 N2 N3 N4 GRG E3 N1 N2 N3 N4

500 100 3.5 0.1 20 0.00 2.98 0.74 −0.36 0.19 0.19 0.00 −16.50 −0.39 −0.39 −0.39 0.16
500 100 3.5 1.25 20 0.00 58.83 2.95 −1.29 0.83 0.82 0.00 −46.78 −1.30 −1.30 −1.30 0.82
500 100 3.5 2.5 20 0.00 82.97 2.91 −1.22 0.85 0.84 0.00 −53.62 −1.22 −1.22 −1.22 0.84
500 100 3.5 3.75 20 0.00 96.18 2.63 −1.07 0.78 0.77 0.00 −56.54 −1.08 −1.08 −1.08 0.77
500 100 3.5 5 20 0.00 104.65 2.35 −0.93 0.71 0.71 0.00 −58.13 −0.94 −0.94 −0.94 0.69

500 10 3.5 1 20 0.00 52.56 0.85 −0.42 0.23 0.23 0.00 −43.58 −0.42 −0.42 −0.42 0.28
500 60 3.5 1 20 0.00 51.69 2.17 −0.99 0.59 0.59 0.00 −43.94 −1.00 −1.00 −1.00 0.57
500 110 3.5 1 20 0.00 51.17 2.98 −1.32 0.83 0.83 0.00 −44.12 −1.32 −1.32 −1.32 0.82
500 160 3.5 1 20 0.00 50.78 3.65 −1.58 1.03 1.03 0.00 −44.27 −1.58 −1.58 −1.58 1.02
500 210 3.5 1 20 0.00 50.45 4.23 −1.79 1.22 1.20 0.00 −44.40 −1.80 −1.80 −1.80 1.21

1000 50 3.5 5 500 0.00 261.74 6.72 −2.92 1.90 1.88 0.00 −73.95 −2.87 −2.87 −2.87 −2.87
2000 50 3.5 5 500 0.00 264.37 4.64 −2.10 1.28 1.26 0.00 −73.86 −2.05 −2.05 −2.05 −2.05
4500 50 3.5 5 500 0.00 266.66 3.04 −1.42 0.82 0.81 0.00 −73.68 −1.37 −1.37 −1.37 −1.37
9000 50 3.5 5 500 0.00 268.06 2.12 −1.02 0.55 0.55 0.00 −73.52 −1.05 −1.05 −1.05 −1.05

100,000 50 3.5 5 500 0.00 270.59 0.62 −0.31 0.16 0.16 0.00 −73.36 −0.29 −0.29 −0.29 −0.29

10,000 50 0.3 1 20 0.00 375.12 0.56 −0.28 0.15 0.15 0.00 −79.35 −0.28 −0.28 −0.28 0.15
10,000 50 0.8 1 20 0.00 195.90 0.54 −0.26 0.14 0.14 0.00 −67.54 −0.26 −0.26 −0.26 0.14
10,000 50 2.5 1 20 0.00 76.11 0.46 −0.22 0.12 0.12 0.00 −49.13 −0.22 −0.22 −0.22 0.12
10,000 50 5 1 20 0.00 32.32 0.37 −0.18 0.09 0.09 0.00 −38.25 −0.18 −0.18 −0.18 0.10
10,000 50 7.5 1 20 0.00 13.46 0.31 −0.15 0.08 0.08 0.00 −33.70 −0.16 −0.16 −0.16 0.08

In summary, we can confidently assert that all of our closed-form solutions for the
planned backorders model are quite accurate and very intuitive. Widyadana et al. [36]
propose the earliest solution in the literature for the exponentially deteriorating items model
with planned backorders. However, it is not only most inaccurate and counterintuitive, but
also incorrect as the model behaves opposite to the exact model for some of the parameters
such as δ.
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Table 5. The optimal total cost of the GRG algorithm and the existing and proposed closed-form
solutions for the planned backorders model.

Optimal Total Cost TC(Q∗, B∗) or TC(T , TI)

Parameters Existing New Solutions

D S h δ b GRG E3 N1 N2 N3 N4

500 100 3.5 0.1 20 608.30 611.08 608.33 608.31 608.30 608.31
500 100 3.5 1.25 20 955.18 1292.64 956.16 955.26 955.22 955.37
500 100 3.5 2.5 20 1097.44 1947.59 1098.96 1097.52 1097.48 1097.77
500 100 3.5 3.75 20 1171.91 2537.43 1173.60 1171.98 1171.95 1172.29
500 100 3.5 5 20 1217.92 3077.12 1219.63 1217.98 1217.95 1218.32

500 10 3.5 1 20 285.07 366.85 285.10 285.07 285.08 285.08
500 60 3.5 1 20 702.35 894.07 702.72 702.38 702.42 702.42
500 110 3.5 1 20 954.21 1207.62 955.11 954.29 954.38 954.38
500 160 3.5 1 20 1153.83 1454.04 1155.42 1153.97 1154.13 1154.13
500 210 3.5 1 20 1324.79 1663.74 1327.18 1324.99 1325.24 1325.24

1000 50 3.5 5 500 2264.74 4417.00 2270.03 2265.66 2265.36 2265.35
2000 50 3.5 5 500 3175.80 6350.39 3179.53 3176.48 3176.22 3176.22
4500 50 3.5 5 500 4730.68 9678.66 4733.15 4731.14 4730.95 4730.94
9000 50 3.5 5 500 6662.58 13,835.06 6664.33 6662.92 6662.76 6662.76

100,000 50 3.5 5 500 22,051.65 47,093.84 22,052.17 22,051.75 22,051.70 22,051.70

10,000 50 0.3 1 20 2614.65 9172.20 2614.74 2614.66 2614.66 2614.66
10,000 50 0.8 1 20 2655.19 5973.18 2655.28 2655.20 2655.21 2655.21
10,000 50 2.5 1 20 2779.78 3990.02 2779.85 2779.79 2779.79 2779.79
10,000 50 5 1 20 2933.11 3456.57 2933.17 2933.12 2933.12 2933.12
10,000 50 7.5 1 20 3059.77 3344.22 3059.81 3059.77 3059.78 3059.78

% Difference of TC(Q∗, B∗) or TC(T , TI) vs. GRG

Parameters Existing New Solutions

D S h δ b GRG E3 N1 N2 N3 N4

500 100 3.5 0.1 20 0.00 0.46 0.00 0.00 0.00 0.00
500 100 3.5 1.25 20 0.00 35.33 0.10 0.01 0.00 0.02
500 100 3.5 2.5 20 0.00 77.47 0.14 0.01 0.00 0.03
500 100 3.5 3.75 20 0.00 116.52 0.14 0.01 0.00 0.03
500 100 3.5 5 20 0.00 152.65 0.14 0.00 0.00 0.03

500 10 3.5 1 20 0.00 28.69 0.01 0.00 0.00 0.00
500 60 3.5 1 20 0.00 27.30 0.05 0.00 0.01 0.01
500 110 3.5 1 20 0.00 26.56 0.10 0.01 0.02 0.02
500 160 3.5 1 20 0.00 26.02 0.14 0.01 0.03 0.03
500 210 3.5 1 20 0.00 25.59 0.18 0.02 0.03 0.03

1000 50 3.5 5 500 0.00 95.03 0.23 0.04 0.03 0.03
2000 50 3.5 5 500 0.00 99.96 0.12 0.02 0.01 0.01
4500 50 3.5 5 500 0.00 104.59 0.05 0.01 0.01 0.01
9000 50 3.5 5 500 0.00 107.65 0.03 0.01 0.00 0.00

100,000 50 3.5 5 500 0.00 113.56 0.00 0.00 0.00 0.00

10,000 50 0.3 1 20 0.00 250.80 0.00 0.00 0.00 0.00
10,000 50 0.8 1 20 0.00 124.96 0.00 0.00 0.00 0.00
10,000 50 2.5 1 20 0.00 43.54 0.00 0.00 0.00 0.00
10,000 50 5 1 20 0.00 17.85 0.00 0.00 0.00 0.00
10,000 50 7.5 1 20 0.00 9.30 0.00 0.00 0.00 0.00

7. Conclusions

In this research, we propose six different closed-form solutions for the basic exponen-
tially deteriorating items inventory model and four different closed-form solutions for the
planned backorders version of the same model. Our closed-form equations are based on
the novel use of Taylor series approximations of the exponential and logarithmic functions.
Some of these approximations have been previously used for this problem but, due to
modelling choices of the previous researchers, they have not been able to develop intuitive
closed-form solutions. Our contribution is that we propose intuitive closed-form solutions
that are quite useful for the practitioners and we show that they are very accurate as well.
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We provide complete proofs to show that the proposed closed-form solutions are unique
optimal solutions, which is another contribution of our research.

8. Limitations and Future Research

In this research, we assume that the demand is constant and deterministic. In practice,
demand may be price- or time-dependent in some cases. Future research may consider
price- and/or time-dependent demand functions. Exponentially increasing or exponentially
decreasing demand can also be studied. We also assume that the purchase and ordering
costs are paid at the time of order delivery. In practice, there may be a variety of payment
structures that extend credit to the retailer. Future research may consider extending our
models to trade credit scenarios. Finally, we assume constant deterioration in this research,
where the time to deterioration for individual items follow an exponential distribution;
hence, it is also called exponential deterioration. Exponential distribution has memoryless
property, which means that the probability of deterioration is independent of the lifetime
that has already elapsed. This makes the instantaneous deterioration rate constant, which
is why it is called constant deterioration. In practice, for some items, the probability of
deterioration may become higher as the elapsed lifetime becomes longer. Future research
may consider different deterioration distributions that allow variable deterioration rates.
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