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Abstract: Urban drainage systems (UDSs) continue to face challenges, despite numerous efforts to 

improve their sustainability through design, planning, and management. The goal of such initiatives 

is to avoid and minimize flooding as well as maintain the UDS’s sustainable functionality, which 

can be analyzed using a stormwater management model (SWMM). In this study, a multiobjective 

automatic parameter-calibration (MAPC) framework was developed based on the SWMM. It con-

sisted of three steps: sensitivity analysis (Step I), objective selection (Step II), and SWMM parameter 

calibration (Step III). The proposed MAPC framework was verified using the Yongdap drainage 

network located in Seoul, South Korea. The resultant MAPC framework demonstrated that the sys-

tem characteristics (such as percent of impervious area and hillslope) and problems in UDS design, 

planning, and management can be well reflected by the corresponding model. The MAPC frame-

work proposed in this study can contribute to UDS modeling sustainability. 

Keywords: urban drainage systems; stormwater management model; multiobjective automatic  

parameter-calibration framework; UDS modeling sustainability 

 

1. Introduction 

An urban drainage system (UDS) is a critical civil infrastructure that can drain rain-

water and/or used water collected in an urban sub-catchment without inundation [1,2]. 

Therefore, the objective of UDS design, planning, and management is to avoid and mini-

mize flooding and maintain the system’s sustainable functionality, which can be simu-

lated and validated through a stormwater management model (SWMM). Despite several 

efforts to improve the sustainability of UDSs, challenges remain in their design, planning, 

and management [3–5]. These challenges are well-known causes of unexpected system 

failures that can lead to catastrophic losses of human lives and property [4,6,7].  

Various studies have been performed on UDSs to improve system sustainability 

[2,3,5] and these generally used physics-based models, such as SWMM [8–11]. To obtain 

reliable model results, the SWMM parameter-calibration process should essentially im-

prove system sustainability. UDS parameter calibration is an iterative process that adjusts 

various model parameters while minimizing and/or maximizing the predefined objec-

tives (e.g., difference between simulated and observed values) [12–16]. 

The parameter-calibration method can be primarily classified into manual and auto-

matic approaches. The manual parameter-calibration process is mostly based on technical 

knowledge and reasoning; therefore, it can be adopted when sufficient system infor-

mation is available (e.g., pipe connection and roughness, land cover, etc.). However, the 

method has a weakness that accurately generating a sub-optimal parameter set is difficult 
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[13,16]. In contrast, the automatic parameter-calibration approach generally uses an opti-

mization technique (e.g., metaheuristic algorithms) to identify the optimal parameter set 

from numerous iterations. The ability to explore a wide search area and utilize some 

promising regions ensures that a global optimal solution with a high likelihood is ob-

tained [17–19]. 

Previous automatic parameter-calibration studies are either single objective or mul-

tiobjective optimization approaches. These studies focused on improving model accuracy 

using metaheuristic algorithms (e.g., genetic algorithm, harmony search algorithm) [20–

27]. Perin et al. [25] developed and investigated the state-of-the-art standard package (i.e., 

parameter estimation (PEST) model) for SWMM automatic parameter calibration by con-

sidering a small drainage area. Swathi et al. [26] established a SWMM automatic-calibra-

tion model using non-dominated sorting genetic algorithm-III (NSGA-III). Behrouz et al. 

[27] proposed the single and multiobjective automatic calibration models that integrated 

SWMM and an optimization software tool. 

However, UDS parameter-calibration studies have several significant limitations. 

Previous studies lacked a reasonable parameter quantification process (e.g., sensitivity 

analysis), and thus considered a set of parameters to be calibrated based on the recom-

mendation from existing literature [22–24]. The sensitivity analysis is essential, particu-

larly because the parameter to be calibrated changes or differs depending on the objec-

tives, system characteristics (e.g., percent of impervious area, hillslope, etc.), and available 

datasets. Limited efforts have been made to apply an objective selection process that com-

putes the regression line and R-squared coefficient [23–27]. Two objectives with a high 

correlation (i.e., high R-squared coefficient) should not be simultaneously considered be-

cause minimizing one objective would minimize or maximize the other objective based 

on their inherent correlation. To avoid these errors, an objective selection process (e.g., 

correlation analysis) for two objectives is necessary.  

Therefore, the UDS parameter-calibration process should be performed according to 

the following four steps [16]: (1) identify important parameters to induce efficient param-

eter-calibration model; (2) determine the upper and lower bounds for each parameter 

based on the system characteristics; (3) analyze the correlation coefficient between two 

objectives (e.g., model accuracy indicators); and (4) compute optimal parameter set ob-

tained from the UDS parameter-calibration model. To the best of the authors’ knowledge, 

few studies have comprehensively investigated the UDS parameter-calibration frame-

work.  

To overcome these gaps, this study proposes a multiobjective optimization approach 

based on the SWMM parameter-calibration framework. The proposed framework was ap-

plied to the Yongdap drainage network in Seoul, South Korea. The method consists of 

four steps: (1) determining the important influencing parameters by examining the change 

in outflow (i.e., sensitivity); (2) determining two objective functions that are in a trade-off 

relationship based on the correlation analysis of several objective functions considered in 

this study; (3) establishing a non-dominated sorting harmony search (NSHS)-based 

SWMM multiobjective automatic parameter-calibration (MAPC) model and obtaining the 

optimal solution; and (4) comparing the Pareto-optimal solution obtained in Step (3) using 

a predefined performance indicator. The MAPC framework proposed in this study can 

contribute to UDS modeling sustainability. 

2. Study Area and Datasets 

2.1. Study Area 

A real drainage area, namely the Yongdap drainage area, was used to demonstrate 

the proposed MAPC framework. This real drainage area is a representative flooding area 

located in Seoul, Korea (Figure 1), which receives an average annual rainfall of 1,418 mm. 

This drainage network consists of 101 nodes, 101 links, and 1 outlet. The total pipeline 

length of the drainage network is 3.546 km, while the total subcatchment area is 0.347 km2. 
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The land-use characteristics of this network include 80% residential area and 16 and 4% 

public and road areas, respectively. 

 

Figure 1. Configuration of Yongdap drainage area’s urban drainage network in Seoul, South Korea. 

2.2. Datasets 

This study utilized rainfall data obtained from 421 gauge-stations located in Seoul, 

Korea and discharge data obtained at the outflow monitoring point in the Yongdap drain-

age area. The system discharge data were measured in real-time at the outflow monitoring 

point. Two types of measurement data were obtained from the Korea Meteorological Ad-

ministration (https://data.kma.go.kr, accessed on 29 May 2022): rainfall (mm/10 min) and 

outflow (m3/10 min). One year of historical data for 13–14 July 2013 (i.e., historical urban 

flood events in Korea) were used to develop the MAPC framework, including rainfall and 

outflow (e.g., total system discharge). The measurement data (i.e., rainfall (hyetograph) 

and outflow (hydrograph)) used in this study are shown in Figure 2. Notably, two rainfall 
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events were considered to calibrate and validate the results obtained using the MAPC 

framework. 

 

Figure 2. Two types of measurement data in the Yongdap drainage area: (a) calibration (13 July 

2013); (b) validation (14 July 2013). The input measurement data are two independent rainfall 

events, comprising hyetograph (rainfall event) and hydrograph (outflow), respectively. The hyeto-

graph is depicted as a gray invert bar plot and the hydrograph is depicted as the black scatter plot. 

3. Modeling Methodology 

The MAPC framework was developed using NSHS linked with SWMM and consists 

of four steps (Figure 3). Figure 3 shows a flowchart of the proposed MAPC framework. 

Subsequent sections describe the details of SWMM, sensitivity analysis (SA), objective se-

lection process (OSP), NSHS, and the proposed SWMM parameter-calibration model and 

PI. 

 

Figure 3. Flowchart of the proposed multiobjective parameter-calibration framework based on 

SWMM. 
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First, the impact of the relationship between all the parameters and the output in the 

given UDS model was identified (Step I). Second, the correlation between various model 

accuracy indicators (MAIs) was confirmed using correlation analysis, and a visual inspec-

tion was performed to select two competing objectives to be considered in the proposed 

SWMM parameter-calibration model (Step II). Third, model calibration was performed 

based on several parameters and two MAIs (i.e., objective functions) obtained in Steps I 

and II, respectively (Step III). Finally, based on the calibrated parameters obtained from 

the SWMM parameter-calibration model for evaluating model accuracy (e.g., model vali-

dation), the model results were compared using a predefined performance indicator (PI) 

(Step IV). 

3.1. Stormwater Management Model (SWMM) 

The SWMM was first proposed by the United States Environmental Protection 

Agency and is a rainfall-rainfall hydrological-hydraulic simulation UDS model [10,11]. It 

has two characteristics: (1) hydrological runoff and (2) hydraulic runoff. The differences 

in runoff characteristics are driven by climate, land cover, impervious and pervious con-

figurations, pervious area soil types, network topology, and pipe characteristics [28]. Hy-

drological runoff is a computed path that connects subcatchments between the runoff out-

lets (e.g., nodes). In contrast, hydraulic runoff is routed downstream via the urban drain-

age network that connects the node (i.e., hydrological runoff outlet) between an urban 

river. In SWMM, the rainfall-runoff hydrological-hydraulic simulation is computed using 

a nonlinear reservoir routing method [29]. 

The proposed framework was developed on the basis of several SWMM parameters. 

However, the SWMM parameters used in this study cannot be measured absolutely in the 

real world. Consequently, the MAPC framework proposed herein considers several sen-

sitive and effective SWMM parameters that require model calibration. 

3.2. Step I: Sensitivity Analysis (SA) 

SA is a statistical analysis tool that quantifies the impact relationship between input 

and output in a given model [30–32]. It is a process by which different components of a 

model, such as parameters, forcing inputs, and model structure (e.g., grid resolution in 

distributed models), are perturbed, and the resulting data are subsequently evaluated to 

identify the factors that cause the largest variability in the model outputs [33]. For exam-

ple, SA can be used to determine the model parameters that have the greatest impact on 

predictions to ensure that calibration efforts are focused on the most critical parameters 

[34,35]. In recent decades, SA has been widely used to identify the most important param-

eter depending on the parameters in most UDS calibration studies [36]. 

SA was performed using Monte Carlo sampling (MCS). To construct the SWMM pa-

rameter-calibration model, preselected parameters were identified via the SA approach. 

Accordingly, uniform random sampling within the predefined upper and lower bound-

ary of parameters, which is determined by physically based model characteristics and en-

gineering knowledge, was used to generate random parameter sets based on the MCS. 

The generated parameter sets were input into the SWMM, and the outputs (i.e., total sys-

tem discharge) of each parameter set were obtained. To demonstrate the impact of the 

relationship between the input and output variables, a scatter plot was generated to pre-

sent the potential correlations (e.g., linear and nonlinear). Finally, the range of output (i.e., 

total system discharge) according to all parameters was quantified and presented as a box-

whisker plot. 

The impact relationship between the outflow and each parameter was then investi-

gated using SA. Six parameters were employed to perform SA, and their information (i.e., 

parameters, descriptions, and prior distributions) is summarized in Table 1. Notably, all 

parameters in this study were strictly investigated using literature related to SWMM-SA 

and/or calibration studies [23,36–39]. Furthermore, if the SWMM parameters in SA have 
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no effect, their parameters are not considered for the SWMM parameter-calibration model 

(Step III). 

Table 1. Summary of the parameters used for the proposed MAPC model. 

Parameter Description (Unit) Prior Distribution 

kwidth Hillslope width factor (m) *U (30, 170)  

ϕimp Impervious fraction in urban land (%) *U (60, 100) 

CN Curve number (-) *U (53, 75) 

nimp Manning’s n on impervious (-) *U (0.03, 0.05) 

nperv Manning’s n on pervious (-) *U (0.03, 0.05) 

nconduit Manning’s n on pipe roughness (-) *U (0.011, 0.017) 

Note: *U (a, b) means the uniform distribution, a < b where is beginning of the interval and b is the 

end of the interval. 

3.3. Step II: Objective Selection Process (OSP) 

The accuracy of the proposed SWMM parameter-calibration model was evaluated by 

comparing the observed and simulated outflow (i.e., total system discharge) values at the 

outlet (the urban drainage network outlet is depicted as a black inverted triangle in Figure 

1). The SWMM parameters were calibrated to minimize model uncertainty, which could 

be considered a physically based model (i.e., SWMM). Various MAIs have been formu-

lated and used in the SWMM automatic parameter-calibration problem of the UDS model. 

Table 2 summarizes several MAIs used by the National Weather Service for calibration of 

the Sacramento soil moisture accounting (SAC-SMA) model [40]. Several indicators (i.e., 

Nash-Sutcliffe efficiency coefficient, root-mean-square error, total mean squared error, 

and total volume error) have also been widely used in hydrological model calibration 

studies [23,41–43]. To develop the SWMM parameter-calibration model, the relationship 

between one indicator with the other indicators among the MAIs (i.e., objective functions) 

considered in this study was identified. Note that the MAIs formulae presented in Table 

2 are well known by most hydrology researchers and do not require separate citations. 

Table 2. Model accuracy indicators used in the proposed MAPC framework. 

Indicator Names (Abbreviations) Formulations 

Root-mean-square error 

(RMSE) 
√

1

𝑛
∑(𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡))

2
1

𝑡=1

 

Total volume error 

(TVE) 

1

𝑄𝑠𝑖𝑚(𝑡)
∑|𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡)|

1

𝑡=1

 

RMSE of peak flow error 

(PFE) 
√

1

𝑛𝑃
∑(𝑃𝑜𝑏𝑠 − 𝑃𝑠𝑖𝑚)2

1

𝑡=1

 

Nash-Sutcliffe efficiency coefficient 

(NSE) 
1 −

1
𝑛

∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡))
21

𝑡=1

1
𝑛

∑ (𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )

21
𝑡=1

 

Absolute peak difference 

(APD) 
| max

1≤𝑡≤𝑛 
(𝑂𝑜𝑏𝑠(𝑡)) − max

1≤𝑡≤𝑛 
(𝑂𝑠𝑖𝑚(𝑡))| 

Percent bias 

(PB) 
100 × |

1
𝑛 (∑ 𝑄𝑜𝑏𝑠(𝑡) −𝑛

𝑡=1 ∑ 𝑄𝑠𝑖𝑚(𝑡))𝑛
𝑡=1

1
𝑛

∑ 𝑄𝑜𝑏𝑠(𝑡)
𝑛
𝑡=1

| 

Mean absolute error 

(MAE) 

1

𝑛
∑|𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡)|

𝑛

𝑡=1

 

Maximum absolute error 

(MaxAE) 
max

1≤𝑡≤𝑛 
|𝑂𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡)| 
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Total mean squared error 

(TMSE) 

1

𝑛
∑(𝑄𝑜𝑏𝑠(𝑡) − 𝑄𝑠𝑖𝑚(𝑡))

1

𝑡=1

 

Note: 𝑄𝑂𝑏𝑠(𝑡) is the observed outflow at time 𝑡; 𝑄𝑠𝑖𝑚(𝑡) is the simulated outflow at time 𝑡; 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  is 

the mean value of the observed outflow during the period from t = 1 to n; 𝑃𝑜𝑏𝑠 is the observed peak 

outflow; and 𝑃𝑠𝑖𝑚 is the simulated peak outflow. 

To construct a SWMM parameter-calibration model, two competing MAIs must be 

identified. The two correlated indicators should not be simultaneously considered in the 

model because minimizing/maximizing one indicator would have the same effect on the 

other indicator [40]. Accordingly, uniform random sampling within the upper and lower 

bounds of the parameters, which is conducted based on physical reasonability, engineer-

ing knowledge, and Monte Carlo simulations (MCS), was used to generate random pa-

rameter sets. A simulated hydrograph was obtained from the rainfall-runoff simulation 

using each generated parameter set, with the calculated MAIs listed in Table 1. Finally, a 

scatter plot of each pair of MAIs in Table 1 and their linear regression lines were drawn 

and inspected to detect potential correlations. Note that the linear regression line and R-

squared coefficient (R2) were used to confirm inherent correlation between MAIs. A set of 

two MAIs should not be simultaneously considered in the multiobjective calibration 

model if they are highly correlated and aligned with the regression line (i.e., high R-

squared coefficient). Considering one indicator in the objective function can automatically 

minimize/maximize the other indicator by their inherent correlation without explicitly 

and additionally considering the other in the formulation. 

3.4. Step III: SWMM Parameter-Calibration Model 

The SWMM parameter-calibration model proposed in this study explores for an op-

timal parameter set based on NSHS. The NSHS is a multiobjective optimization method, 

considering the nondominated sorting and crowding distance approach [44–46] within 

the harmony search algorithm developed by Geem et al. [47]. The harmony search algo-

rithm is a metaheuristic algorithm based on the musical performance process that occurs 

when a musician searches for a better state of harmony during jazz improvisation. The 

NSHS, which includes the nondominated sorting and crowding distance approach, was 

used with the harmony search algorithm in this study. In addition, various water engi-

neering studies have shown that this algorithm is better than conventional optimization 

algorithms with respect to the convergence performance [48]. 

The SWMM parameter-calibration model searches for the trade-off relationship be-

tween the MAI pair selected via the goal selection procedure. The values of these MAIs 

were determined using the SWMM parameters identified in SA. Jung et al. [40] formulated 

the multiobjective parameter-calibration model as follows: 

{
Minimize 𝑓1 = MAI1(𝑥𝑛)
Minimize 𝑓2 = MAI2(𝑥𝑛)

 (1) 

where MAI1 and MAI2 are a pair of MAIs optimized by the multiobjective parameter-

calibration model, 𝑥 is the model parameter that determines the MAI value, and 𝑛 is the 

number of parameter types. 

The SWMM parameter-calibration model provides parameter sets in which the MAI 

pair has a trade-off relationship as a Pareto-optimal solution. The SWMM constructed in 

this study simulates the outflow based on the parameters suggested by the SWMM pa-

rameter-calibration model. The result is then compared with the observed outflow curve 

to examine the performance of the MAPC framework proposed in this study. 

3.5. Step IV: Performance Evaluation 

The Pareto-optimal solution obtained in Step III was evaluated using a predefined 

PI. The PI was only selected as a representative indicator in the aforementioned MAIs 

(summarized in Table 2). In addition, note that several indicators can be excluded for 

https://www.mdpi.com/2073-4441/9/3/187/htm#table_body_display_water-09-00187-t001
https://www.mdpi.com/2073-4441/9/3/187/htm#table_body_display_water-09-00187-t001


Sustainability 2022, 14, 8350 8 of 16 
 

defining MAI 1 and 2, respectively (e.g., objective functions 1 and 2 in Step III). The final 

optimal solutions obtained from the proposed model were compared and evaluated with 

other optimal solutions using the PI. 

4. Application Results 

4.1. Sensitivity Analysis (SA) 

In this section, the change in total outflow (i.e., sensitivity) based on the parameters 

is examined, and the types of parameters to be entered in the SWMM parameter-calibra-

tion model are determined. SA was performed according to the MCS, and the individual 

parameters had different values. In this study, 100 of the 500 SWMM simulation results 

were extracted. Figure 4 shows the scatterplots of the SWMM outputs based on the pa-

rameters extracted from the MCS. 

 

Figure 4. Sensitivity results between system outflow and (a) hillslope width factor; (b) impervious 

fraction in urban land; (c) curve number; (d) Manning’s n on impervious; (e) Manning’s n on pervi-

ous; (f) Manning’s n on pipe roughness. 

kwidth, Фimp, and CN were identified as the parameters that increase the outflow. kwidth 

is multiplied when calculating the surface runoff in the SWMM governing equation [29]. 

Therefore, an increase in kwidth may lead to an increase in outflow. An increase in Фimp and 

CN, which determine the infiltration amount, influences the increase in outflow [49]. As 

nimp, nperv, and nconduit increase, the total outflow decreases. As nimp, nperv, and nconduit increase, 

losses caused by friction occur [50], which reduce the outflow. Figure 4 shows that all the 

parameters considered in the sensitivity analysis were consistently altered. Therefore, 

even if the parameter search range is entered as a continuous range in the SWMM param-

eter-calibration model, this range would not have a large impact on the result [39]. 

Figure 5 shows a box and whisker plot of the outflow variation for each parameter. 

Фimp and CN were found to be highly sensitive to the model output. These two parameters 

directly affect the amount of rainfall that is converted to surface runoff through infiltra-

tion. In contrast, kwidth, nimp, nperv, and nconduit did not show large changes in outflow compared 

to parameter changes. However, because these parameters affect the peak outflow, further 

investigation is required. When the characteristics of the study network (urban catchment) 

were considered, a lack of influence of kwidth, nimp, and nconduit could not be determined. 
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Although outliers were found for nperv, their impact was not large because the target net-

work had the characteristic of a high infiltration rate. Therefore, nperv was excluded from 

the parameters calibrated using the SWMM parameter-calibration model. 

 

Figure 5. Box and whisker plot to quantify the variation between outflow and each parameter ob-

tained from Step I. 

4.2. Selection of Two Objectives 

The SWMM parameter-calibration model searches for the optimal solution set for the 

two goals that form a trade-off relationship. Therefore, this section describes the determi-

nation of the two MAIs to be used as objective functions in the SWMM parameter-calibra-

tion model. The two objective functions were selected as follows: (1) First, various MAIs 

used to check the hydrological modeling performance were selected, and their applicabil-

ity to SWMM was examined. (2) Based on the SA results, the parameters were randomly 

confounded to create multiple SWMM runs. (3) Samples were extracted through sam-

pling, and the MAIs of each sample SWMM were calculated. (4) The MAIs were displayed 

and examined using scatterplots, regression lines, and coefficients of determination (R2).  

Figure 6 shows scatterplots, linear regression lines, and R2 for the relationships be-

tween 500 MAI calculation results extracted randomly from 1,000 SWMM runs with ran-

domly adjusted parameters. In the results, for a pair of MAIs considered good, objective 

functions of the SWMM parameter-calibration model should be depicted in a space where 

the trade-off relationship shows the optimum value of each MAI. Among the pairs of 

MAIs considered in this study, 18 sets exist, including RMSE-PB, RMSE-MaxAE, TVE-

PFE, and TVE-NSE, which can be selected as two objective functions. Most pairs of MAIs 

show the trade-off relationship on the lower left side. However, if NSE is included, the 

trade-off relationship is shown on the upper right side; this is because among the MAIs 

considered in this study, NSE is the only MAI with good model performance when large. 

The coefficient of determination (R2) of these sets is between 0.1 and 0.8. 
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Figure 6. Set of scatterplots for the impact relationship between a MAI and other MAIs obtained 

from Step II. 

In this study, TVE and PFE were selected as the two objective functions of the SWMM 

parameter-calibration model. The two MAIs have the same unit (m3/s), enabling an easy 

analysis of the derived solutions. Furthermore, as the MAIs show the characteristics of the 

outflow curve intuitively, the hydrographs of the validation and calibration SWMMs are 

expected to be easily examined. 

4.3. Comparison between Pareto-Optimal Solutions 

Pareto-optimal solutions of the SWMM parameter-calibration model were assessed 

to examine the calibrated SWMM. First, the targets to be examined were selected from 

among the Pareto-optimal solutions provided by the SWMM parameter-calibration 

model. The hydrograph simulation result of the SWMM, in which the selected parameter 

combination was entered, was finally compared to the observed outflow. 

Figure 7 shows the Pareto-optimal solutions provided by the SWMM parameter-cal-

ibration model. A total of 30 solutions were obtained; however, examining all solutions is 

inefficient. Therefore, we used the reference solution to determine the solution that should 

be examined (the reference solution refers to the solution derived by optimizing only one 

of the two objective functions (TVE and PFE)). The reference solution of each objective 

function is represented by a blue line in Figure 7 (TVE = 0.09 m3/s, PFE = 0.59 m3/s). In this 

study, three solutions (S-1, S-6, and S-30) were selected based on the reference solutions. 

S-1 and S-30 are the closest solutions to the reference solutions of TVE and PFE, respec-

tively. S-6 is the ideal solution to the intersection point where the reference solutions meet 

the Pareto-optimal solutions. 

RMSE
R2: 

0.502

R2:

0.860

R2: 

0.997

R2: 

0.735

R2: 

0.502

R2:

0.982

R2:

0.488

R2:

0.997

TVE
R2:

0.318

R2:

0.487

R2:

0.137

R2:

1.000

R2:

0.580

R2:

0.002

R2:

0.487

PFE
R2:

0.852

R2:

0.916

R2:

0.318

R2:

0.804

R2:

0.473

R2:

0.852

NSE
R2:

0.721

R2:

0.487

R2:

0.976

R2:

0.491

R2:

1.000

APD
R2:

0.137

R2:

0.667

R2:

0.638

R2:

0.721

PB
R2:

0.580

R2:

0.002

R2:

0.487

MAE
R2:

0.406

R2:

0.976

MaxAE
R2:

0.491

TMSE



Sustainability 2022, 14, 8350 11 of 16 
 

 

Figure 7. Pareto-optimal solution proposed by the SWMM parameter-calibration model (Step III) 

and comparison of the model and reference solutions of two objectives. 

Figure 8 shows the calibration results of the Pareto-optimal solutions, which were 

normalized based on the maximum and minimum values of the parameter search range. 

In S-30, kwidth and nimp are highly calibrated compared with the other solutions. Thus, it was 

confirmed that the peak flow of the study network can be adjusted using kwidth and nimp. As 

the characteristics of the urban network were well reflected, Фimp of all solutions, including 

S-1, S-6, and S-30, was calibrated to be high. CN and nconduit were calibrated to be high in S-

6, unlike S-1 and S-30, implying that CN and nconduit are parameters that play a decisive role 

in the search for the trade-off section between TVE and PFE. The overall results revealed 

that the calibrated value of each parameter obtained from the Pareto-optimal solutions 

displayed a consistent tendency for the system characteristics (e.g., hillslope width factor, 

curve number, etc.). 

 

Figure 8. Normalized parameter calibrated value for the Pareto-optimal solutions. 

4.4. Multiobjective Calibration and Validation 

Figure 9 compares the simulated outflow from the calibrated SWMM with the ob-

served outflow. S-1 shows the lowest RMSE of 0.244 for the observed outflow used for 

calibration (Figure 9a). However, the RMSE for the validation (Figure 9b) observed out-

flow is 0.162, which is the worst performance among all. In contrast, S-30 shows the high-

est RMSE for the calibration observed outflow of 0.287, but the result for the validation 

observed outflow is the best at 0.135. The ideal solution, S-6, has RMSEs of 0.245 and 0.146 
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for the two observed outflows. The RMSE of S-6 is not significantly different from that of 

the solution that performed well for each observed outflow. The hydrograph used for cal-

ibration has a longer outflow than that used for validation.  

 

Figure 9. Comparison between observed outflow and simulated outflow for the SWMM parameter-

calibration model: (a) calibration (13 July 2013) and (b) validation (14 July 2013). 

This is why the RMSE values in Figure 10a and Figure 10b show a large overall dif-

ference result, respectively. Figure 10 shows graphs comparing the simulated and ob-

served outflows for the validation and calibration rainfalls of S-1, S-6, and S-30. Visually, 

all three solutions simulated outflows that are similar to the observed outflow. Four peaks 

were observed, and the peak values were found to be not equal in the rainfall events used 

for calibration. In S-1 and S-6, where TVE is low, the hydrograph model is adequately 

simulated. For S-30, the simulated outflow is large, and the outflow variation in the section 

of the third peak (5:00–7:00) is barely simulated. However, in a network where the hydro-

graph is simple and the peaks occur evenly, as in the validation hydrograph, the simulated 

outflow is closer to the observed outflow. When a peak occurs, the simulation results for 

not only the outflow but also the time of occurrence are close to the observed values. How-

ever, for S-1, the peak occurrence time is not accurate, and an under-simulated hydro-

graph is shown. 

 

Figure 10. Hydrograph (including observed and simulated outflow data) obtained from several so-

lutions (i.e., S-1, S-6, and S-30) among the Pareto-optimal solutions: (a) calibration (13 July 2013); (b) 

validation (14 July 2013). 
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This implies that a solution with low TVE should be selected for a complex rainfall 

event. Conversely, for a simple rainfall event, a solution with a low PFE is a more advan-

tageous choice. In a real drainage network, how rainfall falls is unknown [51]. Therefore, 

a SWMM that can respond flexibly to various rainfall events is required. S-6 shows a hy-

drograph that adequately reflects the characteristics of S-1 and S-30. The ideal solution, 

such as S-6, is thus a SWMM that can respond to various rainfall events. 

5. Summary and Conclusions 

This study proposed a multiobjective automatic parameter-calibration (MAPC) 

framework based on the stormwater management model (SWMM). The proposed MAPC 

framework consists of four steps: sensitivity analysis (Step I), objective selection (Step II), 

SWMM parameter calibration (Step III), and comparison with Pareto-optimal solutions 

using performance indicator (Step IV). The proposed MAPC framework was verified us-

ing the Yongdap drainage network in Seoul, South Korea.  

In summary, the calibrated parameter sets obtained from the Pareto-optimal solu-

tions displayed a consistent tendency based on model performance. The simulated out-

flow obtained by the proposed framework was confirmed to be almost similar to the ob-

served outflow. In fact, the root-mean-square error, computed using all optimal solutions, 

was in the range of 0.244–0.287 (calibration model) and 0.135–0.162 (validation model). 

The resultant MAPC framework demonstrated that the system characteristics (such as 

percent of impervious area and hillslope) and problems in UDS design, planning, and 

management can be well reflected by the corresponding model. The MAPC framework 

provided a series of processes for UDS modeling and is expected to contribute to UDS 

modeling sustainability.  

This study has several limitations that may be addressed in future research. First, in 

a real drainage area, each parameter has a different value depending on the model com-

ponents (e.g., links, nodes, and subcatchments). However, this study considered that the 

components have uniform distribution for each parameter. Second, this study considered 

only two objective functions (i.e., peak flow and total volume errors), such that only spe-

cific characteristics of the optimal solution are localized in two objective functions. In ad-

dition, further study must investigate three or more objective functions (e.g., model accu-

racy indicators) to improve the SWMM parameter-calibration model compared to the pro-

posed framework. Third, this study focused on matching the outflow hydrographs at the 

network outlet with real-time measurements. A follow-up study can calibrate the over-

land flow from each sub-catchment by considering the corresponding measurements at 

each manhole (i.e., sub-catchment outlet). Finally, although the proposed MAPC frame-

work focused only on hydrological parameters, it can be enhanced to obtain an advanced 

MAPC framework by considering hydrological, hydraulic, and water quality parameters 

simultaneously. 
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Abbreviations 

UDS Urban drainage system 

SWMM Stormwater management model 

NSHS Non-dominated sorting harmony search 

MAPC Multiobjective automatic parameter-calibration 

MAIs Model accuracy indicators 

PI Performance indicator 

SA Sensitivity analysis 

OSP Objective selection process 

MCS Monte Carlo sampling 

RMSE Root-mean-square error 

TVE Total volume error 

PFE RMSE of peak flow error 

NSE Nash-Sutcliffe efficiency coefficient 

APD Absolute peak difference 

PB Percent bias 

MAE Mean absolute error 

MaxAE Maximum absolute error 

TMSE Total mean squared error 
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