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Abstract: The treatment of wastewater is a complicated biological reaction process. Reliable effluent
prediction is critical in the scientific management of water treatment plants. This research proposes a
soft sensor design strategy to address the issues above, Multi-Verse Optimizer (MVO)-based random
vector functional link network (MVO-RVFL). The proposed approach is utilized to anticipate real-time
effluent data obtained from the Benchmark Simulation Model 1 (BSM1). The results of the experiments
demonstrate that the MVO methodology can successfully find the optimum input-hidden weights
and hidden biases of the RVFL model while outperforming the original RVFL and other typical
machine learning approaches in all types of influent datasets. In the situation of significant water
quality variations, the use of the fusion process for model development was also investigated. The
experimental results demonstrate that incorporating prior knowledge can effectively improve the
model’s ability to cope with unexpected situations.

Keywords: water quality prediction; random vector functional link network; multi-verse optimizer;
soft sensor; evolutionary algorithm

1. Introduction

The pollution of water resources has become a major environmental problem in the
world today [1,2]. As a vital part of water resource protection, the wastewater treatment
process must be controlled to maintain the effluent standards [3]. However, the water
treatment system is a hysteretic, nonlinear system that usually involves a series of chem-
ical reactions [4]. Conventional water treatment processes include membrane filtration
technologies, Fenton oxidation processes, activated carbon-mediated adsorption, photo-
catalysis, and electrochemical oxidation [5]. Advanced treatment technologies include
bioelectrical systems [6], advanced oxidation process [7], and enzymatic treatment [8],
which are mainly in the research phase. A significant requirement for quality assurance of
water treatment is real-time monitoring of crucial availability indicators. Unfortunately,
some of these indicators are difficult to detect in real-time and effectively [9]. For example,
BOD5 can only be obtained through laboratory tests and takes five days, which makes it
challenging to meet the requirements for real-time monitoring [10]. Despite the fact that the
development of sensor technology for water quality control and monitoring was motivated
by challenges in the rapid and accurate identification of pollutants, it still faces issues such
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as sensitivity, stability and selectivity, high cost, and no control over interferents/effect of
counter ions [11]. To address these issues, soft measurement methods are widely used to
accomplish real-time measurements of several variables.

Soft measurement refers to a set of techniques that make use of tolerance for error and
uncertainty in order to gain tractability, resilience, and cheap solution costs [12,13]. The
development of soft measuring techniques has benefited from the introduction of several
machine learning algorithms in recent years and has performed well in the wastewater
treatment sector [14]. Fuzzy modeling techniques are commonly employed in activated
sludge processes. Ting et al. effectively eliminate the complex nonlinear variables present
in Activated Sludge Model No.1 (ASM1) by combining the well-known fuzzy c-means
cluster algorithm with the method of least squares [15]. The efficacy of this strategy, on the
other hand, is strongly reliant on expert knowledge. Additionally, artificial neural networks
(ANN) are among the most widely used soft sensing models today. Golzar, F. et al. [16]
first apply an artificial neural network to the soft wastewater treatment plant to predict
the temperature of the effluent; it simply employs publicly available historical data, with
no field measurements required for complex heat transfer models. A soft sensor approach
based on radial basis function neural networks was developed by Bagheri et al. to measure
total phosphorus (TP), COD, and suspended solids (SS) [17]. However, there are significant
downsides to gradient-based artificial neural networks, including overfitting, extended
training times, and local minimum [18]. Random vector functional-link (RVFL) networks
published by Y.-H. Pao in the 1990s is one technique for addressing this difficulty [19].
Instead of adjusting weights based on the back-propagation of gradients, RVFL sets weights
by Moore–Penrose generalized inverse. This approach makes it possible to learn faster than
traditional neural networks with guaranteed learning accuracy. Due to the characteristics
described above, standard RVFL has been widely used in applications such as multiclass
classification, image quality assessment, and human action recognition. Simultaneously,
theories and algorithms relating to RVFL for particular applications have been enhanced.
For example, RVFL was integrated with statistical hypothesis testing and self-organization
of a number of enhancement nodes in Ref. [20], resulting in a novel learning system for
remote sensing applications dubbed a statistical self-organizing learning system (SSOLS). In
Ref. [21], an unsupervised parameter learning technique for RVFL, i.e., a sparse pre-trained
random vector functional link (SP-RVFL) network, was proposed to adaptively discover
better network parameters for particular learning tasks. In Ref. [22], RVFL was coupled
with Adaboost in the pedestrian detection system.

Although water quality forecast accuracy is increasing, since water quality is inherently
unstable and nonlinear in time series, more precise prediction approaches are worthy of
further study. Technically, the use of standard RVFL nets suffers from design issues such as
how to assign the random weights and bias. For the first time, a Multi-Verse Optimizer
(MVO) is used as an alternative to solve the problem by optimizing the RVFL parameters
based on the current successful implementations. Each solution to the goal issue is seen
as a verse in MVO, with objective values evaluating performance. With the help of the
relevant cosmological rules, they can gradually converge to the optimal position in the
search space. The MVO approach is then utilized to estimate the RVFL model’s computing
parameters, resulting in an innovative new hydrological forecast method. The suggested
approach is used to anticipate BOD5 and COD in the process of wastewater treatment.
Our experiments are based on the BMS1 simulation platform. Compared to basic RVFL
approaches and other standard machine learning algorithms, the findings demonstrate
superior prediction accuracy and generalization capabilities.

Furthermore, the data-driven modeling technique is basically a black-box modeling
approach, with the accuracy of models built without previous information and systematic
mechanisms being restricted. According to preliminary findings, Cote et al. employed
hybrid models comprising a modified ASM1 model and FFNN models to accurately predict
the concentrations of SS, COD, and NH4 in the effluent, DO in the bioreactor, and SS in
the return sludge [23]. Lee et al. used a variety of PLS and ANN approaches to integrate
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a phenomenological model based on ASM1 and process knowledge. As a consequence,
they suggested using a hybrid NNPLS model to get the most accurate forecast results
while simultaneously identifying and isolating process problems [24]. The evidence in the
publications indicates that hybrid models are more accurate. At the end of the experiment,
we attempt to extract the relationship between the data better with the help of some
systematic mechanisms and a priori knowledge to obtain more accurate modeling and
prediction results.

To be summarized, the study’s novelty for both the computer science and hydrological
sectors comes in three aspects: (1) For the first time, the MVO approach is employed to
calculate RVFL computation parameters and improve the network performance. (2) We
demonstrate our approach on BSM1 and show its great predictive accuracy by predicting
BOD5 and COD, which are difficult to measure directly. (3) We use mechanistic infor-
mation from the biological treatment of water to build new model features and explore
their validity.

The rest of this paper is organized as below: the underlying theory and the computa-
tional process of the model are described in Section 2. The proposed MVO-RVFL-based
soft measurement approach is given in Section 3. The simulations and experiment results
are shown in Section 4, while the conclusions are given at the end.

2. Prediction Model Principle
2.1. Theory

RVFL is an algorithm for solving single hidden layer neural networks. Its most
essential characteristic is that it can randomly initialize input weights and biases and acquire
the appropriate output weights, making it quicker than standard learning algorithms while
maintaining learning accuracy.

Suppose there are N training samples with n dimensions.

T = {(Xi, ti)XiεR, tiεR} (1)

Xi = [xi1, xi2, . . . , xin]
T (2)

ti = [ti1, ti2, . . . tim]
T (3)

A single hidden layer neural network with L hidden layer nodes can be expressed as:

L

∑
i=1

βig
(
Wi · Xj + bi

)
+

L+n

∑
i=L+1

βiXj = oj, j = 1, . . . , N (4)

where g( ) represents the activation function, Wi represents the weights between hidden
nodes and input, bi represents the bias vector of hidden layer neurons, and βi represents
the weights between the hidden nodes and output.

The goal of the single hidden layer neural network learning is to minimize the error
between the output and actual value, which can be expressed as:

N

∑
i=1
||oj − tj|| = 0 (5)

The above equation can be expressed in a matrix as:

Hβ = T (6)

H =

 g(W1X1 + b1) · · · g(WLX1 + bL) x11 · · · x1d
...

. . .
...

...
. . .

...
g(W1XN + b1) · · · g(WLXN + bL) xN1 · · · xNd


N×(L+d)

(7)
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β =


βT

1
·
·
·

βT
L


(L+d)×M

(8)

T =


TT

1
·
·
.

TT
N


N×M

(9)

Gradient descent learning algorithms require all parameters to be adjusted in the
iterative process. In the RVFL algorithm, once the input weights and the bias of the hidden
layer are determined randomly, the output matrix of the hidden layer β is determined. The
formula can calculate β:

β =
(

HT H
)−1

HTT (10)

The RVFL calculation process can be summarized as follows:

(1) Initialization, given the number of hidden layer nodes L and the activation function
g( );

(2) Randomly generated W and b;
(3) Calculate the output matrix H;
(4) Calculate β using the Formula (10).

2.2. Subsection

Inspired by the multiverse theory in physics, S Mirjalili et al. [25] introduced the Multi-
Verse Optimizer, a revolutionary swarm intelligence optimization technique. The MVO
algorithm simulates the motion of the multiverse population under the combined action of
white holes, black holes, and wormholes. The MVO algorithm follows the following rules
in performing the optimization:

1. If the expansion rate is higher, the higher the chance of producing a white hole.
Conversely, if a universe has a relatively low expansion rate, it is more likely to make
a black hole.

2. White holes repel objects, and black holes absorb them.
3. Irrespective of the expansion rate, it is possible for any other universe to transport

objects to the current optimal universe through a wormhole.

Suppose there are n verses in the group.

U =


x1

1, x2
1, . . . , xd

1
x1

2, x2
2, . . . , xd

2
. . . , . . .

x1
n, x2

n, . . . , xd
n

 (11)

where d is the number of variables, and n is the number of universes. Due to the different
expansion rates of each respective universe, objects in individual universes are transferred
through white hole/black hole orbits. This process follows the roulette wheel mechanism,
as shown in Equation (12).

xj
i =

{
xj

k r1 < NI(Ui)

xj
i r1 ≥ NI(Ui)

(12)

where NI(Ui) represents the normalized expansion rate of the ith universe, and r1 is a
random number in [0, 1]. In addition, the individual universe excites internal objects
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to move towards the current optimal universe to achieve local changes and improve its
expansion rate. This process is executed according to Equation (13).

xj
i =


{

Xj + TDR× (
(
ubj − lbj

)
× r4 + lbj r3 < 0.5

Xj− TDR× (
(
ubj − lbj

)
× r4 + lbj r3 ≥ 0.5

xj
i r2 ≥WEP

(13)

where Xj indicates the jth parameter of the best universe formed so far, lbj shows the lower
bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are
random numbers in [0, 1]. WEP denotes the probability of the existence of wormholes in the
multiverse, and TDR indicates the step size of an object moving towards the current optimal
universe. The principle of renewal for WEP and TDR is based on Equations (14) and (15).

WEP = WEPmin + l ×
(

WEPmax −WEPmin
L

)
(14)

TDR = 1− l
1
p

L
1
p

(15)

3. Proposed Water Quality Forecasting System

The RVFL model’s assumption is stated in Section 2.1, and the input layer’s biases and
weights are chosen at random in the RVFL model. With this method, the validity of the bias
and weight values cannot be ensured, resulting in poor prediction stability for the RVFL
model. Due to the inadequacies of the RVFL model, in MVO-RVFL, the weight matrix
connecting the input layer to the hidden layer and the bias vector of the hidden layer are
both optimized. The MVO approach employs the interchange of matter between created
verses to imitate the information sharing of schemes. Owing to the integrated adaptive
WEP/TDR constants and wormholes coupled that help MVO to provide high exploitation.
Superior exploration of the suggested technique is due to the white and black holes that
enable universes to exchange various items; it implies that it is more probable to avoid
local optima.

The detailed operation steps of MVO-RVFL are shown below:

Step 1: Set the model’s hyperparameters, such as WEPmin, WEPmax, exploitation p in
MVO, the maximum number of iterations L, number of hidden neurons, and activation
function in RVFL.
Step 2: Set the root mean square error to the objective function, as shown in Formula (16)
(The βi in Formula (16) is calculated from Formulas (6)–(10)). It is used to compute the
fitness value of each universe and sort them according to this.

Funcobjective =

√√√√∑
Nsamples
j=1 ∑m

i=1
(

βi × g
(
wi × xj + bi

)
− tj

)2

m·Nsamples
(16)

Step 3: Start iteration. The RVFL parameters are optimized using the MVO approach.

Step 3.1: Initialize each universe with a random function. Each universe is a vector,
and the dimension can be calculated by Formula (17) since it stands for W and b.

dimension = (L + 1) ·m (17)

Step 3.2: Perform material exchange according to Formulas (12) and (13). Calculate
the best universe after the update.
Step 3.3: Calculate the fitness value of all the universes at the current cycle by
Formula (16)
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Step 4: Determine if one of the objective conditions (1. Complete the maximum number of
iterations; 2. Achieves minimum accuracy requirements) is met. If the specified criterion is
satisfied, go to the next step. If not, proceed with the iteration process.
Step 5: Divide the best universe’s vector into two parts: W and b; calculate the output matrix
of the hidden layer β by Formula (10), then the optimal RVFL is obtained. MVO-RVFL
has the obvious problem of requiring all intelligence to be traversed before finishing a
single loop. The time investment is worthwhile, however, because influent data from the
wastewater treatment process might change quickly and abruptly. As a result, slipping into
a local optimum too soon will result in massive deviations.

Figure 1 shows the flow chart of effluent quality forecasting.
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4. Wastewater Data and Effluent Quality Prediction Result
4.1. Description of BSM1 Benchmark Simulation Model 1 (BSM1)

Wastewater treatment plants (WWTPs) are massive nonlinear systems that are sub-
jected to considerable changes in influent flow rate and pollutant load, as well as uncertainty
about the composition of the entering wastewater. To judge the influence of different control
strategies on reported plant performance as fair as possible, the Benchmark Simulation
Model 1 (BSM1) was proposed by the European Scientific and Technical Cooperation
Organization [26].

Two anoxic tanks and three aerobic tanks make up the benchmark plant’s five-
compartment activated sludge reactor. In order to achieve biological nitrogen removal in
full-scale plants, the plant combines nitrification and denitrification in a regularly utilized
design. The activated sludge reactor is followed by a secondary clarifier. Approximately
one-third of it is sent to the sixth layer of the secondary sedimentation tank, and the re-
maining third is redirected to unit one of the bioreactor. The majority of water that fulfills
the discharge criteria is released from the tenth floor after sedimentation in the secondary
sedimentation tank. The remainder is likewise returned to the biological reaction tank’s
first unit. The general overview of the BSM1 plant is shown in Figure 2.
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4.2. Data Acquisition through BSM1

This study selected the BSM1 built by Ulf Jeppsson et al. [23] in MATLAB/SIMULINK
as a simulation platform. Influent datasets were provided by The International Water
Association (IWA), including dry weather, storm weather, and rainy weather (Data and a
more detailed description of BSM1 can be obtained under the link http://www.iea.lth.se/
WWTmodels_download/, accessed on 21 May 2009). Each dataset comprises 14 days of
influent data and 13 variables, with a sample interval of 15 min.

According to the flow sequence of wastewater in the reactor, the model of each unit is
established in turn, which is composed of differential equations representing the reaction
rates of the components. After inputting the supplied initial parameters, the model is
simulated in a steady-state for 100 days. To verify the correctness of the model, the
simulation outcomes must correspond with IWA’s steady-state results. After this, the
simulation of dynamic water influent data can be carried out, and noise in measurements
should be used together with the dynamic files. Due to the severe environmental hazards
of BOD5 and COD and the fact that they are difficult to measure directly, they are used as
the main effluent characteristics to study in this paper. The curves of both are shown in
Figure 3 and are highly nonlinear. Additionally, the effluent fluctuates with the weather,
resulting in different BOD5 and COD in different weather.

http://www.iea.lth.se/WWTmodels_download/
http://www.iea.lth.se/WWTmodels_download/
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4.3. Preprocess and Model Parameter Settings

For the sample division, the amount of data in the trainset usually accounts for 66.67%
to 80% of the total. Therefore, in this prediction process, the first 11 days of influent data
were selected as input for model training, and the last three days of influent data were used
as input for testing. For the reason that only So, Sno, Snh, and Salk are readily measurable
through the laboratory or online instruments, the selected predictor variables are shown in
Table 1. In terms of hidden layer node selection, the theory is that the more hidden nodes
in the model, the lower the model’s error. Excess hidden nodes, on the other hand, would
use computer resources without providing a substantial benefit; therefore, the number
of hidden nodes should be chosen in accordance with the predicted power constraint.
We picked the appropriate network hyperparameters with an acceptable performance
from a large number of tests. In our experiment, the number of hidden layer nodes was
20, the universe number was set to 120, and the maximum number of iterations was
200 while creating the MVO-RVFL soft measurement model. The data were normalized
using Formula (18) before model learning to remove the effect of different magnitudes
of incoming sample features. We will continue to research the selection of the model’s
architecture in the future.

X =
X− Xmin

Xmax − Xmin
(18)

Table 1. Input features of the prediction model.

Definition Notation

Influent Ammonia Concentration Snh,in
Influent Flow Rate Q,in

Nitrate and nitrite nitrogen (reactor 1) Sno
Nitrate and nitrite nitrogen (reactor 2) Sno

Dissolved Oxygen Concentration (reactor 3) So
Dissolved Oxygen Concentration (reactor 4) So
Dissolved Oxygen Concentration (reactor 5) So

Total Suspended Solid (reactor 5) TSS
Alkalinity Salk

Oxygen Transfer Coefficient (reactor 5) Kla5

4.4. Exploitation and Exploration in the Iterative Process of MVO-RVFL

In Section 2.2, it is mentioned that the TDR denotes the distance at which an object
transitions through a wormhole near the optimal universe. In the equation of TDR, p
defines the detection speed that changes with the number of iterations; the higher the value
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of p, the faster the local detection speed and the shorter the time is taken. Figure 4 shows
the rate of model iteration optimization for different values of p.
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model; (b) COD model.

An appropriate p-value can save the amount of training time and have an excellent
result. In Figure 4, it can be seen that as the p increases, the value of fitness convergence
is higher, which means that the water quality prediction model is more likely to fall into
a local optimum. This is consistent with the MVO theory that the higher the p-value, the
faster the local detection speed and the shorter the time. However, in the water quality
research, we are more concerned about the model’s accuracy, so we should try to avoid the
local optimum. In fact, we can see that when p = 3, the fitness value of both models reaches
the minimum and does not consume too many iterations. As a result of the trade-off, the
parameter p is set to 0.3.

4.5. Experimental Results and Their Analysis

To test the effectiveness of the MVO-RVFL approach suggested in this study in predict-
ing water quality, the original RVFL method, the conventional machine learning algorithm
support vector regression algorithm (SVR), and long short-term memory (LSTM) were
chosen for comparison. SVR is a common regression method, and LSTM is a state-of-the-art
time series forecasting method. The results of the four prediction methods are shown in
Figure 5, and it can be seen that the overall prediction effect of MVO-RVFL is better. The
error between the predicted and actual values is demonstrated by the Root Mean Square
Error (RMSE) in Table 2. In dry weather, compared to RVFL and another algorithm, the
MVO-RVFL improves BOD5 prediction accuracy by at least 48.3% and COD prediction
accuracy by at least 71.6%. On rainy days, BOD5 prediction accuracy improved by at least
54.9% and COD by 67.9%. In storm weather, the accuracy of BOD5 was raised by at least
24.7% and COD by 60.8% during the test phase. The rationale for the MVO-RVFL model’s
superior performance is that it assigns appropriate random weights and biases, which is
a major flaw in normal RVFL nets. In addition, it is worth noting that in weather with
more fluctuating water quality, such as a storm, the prediction results produced by general
prediction methods will be less accurate. In this case, MVO-RVFL can still guarantee a
certain accuracy. This reflects the excellent global optimization ability of the MVO opti-
mizer. Although MVO-RVFL will spend several times more time on model training, it is
worthwhile to improve the accuracy.
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Table 2. Evaluation of model prediction results.

Weather Model RSME of BOD5 RSME of COD

Dry

SVR 0.189 1.598
LSTM 0.182 2.533
RVFL 0.122 2.627

MVO-RVFL 0.063 0.453

Rain

SVR 0.534 1.694
LSTM 0.263 1.673
RVFL 0.253 4.243

MVO-RVFL 0.114 0.544

Storm

SVR 0.178 1.561
LSTM 0.513 2.878
RVFL 0.487 6.821

MVO-RVFL 0.134 0.623

4.6. Study on the Validity of Hybrid Model

In the study of Section 4.4, we have noticed that the fluctuation trend of the influent
data becomes more extensive, leading to a decrease in the prediction accuracy. Despite the
fact that the MVO-RVFL model obtained more satisfactory forecasting results in each kind
of weather, in storm weather, its own performance relative to dry and rain had a significant
drop, which is embodied in the RSME increased by 1.18 times and 2.12 times, respectively.

Therefore, it is considered that the a priori knowledge obtained with the help of
a mechanical model to extract the relationship between the data better achieved more
accurate modeling and prediction results. In the mechanistic study of biological treatment
methods for wastewater, there are equations proposed by Hiatt and Grady [27] that describe
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the rate of “Anoxic growth of heterotrophs ” and “Aerobic growth of autotrophs,” as shown
in (18) and (19).

ρ1 = µH

(
SS

KS + SS

)(
KO,H

KO,H + SO

)(
SNO

KNO + SNO

)
ηgXB,H (19)

ρ2 = µA

(
SNH

KNH + SNH

)(
SO

KO,A + SO

)
XB,A (20)

Ss, Sno, and Snh are mentioned in Table 1, Xbh is the active heterotrophic biomass,
Xba is the active autotrophic biomass, and the others are fixed kinetic parameters. The
performance of the model is shown in Figures 6 and 7.

As can be seen from Figures 6 and 7, the model with knowledge of the mechanism
performed better than the original MVO-RVFL model for the prediction of BOD5. In terms
of model fit, the RSME of the model with knowledge of the mechanism is 0.090; compared
to the original MVO-RVFL model, it is reduced by 32.8%. In terms of the distribution of
errors, only 0.3% of the hybrid exceeded 10%, while the original MVO-RVFL model had
3.1%. This proves that mechanistic models do provide additional knowledge, and these are
beneficial for model training.

Though with the help of new features, the model could better capture the nonlinear
relationships among the variables. It is worth noting that the Xbh and Xba cannot yet be
measured directly. We can acquire them in the simulation program in our experiment. In
practice, however, they are calculated through indirect measurement and expert opinion.
As a result, this strategy is likely to be used in the future.
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5. Conclusions

In this paper, we propose an MVO-based variant of RVFL, MVO-RVFL. The MVO
method optimizes the connection weights between the input and hidden layer neurons as
well as the bias vector of the hidden layer, resulting in a more effective network. Using a
population-based search technique, the MVO method creates many solutions at random
from the problem space, then uses the exchange law of matter in the universe to repeatedly
search for the optimal combination of parameters, therefore, increasing the search space
and enhancing the quality of the findings.

The proposed model is used in wastewater treatment as a soft measurement. In
terms of experimental prediction outcomes, the MVO-RVFL technique achieved the best
degree of accuracy. It is worth mentioning that none of the predictive metrics under storm
weather are as good or as accurate as other weather. As the number of raindrops increases,
there are more unpredictability factors to consider, which makes accurate modeling more
challenging. In this research, the mechanistic model information is included in the model’s
feature building, hence reducing the complexity of the model training.

Due to time and effort limits, this research only makes a preliminary attempt to
investigate the inclusion of this integrated data into the modeling process. The practicality
of combining different sources of information in wastewater quality prediction tasks will
be assessed in future studies.
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