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Abstract: Between 2010 and 2020 in the European Union, 30% of road accidents resulted in the death
of a pedestrian or a cyclist. Accidents of unprotected pedestrians and cyclists are the reason why it is
essential to introduce road safety measures. In our paper, we identify and rank black spots using an
innovative reactive approach based on statistics. We elaborate on the mathematical methodological
considerations through the processing of real-life empirical data in a Matlab environment. The applied
black-spot analysis is based on a Kernel density estimate method, and the importance of the kernel
functions and bandwidth are elaborated. Besides, special attention is devoted to the distorting
effect of annual average daily traffic. The result of our research is a new methodology by which the
real locations of the examined black spots can be determined. Furthermore, the boundaries of the
critical sections and the extent of the formation of black spots can be determined by the introduced
mathematical methods. With our innovative model, the black spots can be ranked, and the locations
having the highest potential for improvement can be identified. Accordingly, optimal measures can
be determined considering social-economic and sustainability aspects.

Keywords: accident analysis; density function; road accident; pedestrian; cyclist; outlier; accident
prevention

1. Introduction

In Hungary, 35–40% of road accident victims are pedestrians or cyclists [1,2], thus,
it is essential to investigate the accidents of these unprotected road users [3,4]. The aim
of our paper is a determination of a new methodology by which the real locations of the
examined black spots can be determined. In this paper, only Hungarian road accident data
were considered for the application of the mathematical theory proposed here. Previously,
analytical methods of search algorithms were developed based on the distance matrix of
road accidents in order to identify black spots [4–6], which was based on a hierarchical,
agglomerative, full chain-method cluster and kernel density estimation analysis.

Some errors in the developed method that reduced the effectiveness of the identifica-
tion procedure have already been detected. These are as follows:

• the problem of examining fixed-length sections;
• ignoring surrounding roads;
• due to the definition applied for black spots, the most affected sections included at

least four accidents;
• ignoring the annual average daily traffic (AADT);
• the high procedure time.

For road accidents, in the international literature, kernel density estimation (KDE)
was applied first by Banos and Huguenin-Richard [7], who analyzed the distribution of
pedestrian accidents of children. Later, the KDE method was applied in several areas
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of transport, for example, a distribution of wildlife-vehicle accidents [6,8], accidents of
pedestrians or pedestrian children [7,9,10], in the case of accidents involving two-wheel
vehicles [11], analyzing traffic violation behavior at urban intersections [12], and the spatial
and temporal analysis of road accidents [13–18]. In the literature, 20 articles were identified
that also take KDE into account in some way when analyzing traffic accidents. Table 1
summarizes how these sources can be classified, what types of relevant variables are used,
and which of the most common kernel functions, such as Normal and Epanechnikov
functions, appear in the given source.

Table 1. Summary of the literature.

Author and Publication Year Road Traffic Accident
Investigation Kernel Functions Taking into Account

the AADT
Bandwidth

Rate [m] Study Area

Banos A. (2000) [7] Yes Not defined No/Not defined Not defined Urban

Matthias J. K. (2006) [19] Yes Normal Was available but not
used with the kernel 2000 Mix

Pulugurtha S. S. (2007) [9] Yes Not defined No/Not defined Not defined Urban

Blazquez C. A. (2013) [10] Yes Normal No/Not defined 1000 Urban

Sedoník J. (2015) [8] Yes Epanechnikov No/Not defined 100 and 150 Mix

Andrásik R. (2015) [15] Yes Epanechnikov No/Not defined 100 Mix

Michal B. (2013) [16] Yes Epanechnikov No/Not defined 100 Urban

Álvaro B. (2019) [17] Yes Normal Yes, but at intervals 50 Urban

Yunxuan L. (2020) [12] No Normal No/Not defined 50 Urban

Anderson T. K. (2009) [13] Yes Not defined No/Not defined 200 Urban

Saffet E. (2008) [18] Yes Not defined No/Not defined 500 Highway

Seiji H. (2016) [14] Yes Not defined No/Not defined 250 Urban

V. Prasannakumar (2011) [20] Yes Not defined No/Not defined Not defined Urban

Mamoudou S. (2020) [21] Yes Normal No/Not defined Not defined Urban

Zhixiao X. (2008) [22] Yes Normal No/Not defined Variable Urban

Zhixiao X. (2013) [23] Yes Normal No/Not defined 100 Urban

T. Steenberghen (2004) [24] Yes Normal No/Not defined Not defined Urban

Utoyo B. (2012) [25] Yes Not defined No/Not defined Not defined Mix

Liljana Ç. (2013) [26] Yes Not defined No/Not defined 1000 Urban

Guler Y. (2015) [11] Yes Not defined No/Not defined Not defined Urban

In addition to the kernel function type, the extent of bandwidth was also examined,
whether the annual average daily traffic (AADT) was taken into account, and for which
areas the study was validated. Three articles applied the Epanechnikov function, eight
articles used a normal distribution, while for the others, this parameter was not specified.
In terms of bandwidth, the situation was very variable. There were 50, 100, 150, 200,
250, 500, 1000, and 2000 m bandwidths. It was observed that higher bandwidths were
mainly used for regional roads and highways, while lower bandwidths were applied in
the urban environment. The annual average daily traffic was taken into account by Álvaro
et al. [17], but only in an interval form. According to Matthias and Durot [17], traffic data
were available, but the kernel method does not take this into account. The other articles
either did not take into account the annual average daily traffic, or this issue is not clearly
addressed in the article.

Based on the international literature review, we concluded that the weighting with the
annual average daily traffic has not been taken into account so far. Therefore, we set up our
hypothesis that the effect of AADT significantly influences the results of the black-spots
research.
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2. Materials and Methods
2.1. Theoretical Considerations

In spatial statistics, kernel density estimation (KDE) is a non-parametric method USED
for estimating a probability density function of the probability variable [27]. KDE was
applied as a continuous replacement for the discrete histogram of the spatial distribution
of fatal road accidents. If a histogram of the discrete probability variable were created,
it would be essential to consider the width and the height of the rectangle. As a result,
the given histogram would not be smooth enough, and the result would be intensely
dependent on the width and the centrum of the intervals [28–30].

The kernel function can be defined as:

K: R→ [0; ∞[, (1)

A function is called a kernel, if K is a limited, continuous, symmetrical density function
for which the following conditions are fulfilled [29,31–33]:

lim
|x|→∞

|x|K(x) = 0;
∫ ∞

−∞
x2K(x)dx < ∞ (2)

Several density functions could be defined, but here, only the four most commonly
used types are discussed. Namely, the Normal, the Epanechnikov, the Box, and the Triangle
functions. Their form and efficiency are shown in Table 2 and Figure 1 [31,34].

Table 2. The examined kernel functions and their properties [31,34].

Name Form Efficiency

Normal
K(x) =

1
σ
√

2π
∗e
−
(x−m)2

2σ2 95.1%

Epanechnikov K(x) =
3
4
(
1− x2); |x| ≤ 1 100%

Box K(x) =
1
2

; |x| ≤ 1 92.9%

Triangle K(x) = (1− |x|); |x| ≤ 1 98.6%

Figure 1. The examined kernel functions.

The kernel estimation of the density function is as follows. A sample consisting of n
pieces is taken from the interval [a,b] of an unknown population with a density function f.
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These are denoted by x1, x2, . . . , xn. Let h ∈ N+ be called bandwidth. The kernel function
estimation, that is, the shape of the Parzen–Rosenblatt estimate is as follows:

f̂n(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(3)

Usually, K is a unimodal density function, which is symmetric to the origin, so this
ensures that f̂n(x) also becomes a density function [16,29,31–33,35–37].

The kernel estimate is generated by applying a kernel function to each xi sample point.
In a given point x, the value of the kernel function estimate is the sum of the y coordinates
(ordinates) of the n kernels, which are located there. As a result, in x with many sample
points, the kernel estimate will be relatively high, and accordingly, fewer sample points
will imply a lower value [29–31,33].

In the kernel density estimation method, bandwidth and the number of sample points
play a significant role. What effect does the choice of the kernel have on the result of
the estimation? Do some kernels result in significantly better results? These issues are
presented in the next section concerning road accidents.

2.2. Practical Considerations

In the following sections, it is explained how kernel-density based estimation was
used, which kernel and which bandwidth were used, as well as how the annual average
daily traffic was integrated into the model. An algorithm in Matlab was created based on
the described mathematical model, which can be used to determine the critical sections of
the roads. In this paper, only pedestrian and/or cyclist accidents were analyzed. In this
paper, only pedestrian and/or cyclist accidents were analyzed.

2.3. Process

Figure 2 illustrates the operation of KDE in a simplified form. The accidents are shown
as dots in the following diagram. A kernel function is fitted to every data point (red curves),
then the cumulated density function is created as a sum of these kernels (blue curves).
From this density function, the starting and ending road section number of the accident
concentration sites are defined by analyzing the descriptive statistics (horizontal line).

Figure 2. Explanatory graph of kernel density estimation.

The mathematical analysis was done on the main road No. 1 of Hungary. This road is
177 km long and connects Budapest, the capital, and Hegyeshalom, on the western border.
Accidents of three years (2014–2016) were taken into consideration in the research. Since
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the road characteristics have not changed in the last years, we assumed that the critical
sections are the same. The accidents were filtered from the Win-Bal program, which is an
accident database manager in Hungary. The annual average daily traffic data originate
from the national road database. In the following section, the results for road No. 1 are
shown.

3. Results
3.1. Weighting with Annual Average Daily Traffic

As opposed to the literature [8,16,18], our kernel density estimation algorithm takes
into consideration the annual average daily traffic (AADT), which was used for weighting.
Considering the average daily traffic volume significantly influences the results of the
black-spot identification process. The number of vehicles passing through a certain spot
must be taken into consideration when evaluating the number of accidents in that given
spot. A road where five accidents happened in three years will not be considered dangerous
at first sight. However, if in those three years the total number of vehicles passing was five,
this number is very high—as all passing vehicles crashed. However, if 45 thousand vehicles
pass that spot, the number of accidents (five in three years) is considered low. Of course,
the figures in this theoretical example were chosen to be extreme, in order to successfully
illustrate the effect of traffic volume on black-spot analysis.

According to the cross-sectional traffic count, the annual average daily traffic is the
volume of traffic per vehicle/day for the examined route section (which is the annual
average of the daily traffic passing through the cross-section of the road). The AADT was
determined on the basis of validity sections. A validity section is a section between two
measuring stations, where the AADT is regarded as constant. Because of the nodes, there
are jumps in the function as there is a change in the traffic. The value of the total kernel
was weighted by the AADT because the cyclist accident risk is higher if there is more car
traffic. Thus, we weighted our resulting density function with the annual average daily
traffic for the given section (Figure 3).

Figure 3. The resulting density function of pedestrian and cyclist accidents of the main road No. 1 in
Hungary (bandwidth = 300 m).

The x-axis of the coordinate system represents the road segment numbers, and the
y-axis shows the value of the resulting density function. Because of the low-prefix y values,
we have normalized them from 0 to 1 for the sake of visualization and simplicity.

The normal distributions of accidents are shown with dotted blue lines. The resulting
density function weighted by annual average daily traffic (AADT) is denoted by the solid
blue line, while the one without AADT is shown by the dashed red line. The triangles with
numbers denote the vertices of the resulting density function according to the descending
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order of y. We examined whether weighted and non-weighted black spots follow the same
distribution. Because the data sets do not follow a normal distribution, only non-parametric
tests can be considered. Our sample was paired, so only the Wilcoxon test was accepted [38].
The essence of this is that if the two paired samples are from the same distribution, then the
sum of the positive differences between the two samples follows a normal distribution with
a predetermined expected value and standard deviation. In our case, the null hypothesis,
i.e., that the two samples follow the same distribution, can be rejected. Thus, it can be
clearly demonstrated that the introduction of AADT significantly influences the outcome
of focal research.

In Figure 4, the difference between the weighted and non-weighted density functions
can be observed. In the left section of the diagram, we can see that only one vertex was
formed in the non-weighted case (dashed red curve), and two vertices were formed in the
weighted case (triangles). Besides, the former one took a higher value. The diagram section
on the right is a counterexample to the previous one. In this case, the AADT weighted
function shows a higher value. Although the same number of accidents occurred in both
places, the comparison of the two shows that in the left side case, the annual average daily
traffic was higher than in the right-side case. This example illustrates why weighting with
annual average daily traffic is essential. Significant differences may arise between the cases
weighted and unweighted with annual average daily traffic.

Figure 4. Detail of the resulting density function of pedestrian and cyclist accidents of the main road
No. 1 in Hungary (bandwidth = 300 m).

In the case of equal accident frequency, the accident density is low in the case of
high traffic, and high in the case of low traffic, it is needed to include the traffic intensity
parameter into the model so that critical sections can be detected properly.

3.2. Determining the Starting Points and Endpoints of the Accident Black-Spots

The question arises as to which points of our resulting accident density are to be called
accident black spots, i.e., how they are defined. The optimal solution proved to be to filter
out the statistically significant outliers from the density function for each segment number
(per meter). These values represent our accident black spots. In our formulation, we refer to
values that are above the 75% percentile and interquartile range with at least one and a half
times as outliers. By declaring this value, the starting points and endpoints of our accident
black-spots can be determined [39–41]. Therefore, in theory, we can draw a horizontal line
at this y value. The intersections of this line and our resulting kernel function determine
the starting points and endpoints of our accident black spots.
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3.3. Accident Concentration Sites on the Main Road No. 1

This novel mathematical algorithm was applied to data for the main road No. 1 in
Hungary, and then the outliers were used to determine the starting points and endpoints
of our accident black spots, as shown in Table 3.

Table 3. Accident concentration sites of the main road No. 1 in Hungary.

KDE with AADT

Starting Points
km + m

Endpoints
km + m

3 + 795 5 + 649
30 + 298 31 + 152
49 + 550 50 + 849
63 + 921 66 + 717
74 + 080 74 + 414
75 + 581 76 + 498
84 + 551 87 + 583
95 + 159 96 + 721

124 + 027 125 + 465
133 + 857 134 + 196
160 + 667 164 + 665

Distance Matrix Method

Starting Points
km + m

Endpoints
km + m

4 + 451 4 + 974
64 + 779 64 + 792

161 + 414 161 + 750

Altogether, 11 sections of the main road No. 1 that represent a potential danger
to cyclists and pedestrians have been identified by using the novel methodology, i.e.,
by applying the kernel density estimation method and by detecting accident black spots
with the outliers. Contrary to this, three black spots could be defined by using the distance
matrix method [5]. Table 3 reveals the difference between the results of the two distinct
methodologies. Based on the new KDE with AADT Method, more black spots can be
identified in a more accurate way.

4. Discussion
4.1. Applicability of the Kernel Density Estimation Method

Unlike our distance matrix method, our kernel-based density estimation algorithm
is based on non-fixed length segments. The starting points and endpoints of our accident
black spots were greatly influenced by the location of the accidents on the road and the
annual average daily traffic. The Win-Bal accident database management program would
encode not only the number of the road on which the accident occurred but also the number
of the crossing road, if there were any. This information could also be taken into account in
our kernel-density-based estimation method. Hence, if the number of the crossing road
was identical to the number of the road we were investigating, then that accident was
also included in the accidents on the road under investigation. In this way, we could also
take into account accidents that occurred on the other road connected to the road under
investigation, but the road under investigation may have had an impact on the occurrence
of the accident.

In terms of sections with the same accident frequency, the accident density turns low
at high traffic volume, and it is high at low traffic volume. Consequently, integrating the
traffic volume into the model is crucial. Thus, our kernel-based accident density locator
algorithm takes into account the annual average daily traffic to ensure that the results are
even more accurate.
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In our previous research [5], we examined the autoregressive integrated moving
average method (Moving Window Method), and we developed a distance matrix road
accident black spot search algorithm as well. In order to prevent errors in those methods, we
created an algorithm based on kernel density estimation. The three methods are compared
in Figure 5. Cells with a green background indicate the advantages, and the cells with a red
background show the disadvantages compared to the other methods.

Figure 5. Comparison of the three methods (Moving-window, distance matrix based, kernel density
estimation).

In statistics, the problem of histogram creation is well-known, and it is also a major
drawback of the Moving Window Method or the distance matrix method. The process is
sensitive to the width of intervals and also the starting point of intervals. Furthermore, in
the Moving Window Method applied for road accident analyses, it is not easy to determine
the limit above which a certain place is considered a black spot. Due to these problems,
some places are identified as black spots erroneously, while some real black spots might
remain undetected. Thus, the identification of true intervention points is not satisfactory.

The kernel method offers a solution to the above problems. This method calculates a
given distribution for each accident, and these distributions are summed. The resultant
density function is then analyzed statistically to identify the limits above which values
count as outliers even in the statistical sense. Consequently, the real black spots can be
analyzed without including a subjective evaluation technique in the system.

4.2. Sensitivity Analysis—The Selection of the Kernel

According to Table 2, there is no significant difference in the efficiency of the tested
kernels. This stability is supported by the following figure, which depicts the resulting
density function of accidents on the main road No. 1. It can be seen that the four kinds
of distributions closely follow each other, so using any of them (normal, Epanechnikov,
box, triangle) would yield very similar values (Figure 6). The selection of the normal kernel
function was justified by a special case. In Hungary, the locations of accidents are recorded
by the police by means of digital tools, so the GPS coordinates underlying the analysis
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are accurate and reliable. We analyzed the distribution of distances between the recorded
GPS coordinates and the endpoints of the whole accident sections on a partial sample.
The normality analysis of the samples (the distances [m] between the GPS coordinate pairs
and accident sections) was conducted by the Shapiro–Wilks Test [42]. As the result of this
test, the normality could be confirmed, so we selected the normal kernel accordingly.

Figure 6. Comparison of kernel functions (the resulting density function of accidents on the main
road No. 1 in Hungary).

4.3. Sensitivity Analysis—Determination of Bandwidth

Unlike the histogram, the kernel density estimation yields a smooth estimate. The
smoothness can be set up by using the kernel bandwidth parameter. By choosing the right
bandwidth, essential characteristics of the distribution can be observed, while poor choice
may result in over-smoothed or under-smoothed and hidden functions [43].

We have tested our algorithm with multiple bandwidths. The following two figures
illustrate extreme cases. These show how too low or too high bandwidths affect the kernel
function.

In Figure 7, bandwidth 50 is depicted. It can be observed that a low number of kernel
functions overlap. Therefore, these functions do not add up, so an under-smoothed kernel
is created. In contrast, Figure 8 illustrates the bandwidth 5000 cases. Due to the too high
bandwidth, the kernel functions overlap largely, as a result of which the resulting density
function will be over-smoothed. On the curve weighted by annual average daily traffic,
which is indicated by a continuous line, sharp jumps are caused by the change in the annual
average daily traffic. Based on our over-smoothed and under-smoothed investigations and
the international literature [8], we have finally chosen 300 as the bandwidth in order to
specify the critical locations where the density of road traffic accidents is explicitly high.

It can be stated that the proper selection of the bandwidth is essential if the kernel
density estimation is used. In the case of a few tens of meters of bandwidth, only accidents
which are close to each other in space are added up. In the case of a few thousands of meters
of bandwidth, also the kernel function of those accidents could overlap which are far away
from each other and happened under completely different infrastructural conditions. In the
latter case, the length of the accident concentration sites can be so considerable that in the
course of our further research, we would not be able to define the typical infrastructure
characteristics of the sections.

Different bandwidths are used when examining different areas of life. For traffic
accidents, we recommend a few hundreds of meters of bandwidth. It provides an optimal
solution in which those accidents close to each other are added up, which are located on
road sections with similar infrastructure, and thus, the conditions that lead to accidents can
be explored later.
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Figure 7. Under-smoothed resultant kernel (bandwidth = 50 m, sample road: Main road No. 1
in Hungary).

Figure 8. Over-smoothed resultant kernel (bandwidth = 5000 m, sample road: Main road No. 1
in Hungary).

5. Conclusions

This study only dealt with road accidents in Hungary in which a pedestrian and/or
cyclist was affected. A normal distributed kernel function was fitted to every accident, and
then the cumulative density function was created as the weighted sum of these kernels.

The efficiency of kernel functions was demonstrated, and it was shown how their
bandwidth affects the result and under which conditions they may be used in the analysis
of road traffic accidents. It turns out that there is no significant difference in the efficiency
of the tested kernels. However, the right selection of bandwidth dramatically influences
the result. With the example of accidents occurring on the road No. 1, it was illustrated
when a resultant density function can be considered as over-smoothed or under-smoothed.

The resultant density function was analyzed both with weighted annual average daily
traffic and without that. It was concluded that the latter case significantly distorts the
results because it is essential to consider whether a certain number of accidents occurred at
low or high AADT. The main advantage of this method is that all the black spots can be
identified with the goal of preventing future accidents. The most critical locations must be
chosen so that we can create the optimal ranking of investments.

It was an important issue to detect which points of the resultant density function are
called accident concentration sites. For this purpose, we used the percentile values and the
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interquartile range used in the descriptive statistics. Based on the method proposed in this
article, the outliers of the resultant density function were specified, with the help of which
the accident concentration sites could be identified. Accidents occurring on road No. 1 in
Hungary were used as an example to demonstrate under which conditions the method is
applicable in analyzing pedestrian and cyclist accidents.

As a continuation of the research, we would like to run our method on all primary
and secondary roads in Hungary. This way, we would get a comprehensive nationwide
pedestrian and bicycle accident black-spot map. After that, we would like to examine these
accident sites in order to determine the cause of the increase in accidents and propose
changes to the authorities.

In order to reduce the number of road accidents, in addition as in addition to proactive
methods, reactive approaches, such as black-spot identification methods, are also required,
which can only be applied on a reliable mathematical-statistical basis. The result of black-
spot identification determines the sites for traffic-related investments and affects investment
priority ranks. Consequently, the constant development of these methodologies is justified
and necessary so that the methods can determine which sections of the public road network
have a potentially high risk of accidents as accurately as possible.
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