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Abstract: Changes in extreme precipitation have become a significant issue of regional disaster
risk assessment and water resources management. Extreme precipitation variability is affected
by multiple factors and shows disparities across different regions. Especially in mountain areas,
geographic feature and local characteristics put more complexity and uncertainty on the changes
of precipitation extremes. In this study, ten extreme precipitation indices of Wuling Mountain Area
(WMA) during 1960–2019 have been used to analyzed the spatiotemporal variations of precipitation
extremes. The relationships between extreme precipitation and potential driving factors, including
geographic factors, global warming, local temperature, and climate indices, were investigated via
correlation analysis. The results indicated that extreme precipitation tends to have a shorter duration
and stronger intensity in WMA. Decreasing trends in R10mm, R20mm, R25mm, and the consecutive
wet days (CWD) series account for 92%, 68%, 52%, and 96% of stations, while most stations in WMA
have rising trends in Rx1day (68%), SDII (64%), R95p (72%), and R99p (72%). Significant abrupt
changes in extreme precipitation indices mainly occurred in the 1980s–1990s. Geographic factors,
local temperature, and climate indices exert different impacts on extreme precipitation. Longitude
and elevation instead of latitude significantly affect extreme precipitation indices except for the
maximum duration of wet spells. Global warming is likely to increase the intensity and decrease the
duration of extreme precipitation, while the influence of local temperature is not exactly the same as
that of global warming. The study reveals that summer monsoon indices are the dominant climate
factor for variations of precipitation extremes in WMA. The correlation coefficient between extreme
precipitation indices (such as Rx1day, R95p, R99p) and the East Asian summer monsoon index is
around 0.5 and passed the significant test at the 0.01 level. The weakening of the summer monsoon
indices tends to bring extreme precipitation with stronger intensity. The findings provide more
understanding of the drivers and reasons of extreme precipitation changes in the mountain area.

Keywords: extreme precipitation; spatiotemporal variations; global warming; climate variability;
Wuling Mountain Area

1. Introduction

Global warming intensifies the hydrologic cycle, and greater atmospheric moisture
increases extreme precipitation [1]. The increasing frequency and intensity of precipitation
extremes could result in floods [2], soil erosion [3], landslides [4], and other natural disasters,
which pose more serious risks and challenges to socio-economic development and human
life [5]. Investigating past changes of extreme precipitation and understanding their
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relationships with the possible driving factors are significant for natural disaster prevention
and regional adaptive management.

Many studies have been conducted on the changes of precipitation extremes at the
global and regional scales [6,7]. On a global scale, climate warming may bring more evapo-
ration and atmospheric moisture, which leads to more frequent heavy precipitation events.
Thus, global extreme precipitation has an increasing trend similar to climate warming [8].
Changes of extreme precipitation in China are consistent with the global trend [9]. However,
when it comes to the regional scale, the spatial coherence of trends in extreme precipitation
is much weaker than temperature variation [10], and the changes in extreme precipitation
are not consistent in different regions and present obvious regional characteristics [11].
An increasing trend in extreme precipitation has been found in the Yangtze River Basin,
while extreme precipitation in the Yellow River Basin and northern China shows a decreas-
ing trend [12–14]. Because thermodynamic influences (such as global warming) [15,16]
are not the only kind, as dynamic factors (such as climate variability) [17,18] also have
an impact on extreme precipitation, and changes in extremes will become larger with
the increment of global warming [19]. Dynamic factors can amplify or counteract the
thermodynamic influences on extreme precipitation [20]. The role of large-scale atmo-
spheric circulation should be considered to understand regional extreme precipitation
variability [21]. In addition, local effects (such as local temperature, geographic factors,
land use, urbanization, etc.) [22,23] put more uncertainty on the changes of precipitation
extremes. On account of the complicated interaction of thermodynamic, dynamic factors
and local effects, the variations of extreme precipitation have spatial heterogeneity in
magnitude and direction over different regions [24].

Generally, variations of extreme precipitation have been studied at a large spatial
scale, but changes in particular regions have not been conclusive [25]. Regional analysis
of different geographical regions is needed to understand the uncertainty of trends in
extreme precipitation [26]. Mountain areas are mostly located in the climate transition
zone or the terrain transition zone. In addition to global warming and climate factors,
geographic features and local effects lead to more complexity and uncertainty to the extreme
precipitation changes. Many studies have been carried out on extreme precipitation in
mountain areas. Zhang et al. [27] explored the spatial distribution and the temporal
trends of the extreme precipitation in the Hengduan Mountains region and found that
elevation and the South/East Asian summer monsoon were important influences on
precipitation extremes in the mountain region. Shao et al. [5] and Wang et al. [18] studied
spatiotemporal variations of extreme precipitation events in the Qinling-Daba mountain
region and adopted Pearson correlation analysis method to analyze the correlation between
precipitation extremes and geographic, atmospheric factors. The results show extreme
precipitation increased in the eastern part of the Qinba mountains while decreased in the
western region, and there is a significant correlation between geographic, atmospheric
factors and extreme precipitation in the Qinling-Daba mountain region. Zhang et al. [28]
analyzed changes in extreme precipitation over the Tienshan Mountains and pointed out
that elevation, climate teleconnections, and summer monsoons have an obvious influence
on extreme precipitation across the Tienshan Mountains. Thus, not only global warming
and climate factors, but also local effects, such as geographic factors and local temperature,
should be taken into consideration when studying the changes of extreme precipitation in
mountain regions. Meanwhile, reasons or causes of extreme precipitation changes require
further exploration in connection with the local characteristics of mountain areas in order
to provide a better understanding of the complex extreme precipitation variability in the
mountain region.

Located in the eastern extension of Yunnan-Guizhou Plateau, Wuling Mountain Area
(WMA) is an important water conservation area and ecological barrier of the Yangtze River
Basin. Compared with other parts of the Yangtze River Basin, WMA is the terrain transition
zone with frequent natural disasters and high ecological vulnerability. It is a typical
mountain region sensitive to extreme climate events. Natural disasters frequently occur in
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this area and lead to huge disaster losses. Precipitation extremes and the resulting flood
disaster are one of the most frequent, longest lasting, and most extensive damage disasters
in WMA, which seriously restricts the realization of the strategic goal of poverty alleviation
and Rural Revitalization in Ethnic Minority Areas. So far, the extreme precipitation events
and flood disasters are intensified under global climate warming. Especially since the
1990s, extreme precipitation and flood events in WMA have happened more frequently,
which bring about severe losses. In June 2017, WMA suffered continuous rainstorms.
In Huaihua City alone, there were 182 towns with 570,800 people suffering from the
disaster, leading to 1.31 billion RMB of direct economic loss [29]. Although there have been
many investigations on changes of extreme precipitation and influencing factors over the
Yangtze River Basin [30,31], there have been very few studies on the changes in extreme
precipitation in the Wuling Mountain Area (WMA). Meanwhile, the association between
the variations in precipitation extremes and influencing factors, such as global warming,
local effects, and ENSO, have been explored in the Yangtze River Basin [32,33]. However,
the influences of the potential driving factors on the extreme precipitation over the basin
remain unknown. As with the spatial heterogeneity and inconsistency, as well as local
effects, the previous studies on the Yangtze River Basin are not adequate to provide detailed
information about precipitation extremes in WMA. Thus, it is still desirable to explore
the extreme precipitation changes and the possible connections between the precipitation
extremes and potential influencing factors in WMA.

This study aims to explore the spatiotemporal patterns of precipitation extremes
variations in WMA and attempts to examine the possible associations between precipitation
extremes changes and likely driving factors over the region using the high-quality daily
precipitation data and potential influencing factors’ data during 1960–2019. The findings
of our study may enhance our understanding of the complicated extreme precipitation
changes and their connections with potential driving factors and reveal the main cause of
extreme precipitation variability, which is critical and helpful for natural disaster prevention
and mitigation and adaptive water resources management in mountain area.

2. Study Area and Data
2.1. Study Area

WMA is located between 25◦52′–31◦24′ N and 107◦4′–112◦2′ E. It covers an area
of 171,800 km2 and includes 71 counties (cities, districts) in the border areas of Hubei,
Chongqing, Hunan, and Guizhou provinces. It belongs to the mountainous area where
the subtropical zone is transitional to the warm temperate zone in China. The area’s
terrain is high in the northwest and low in the southeast, with an average altitude of
1000 m. The annual average temperature in WMA is 12–17 ◦C, and the annual precipitation
is 1100–1600 mm. There is abundant precipitation but uneven distribution in the year.
Precipitation from May to August takes up more than 50% of the total annual precipitation,
which is prone to flood disasters. Especially under the influence of climate warming,
the occurrence of precipitation extremes and floods in WMA shows an increasing trend.
The location of WMA and the distribution of meteorological stations in WMA are shown
in Figure 1.

2.2. Data
2.2.1. Precipitation and Geographic Factors

The daily precipitation data of the 25 selected meteorological stations during 1960–2019
in WMA were obtained from the China Meteorological Data Service Center (http://data.
cma.cn/, accessed on 1 July 2020). The original data files are subjected to rigorous quality
control and inspection. Additional information for the selected meteorological stations is
supplied in Table 1, and their locations are displayed in Figure 1.

http://data.cma.cn/
http://data.cma.cn/
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Figure 1. The location of WMA and the distribution of meteorological stations in WMA.

Table 1. Details of the selected meteorological stations in WMA.

ID Station Name Province Latitude (◦N) Longitude (◦E) Elevation (m)

1 Fengdu Chongqing 29.85 107.73 290.5
2 Qianjiang Chongqing 29.52 108.77 786.9
3 Youyang Chongqing 28.82 108.77 826.5
4 Meitan Guizhou 27.77 107.47 792.2
5 Tongren Guizhou 27.73 109.18 353.2
6 Sinan Guizhou 27.95 108.25 416.8
7 Songtao Guizhou 28.15 109.18 406.1
8 Yuqing Guizhou 27.23 107.88 622.1
9 Zheng’an Guizhou 28.55 107.45 679.7
10 Badong Hubei 31.03 110.37 334.0
11 Enshi Hubei 30.28 109.47 457.1
12 Jianshi Hubei 30.60 109.72 609.2
13 Laifeng Hubei 29.53 109.42 502.8
14 Lichuan Hubei 30.28 108.93 1074.1
15 Wufeng Hubei 30.20 110.67 619.9
16 Anhua Hunan 28.38 111.22 128.3
17 Baojing Hunan 28.70 109.65 325.3
18 Jishou Hunan 28.23 109.68 254.6
19 Sangzhi Hunan 29.40 110.17 322.2
20 Shimen Hunan 29.58 111.37 116.9
21 Tongdao Hunan 26.17 109.78 397.5
22 Xinhua Hunan 27.75 111.30 211.9
23 Xupu Hunan 27.92 110.60 204.0
24 Yuanling Hunan 28.47 110.40 151.6
25 Zhijiang Hunan 27.45 109.68 272.2
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Geographic factors are one of the potential elements affecting precipitation. There
is a definite association between precipitation and elevation [34]. Generally speaking,
precipitation increases gradually with elevation; however, it may decline over a certain
height. Meanwhile, latitude determines the pressure zone and the wind zone, and it may
have an indirect effect on precipitation. In this study, the latitude, longitude, and elevation
of the meteorological stations (shown in Table 1) are chosen as geographic factors to analyze
its relationship with extreme precipitation in WMA.

2.2.2. Extreme Precipitation Indices

Different extreme precipitation indices may have dissimilar variations and responses
to a specific driving factor, therefore frequency-based indices, duration-based indices,
and intensity-based indices are used to represent extreme precipitation. Based on the
daily precipitation data, ten extreme precipitation indices are selected to describe extreme
precipitation events according to the recommendation of the Expert Team on Climate
Change Detection and Indices (ETCCDI). Under the classification method in [23] and [35],
these ten precipitation extremes indices can be categorized into frequency-based, duration-
based, and intensity-based indices (Table 2).

Table 2. Descriptions of extreme precipitation indices used in the study.

Indices Categories Indices Abbreviation Name Definition Unit

Frequency-based
indices

R10mm Days of heavy
precipitation

Annual total days when
precipitation ≥ 10 mm days

R20mm Days of very heavy
precipitation

Annual total days when
precipitation ≥ 20 mm days

R25mm Days of extremely
heavy precipitation

Annual total days when
precipitation ≥ 25 mm days

Duration-based indices CWD Consecutive wet days Maximum length of consecutive wet
days (daily precipitation ≥ 1 mm) days

Intensity-based indices

Rx1day Maximum 1-day
precipitation Annual maximum 1-day precipitation mm

Rx5day Maximum 5-day
precipitation

Annual maximum consecutive
5-day precipitation mm

SDII Simple daily intensity
index

Annual total wet-day precipitation
divided by the number of wet days mm/day

R95p Precipitation in very
wet days

Annual total precipitation when daily
precipitation > 95th percentile mm

R99p Precipitation in
extremely wet days

Annual total precipitation when daily
precipitation > 99th percentile mm

PRCPTOT Annual total wet day
precipitation Annual total precipitation on wet days mm

2.2.3. Global Warming and Local Temperature

The near-surface temperature at global and local scales are used as indicators for global
warming and local warming, respectively [22,23]. They are obtained from the National
Aeronautics and Space Administration (http://data.giss.nasa.gov/gistemp/, accessed on
1 July 2020) and China Meteorological Data Service Center (http://data.cma.cn/, accessed
on 1 July 2020).

2.2.4. Climate Indices

Pacific Decadal Oscillation (PDO), Southern Oscillation Index (SOI), Arctic Oscilla-
tion (AO), North Atlantic Oscillation (NAO), Northern Oscillation Index (NOI), and the
Multivariate ENSO Index (MEI) are potential climate factors influencing the climate in

http://data.giss.nasa.gov/gistemp/
http://data.cma.cn/
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China [5,36,37]; therefore, these factors are selected as the climate indices in this study.
They are extracted from the United States National Oceanic and Atmospheric Admin-
istration (http://www.esrl.noaa.gov/psd/data/climateindices/list/, accessed on 1 July
2020). Moreover, the monsoon is another close link with precipitation extremes in China.
The South China Sea summer monsoon index (SCSSMI) and East Asian summer monsoon
index (EASMI) were used in the study, which were downloaded from http://lijianping.cn/
dct/page/1, accessed on 1 July 2020.

3. Methodology
3.1. Mann-Kendall Trend Test

Mann–Kendall test (M-K test) is less sensitive to outliers and does not require data to
follow a specific distribution, therefore it has been widely used to detect trends in hydrom-
eteorological time series [38,39]. In order to eliminate the influence of serial correlation,
the pre-whitening method proposed by Yue et al. [40] is used in the M-K test in the study.
The results of the M-K trend test are judged by statistical parameter Z. Z > 0 indicates
that the time series has an increasing trend, while Z < 0 suggests that the time series has
a decreasing trend. The significant level used in the study is 0.05. Thus, if |Z| ≥ 1.96,
the trend is significant at the 95% confidence level [41]. The detailed information of the
M-K test is available in [42,43].

3.2. Pettit Abrupt Test

Pettitt test is a kind of nonparametric change-point test employed to detect a single
change-point in time series without presupposing the location of the change point [44].
It detects the rank-sum sequence of the original data, reducing the influence of outliers.
Meanwhile, the statistical significance level of the abrupt changes can be quantified in the
Pettitt test [45]. When the significance level is set at α = 0.05, the test statistic p-value < 0.05
indicates that no apparent abrupt occurs in the time series. The p-value calculation proce-
dures are available in detail in [46].

3.3. Pearson’s Correlation Analysis

Pearson’s correlation analysis method is a simple and effective way to measure lin-
ear independence between two variables, which reflects not only the magnitude of the
correlation, but also the significance of the correlation. It is widely used to analyze the
connections between extreme precipitation and related influencing factors [18,23]. The Pear-
son correlation coefficient [14] has been commonly used to indicate the linear relationship
between two variables. The correlation coefficient value is between −1 and 1. When the
correlation coefficient value is greater than zero, there is a positive correlation between two
variables, whereas there is a negative correlation when the coefficient is less than zero. If the
coefficient is equal to zero, it indicates no linear relationship between the two variables.
The closer the coefficient is to 0, the lower the linear correlation magnitude, while the
closer the coefficient is to −1 or 1, the higher the linear correlation magnitude. Pearson’s
correlation analysis is used to determine the impact of the potential influencing factors on
precipitation extremes in WMA.

4. Results
4.1. Spatial and Temporal Variations of Extreme Precipitation
4.1.1. Trends in Extreme Precipitation Indices

Spatial variation features of annual average extreme precipitation indices show many
similarities except CWD (Figures 2 and S1).

http://www.esrl.noaa.gov/psd/data/climateindices/list/
http://lijianping.cn/dct/page/1
http://lijianping.cn/dct/page/1
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Figure 2. Spatial variations of annual average extreme precipitation indices: (a) R10mm, (b) CWD,
(c) Rx1day, and (d) PRCPTOT in WMA.

The high values of CWD emerge in the southeast and north part of WMA, while the
low values of CWD occur in the northeast and west part of WMA. CWD gradually de-
creases from southeast to northwest, and from north to other directions. For other extreme
precipitation indices, there is a similar decreasing trend from east to west, or from southeast
to northwest of WMA. Meanwhile, in the northeast of WMA, a downward trend emerges
from the middle part of WMA to the northeast region. The spatial changes of average
annual PRCPTOT are generally consistent with the results from [47]. PRCPTOT is signifi-
cantly correlated with all the selected precipitation extremes indices except CWD, therefore
almost all indices display similarities in spatial variations except CWD. Furthermore,
it indicates that the annual total precipitation has good correlations with extreme precipita-
tion. By contrast, CWD is weakly correlated with precipitation extremes. Besides, the trend
magnitudes of all extreme precipitation indices except CWD in WMA have significant
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correlations with longitude rather than latitude, which reveals the influence of geographic
factors on spatial changes of extreme precipitation indices in WMA.

The percentage of stations with different trends and the spatial distribution of trends
in the selected ten extreme precipitation indices in WMA are shown in Figures 3, 4 and S2.
Frequency-based indices, such as R10mm, R20mm, and R25mm, are able to reflect the
frequency of extreme precipitation. Moreover, 92%, 68%, and 52% of stations in the WMA
show decreasing trends of R10mm, R20mm, and R25mm series, respectively. It indicates
that the frequencies of extreme precipitation reduce at most sites in the WMA. Ninety-six
percent of stations display declining trends of consecutive wet days (CWD), and 50%
(12 stations) passed the significance test. It suggests the annual maximum length of wet
days tends to shorten. However, most stations in WMA have rising trends in Rx1day (68%),
SDII (64%), R95p (72%), and R99p (72%). Although slightly more stations (13 stations)
show a downward trend for Rx5day, there are fewer stations with a significant negative
trend (4 stations) than those with an apparent positive trend (12 stations). The results reveal
that the intensities of average precipitation (SDII) and extreme precipitation (Rx1day, R95p,
R99p) in WMA have increased obviously from 1960 to 2019. However, the opposite occurs
in the annual total precipitation in wet days (PRCPTOT). Downward trends are found
in PRCPTOT at 14 stations, which are mainly distributed in the west and north part of
WMA. Further, the frequency of extreme precipitation (represented by R20mm and R25mm,
see in Figure S2) tend to increase in the middle and east of WMA, where there are areas
with relatively low topography and high extreme precipitation intensity. Additionally,
the precipitation extremes with a shorter duration but higher intensity are more likely to
happen in WMA, which may lead to floods, landslide, and debris flow, posing a greater
challenge to disaster prevention and mitigation in the region.
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In terms of the regional average extreme precipitation indices in WMA (Figure 5),
R10mm, R20mm, and R25mm show increasing trends at a regional average of 0.6 days/decade,
0.2 days/decade, 0.1 days/decade, respectively; however, the increasing trends did not
pass the significance test at the 0.05 significance level. With an increase in the precipitation
threshold, the ten-year change rate of the frequency-based indices gradually decreases,
so too does the significance of the decreasing trend. Regional average CWD has an obvi-
ously decreasing trend with 0.03days/decade. Rx1day, Rx5day, SDII, R95p, and R99p show
a rising trend, and the upward trend of R99p is apparent. PRCPTOT displays a downward
trend at a regional average of 4.8 mm/decade. Regional trend analysis results of extreme
precipitation in WMA are basically in line with at-site analysis results.
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4.1.2. Abrupt Changes in Extreme Precipitation Indices

From Figure S3, for R20mm, R25mm, SDII, and PCRPTOT, there is no significant
abrupt changes detected in WMA. For R10mm, an obvious abrupt change was found at
Songtao, Meitan in 1985. There are abrupt changes found in 1988, 1987, and 1987 for
R95p, Rx1, and Rx5 at Anhua, which represent that the significant abrupt of precipitation
extremes indices at Anhua emerged around 1987. For R99p and Rx1day, abrupt changes
are detected in 1994 and 1992 at Zhijiang and Xupu, respectively. Rx5day at Xupu is found
to be abrupt in 1988. In terms of CWD, significant abrupt changes are seen at nine stations,
that is, Qiangjiang and Sinan in 1978, Zheng’an in 1983, Sangzhi in 1985, Songtao in 1993,
Shimen and Jishou in 1994, Enshi and Youyang in 1997.

From Figure 6, during the 1960s, 2000s, and 2010s, no obvious abrupt changes were
found in all selected extreme precipitation indices. In the 1970s, abrupt changes in CWD at
Qianjiang and Sinan were detected. There are two stations for R10mm (Songtao, Meitan),
CWD (Zheng’an, Sangzhi), Rx5day (Anhua, Xinhua), and one station (Anhua) for Rx1day,
R95p was found to have significant abrupt changes in the 1980s. Moreover, in the 1990s,
abrupt changes emerged at Enshi, Shimen, Youyang, Songtao, and Jishou for CWD,
at Xupu and Xinhua for Rx1day and R99p, respectively. The stations detected obvious
abrupt changes distributed in the high-value region of extreme precipitation for Rx1day,
Rx5day, R99p. In contrast, for CWD, the stations with significant abrupt mainly emerge in
the middle part of WMA.
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For the regional average extreme precipitation indices, only one significant abrupt
change (p-value < 0.05) was detected in 1997 of the CWD series (Figure 7). There are no
obvious abrupt changes in the other regional averages of extreme precipitation indices
series under the significance levels at α = 0.05.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

Figure 7. Abrupt changes detected of the regional average of annual CWD series. 

4.2. Correlation with Potential Factors 

4.2.1. Correlation between Extreme Precipitation Indices 

From the analysis of previous trends of extreme precipitation in WMA, many ex-

treme precipitation indices show similarities in variations. Thus, the correlation between 

precipitation extremes indices in WMA during 1960–2019 is analyzed first. As shown in 

Table 3, all the extreme precipitation indices except CWD show significantly positive cor-

relations with annual total precipitation PRCPTOT (correlation coefficient > 0.60, p < 0.01), 

and CWD showed a weak correlation with PRCPTOT (correlation coefficient = 0.28, p < 

0.05). Furthermore, CWD is weakly correlated with other precipitation extremes except 

for R10mm. The results are a good illustration of spatial variations of average annual ex-

treme precipitation indices shown in Figures 2 and S1, which is that almost all indices 

display similarities in spatial variations except CWD. 

Table 3. Correlation between extreme precipitation indices. 

 R10mm R20mm R25mm CWD Rx1day Rx5day SDII R95p R99p PRCPTOT 

R10mm 1.00 0.84 ** 0.77 ** 0.42 ** 0.30 * 0.46 ** 0.44 ** 0.50 ** 0.39 ** 0.91 ** 

R20mm  1.00 0.97 ** 0.18 0.61 ** 0.66 ** 0.78 ** 0.81 ** 0.69 0.95 ** 

R25mm   1.00 0.14 0.70 ** 0.73 ** 0.84 ** 0.89 ** 0.77 ** 0.94 ** 

CWD    1.00 −0.11 0.09 −0.09 −0.02 −0.11 0.28 * 

Rx1day     1.00 0.83 ** 0.83 ** 0.89 ** 0.95 ** 0.63 ** 

Rx5day      1.00 0.78 ** 0.85 ** 0.84 ** 0.70 ** 

SDII       1.00 0.93 ** 0.88 ** 0.69 ** 

R95p        1.00 0.94 ** 0.80 ** 

R99p         1.00 0.71 ** 

PRCPTOT          1.00 

Note: * and ** denote significant correlation at the 0.05 and 0.01 levels, respectively. 

Meanwhile, the extremely strong correlated indices with PRCPTOT are R10mm, 

R20m, and R25mm, with the correlation coefficients of 0.91, 0.95, and 0.94. It indicates that 

the decrease in R20mm contributed to the downward trend of PRCPTOT in WMA over 

1960–2019, and that the frequency-based indices (R10mm, R20mm, R25mm) are strong 

and significantly correlated with each other. The same is true for intensity-based indices. 

There is not a strong correlation between frequency-based and intensity-based indices. 

Still, all the correlations are evident at a 0.01 level except that correlation between R10mm 

and Rx1day is obvious at a 0.05 level. Moreover, R10mm is not as strongly correlated with 

intensity-based indices as R20m and R25mm. 

4.2.2. Correlation with Geographic Factors 

The potential influence of geographic factors on the extreme precipitation indices in 

WMA is explored via Pearson’s correlation analysis. From the results shown in Table 4, 

Figure 7. Abrupt changes detected of the regional average of annual CWD series.



Sustainability 2022, 14, 8312 12 of 23

4.2. Correlation with Potential Factors
4.2.1. Correlation between Extreme Precipitation Indices

From the analysis of previous trends of extreme precipitation in WMA, many extreme
precipitation indices show similarities in variations. Thus, the correlation between precipi-
tation extremes indices in WMA during 1960–2019 is analyzed first. As shown in Table 3,
all the extreme precipitation indices except CWD show significantly positive correlations
with annual total precipitation PRCPTOT (correlation coefficient > 0.60, p < 0.01), and CWD
showed a weak correlation with PRCPTOT (correlation coefficient = 0.28, p < 0.05). Fur-
thermore, CWD is weakly correlated with other precipitation extremes except for R10mm.
The results are a good illustration of spatial variations of average annual extreme precip-
itation indices shown in Figure 2 and Figure S1, which is that almost all indices display
similarities in spatial variations except CWD.

Table 3. Correlation between extreme precipitation indices.

R10mm R20mm R25mm CWD Rx1day Rx5day SDII R95p R99p PRCPTOT

R10mm 1.00 0.84 ** 0.77 ** 0.42 ** 0.30 * 0.46 ** 0.44 ** 0.50 ** 0.39 ** 0.91 **
R20mm 1.00 0.97 ** 0.18 0.61 ** 0.66 ** 0.78 ** 0.81 ** 0.69 0.95 **
R25mm 1.00 0.14 0.70 ** 0.73 ** 0.84 ** 0.89 ** 0.77 ** 0.94 **
CWD 1.00 −0.11 0.09 −0.09 −0.02 −0.11 0.28 *

Rx1day 1.00 0.83 ** 0.83 ** 0.89 ** 0.95 ** 0.63 **
Rx5day 1.00 0.78 ** 0.85 ** 0.84 ** 0.70 **

SDII 1.00 0.93 ** 0.88 ** 0.69 **
R95p 1.00 0.94 ** 0.80 **
R99p 1.00 0.71 **

PRCPTOT 1.00

Note: * and ** denote significant correlation at the 0.05 and 0.01 levels, respectively.

Meanwhile, the extremely strong correlated indices with PRCPTOT are R10mm, R20m,
and R25mm, with the correlation coefficients of 0.91, 0.95, and 0.94. It indicates that
the decrease in R20mm contributed to the downward trend of PRCPTOT in WMA over
1960–2019, and that the frequency-based indices (R10mm, R20mm, R25mm) are strong
and significantly correlated with each other. The same is true for intensity-based indices.
There is not a strong correlation between frequency-based and intensity-based indices. Still,
all the correlations are evident at a 0.01 level except that correlation between R10mm and
Rx1day is obvious at a 0.05 level. Moreover, R10mm is not as strongly correlated with
intensity-based indices as R20m and R25mm.

4.2.2. Correlation with Geographic Factors

The potential influence of geographic factors on the extreme precipitation indices in
WMA is explored via Pearson’s correlation analysis. From the results shown in Table 4,
all extreme precipitation indices have positive correlations with longitude in WMA, and these
correlations are significant at 0.01 significant level with the exception of CWD. There is a
powerful positive correlation between SDII and longitude, and the correlation coefficient
between SDII and longitude is 0.90—the highest among correlation coefficients between
extreme precipitation indices and longitude. These results indicate that longitude is one of
the significant influence factors for extreme precipitation indices in WMA.

Obvious correlations are also observed between most extreme precipitation indices
and elevation. Extreme precipitation indices show negative correlations with elevation
except for CWD, making it clear that extreme precipitation variations decrease with increas-
ing elevation. Moreover, the correlation between R20mm, R25mm, Rx1day, Rx5day, R95p,
and R99p with altitude passes the significant test at the significance level of 0.05. The corre-
lation between SDII and altitude is evident at the significance level of 0.01. Furthermore,
the correlation coefficient between SDII and altitude is −0.63, the absolute value of which
is higher than the correlation coefficients between altitude and other extreme precipitation
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indices. These results indicate that altitude is significantly correlated with the extreme
precipitations during 1960–2019 in WMA.

Table 4. Correlation between extreme precipitation indices and geographic factors.

Extreme
Precipitation Indices Longitude Latitude Altitude

R10mm 0.76 ** −0.07 −0.39
R20mm 0.80 ** 0.00 −0.42 *
R25mm 0.80 ** 0.00 −0.45 *
CWD 0.30 −0.20 0.06

Rx1day 0.70 ** 0.02 −0.49 *
Rx5day 0.76 ** −0.03 −0.46 *

SDII 0.90 ** 0.16 −0.63 **
R95p 0.69 ** −0.19 −0.45 *
R99p 0.53 ** −0.33 −0.42 *

PRCPTOT 0.76 ** −0.05 −0.39
Note: * and ** denote significant correlation at the 0.05 and 0.01 levels, respectively.

However, the correlations between latitude and extreme precipitation indices are fairly
weak. R10mm, CWD, Rx5day, R95p, R99p, and PRCPTOT show negative correlations
with latitude, while Rx1day and SDII show positive correlations with latitude in WMA.
Moreover, these correlations are not apparent at the 0.05 level. There are no correlations
detected between R20mm and R25mm with latitude.

Thus, all extreme precipitation indices except CWD in WMA are well correlated with
longitude and elevation rather than latitude, which is in accord with the results shown in
Figure 2 and Figure S1. Meanwhile, the study confirms that mountainous and highland
areas are very sensitive and vulnerable to extreme weather and extreme hydrological
events [48,49]. Altitude has an obvious negative correlation with almost all extreme precip-
itation indices in WMA. The higher the altitude, the smaller the extreme precipitation.

4.2.3. Correlation with Global Warming and Local Temperature

The correlation between regional average extreme precipitation indicators and global
temperature is shown in Table 5. Except for R10mm and CWD, there is a positive correlation
between other extreme precipitation indices and global temperature. The correlation between
R99p and global temperature is obvious at a significant level of 0.01, and the correlation be-
tween Rx1day and global temperature passes the test with a significant level at 0.05. However,
CWD is negatively correlated with global temperature, which is significant at the 0.01 level.

Table 5. Correlation between regional average extreme precipitation indicators and global temperature.

Extreme Precipitation Indices Global Temperature

R10mm −0.10
R20mm 0.02
R25mm 0.08
CWD −0.48 **

Rx1day 0.26 *
Rx5day 0.13

SDII 0.20
R95p 0.21
R99p 0.34 **

PRCPTOT 0.05
Note: * and ** denote significant correlation at the 0.05 and 0.01 levels, respectively.

Figures 8 and S4 show the spatial pattern of the correlation between extreme precip-
itation indices and global temperature. It is basically in line with the correlation results
between regional average annual extreme precipitation indices and global temperature
reported in Table 5. A prevailing negative correlation pattern between R10mm, CWD,
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and the global temperature can be seen in WMA. However, the negative correlation be-
tween R10mm and the global temperature is non-significant at the 0.05 level, and the
absolute value of correlation coefficients are less than 0.3, which indicates weak connection.
Moreover, the correlation between CWD and the global temperature is marked negative at
the 0.05 level over the entire region. There is strong and significant negative correlation
at Youyang station, with the correlation coefficient ranging from −0.5 to −0.4. However,
a dominant positive correlation can be found between Rx1day, Rx5day, SDII, R95p, R99p,
and the global temperature, in which some stations in the southeast of WMA pass the
significant test at the 0.05 level. Besides, the positive and negative correlations between
R20mm, R25mm, PRCPTOT, and the global temperature are evenly balanced. There are
13 stations (52%), 14 stations (56%), and 12 stations (48%) with a positive correlation be-
tween R20mm, R25mm, PRCPTOT, and the global temperature, respectively. Generally,
stations in the east show a positive relationship, while that in the west display a negative
pattern over WMA for correlations between R20mm, R25mm, PRCPTOT, and the global
temperature. The results indicate that climate warming reinforces the intensity of extreme
precipitation in WMA. However, climate warming demonstrates a significant tendency to
reduce the maximum consecutive wet days over WMA. Additionally, climate warming
inclines to raise the frequency of precipitation extremes in the east of WMA yet diminish
the frequency of precipitation extremes in the west of WMA.
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The spatial distribution of correlation between the extreme precipitation indices and
local temperature is displayed in Figures 9 and S5. There is a negative control correlation be-
tween local temperature and R10mm, R20mm, R25mm, CWD, R95p, and PRCPTOT, while
most stations show a positive correlation with local temperature in terms of Rx1day, R99P,
and SDII. There are 14 stations (56%) with a negative correlation between local temperature
and Rx5day. Thus, for R10mm, CWD, Rx1day, R99p, SDII, and PRCPTOT, the spatial
pattern of correlation between the extreme precipitation indices and local temperature is
generally in agreement with that of the extreme precipitation indices–global temperature
correlation. Moreover, for the other four extreme precipitation indicators, the spatial feature
of the extreme precipitation indices–local temperature correlation is opposed to that of the
extreme precipitation indices–global temperature correlation. These results show that local
warming tends to reduce not only the frequency of extreme precipitation and the maximum
length of wet days, but also annual total precipitation and very wet days precipitation.
However, local warming tends to increase maximum one-day precipitation, extremely very
wet days precipitation, and the intensity of the precipitation.
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4.2.4. Correlation with Climate Indices

From Figure 10, except R10mm and CWD, there are positive correlations between
extreme precipitation indicators and AO. Meanwhile, positive correlations can also be found
between PDO and extreme precipitation indicators, except for CWD. However, the negative
correlations emerge between NAO and extreme precipitation, except for R95p. The NAO-
extreme precipitation correlation and MEI-extreme precipitation correlation move in the
opposite direction, except for CWD and Rx5day. Yet, the PDO-extreme precipitation
correlation and MEI-extreme precipitation correlation are in the same direction, except
for Rx5day and R95p. The correlation coefficients of extreme precipitation and AO, SOI,
NAO, PDO, NOI, and MEI are small and do not pass the test at the significant level
of 0.05 and 0.01. It implies that the influence of these climate factors on precipitation
extremes is relatively weak and limited in WMA over 1960–2019. Except CWD, EASMI has
a negative correlation with other extreme precipitation indices, in which marked negative
correlations are found with R25mm, Rx1day, Rx5day, SDII, R95p, R99p (significant at
0.01 level), R20mm, and PRCPTOT (significant at 0.05 level). Another summer monsoon
index SCSSMI exhibits a similar relationship with extreme precipitation indices. There
is a negative correlation between SCSSMI and extreme precipitation indices, except for
R10mm and CWD. Furthermore, the negative correlation is obvious between SCSSMI
and Rx1day, Rx5day, SDII, R95p, R99p (significant at 0.01 level), as well as SCSSMI and
R25mm (significant at 0.05 level). These results indicate that summer monsoon indices
have a significant negative effect on extreme precipitation in WMA during 1960–2019.
The weakening of these summer monsoon indices may give rise to a stronger intensity of
extreme precipitation.
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In order to further study the spatial pattern of correlations between representative
extreme precipitation indices and climate factors with significant influence, the distribution
of correlations between extreme precipitation and summer monsoon indices are shown
in Figure 11. Moreover, correlations between extreme precipitation and all eight climate
variability indices are displayed in Figure S6.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 25 
 

  
(a) (b) 

  
(c) (d) 

Figure 11. Spatial pattern of correlations between summer monsoon indices and extreme precipita-

tion: (a) R10mm, (b) CWD, (c) Rx1day, and (d) PRCPTOT in WMA. 

Except for the stations located in the north part of WMA, the correlation between 

summer monsoon indices and R10mm, CWD is positive at most stations. However, there 

is negative correlation between summer monsoon indices and intensity-based extreme 

precipitation indices (represented by Rx1day, PRCPTOT). Meanwhile, except for 

PRCPTOT, the correlation between SCSSMI and extreme precipitation at most stations is 

more significant compared with EASMI.  

5. Discussion 

The frequent occurrence of extreme events is closely related with precipitation distri-

bution, especially the spatial and temporal distribution of the extreme precipitation event 

[50]. The extreme precipitation events will increase the risk of flood and aggravate the 

pressure of regional water resources’ management [51]. Especially in mountainous areas, 

extreme precipitation is one of the most dangerous causes of natural disasters, which often 

induces high-frequency and high-intensity natural disasters, such as floods, landslides, 

and debris flow. In previous studies, the spatial distribution of extreme precipitation 

Figure 11. Spatial pattern of correlations between summer monsoon indices and extreme precipitation:
(a) R10mm, (b) CWD, (c) Rx1day, and (d) PRCPTOT in WMA.

Except for the stations located in the north part of WMA, the correlation between
summer monsoon indices and R10mm, CWD is positive at most stations. However, there
is negative correlation between summer monsoon indices and intensity-based extreme
precipitation indices (represented by Rx1day, PRCPTOT). Meanwhile, except for PRCP-
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TOT, the correlation between SCSSMI and extreme precipitation at most stations is more
significant compared with EASMI.

5. Discussion

The frequent occurrence of extreme events is closely related with precipitation dis-
tribution, especially the spatial and temporal distribution of the extreme precipitation
event [50]. The extreme precipitation events will increase the risk of flood and aggravate
the pressure of regional water resources’ management [51]. Especially in mountainous
areas, extreme precipitation is one of the most dangerous causes of natural disasters, which
often induces high-frequency and high-intensity natural disasters, such as floods, land-
slides, and debris flow. In previous studies, the spatial distribution of extreme precipitation
shows remarkable regional differences. An increasing trend is found in the middle and
lower reaches of the Yangtze River, South China, and Northwest China, while a decreas-
ing trend occurs in Northeast China, North China, and a part of Southwest China [52,53].
In our study, extreme precipitation in WMA, which belongs to the middle and upper reaches
of the Yangtze River, suggests shorter duration and stronger intensity. Rx1day, R95p, R99p,
and SDII show a significant increasing trend, while CWD demonstrates an apparent de-
creasing trend. These findings are in accord with [23,30]. They detected significantly
increasing trends of extreme precipitation intensities and decreasing trends of consecutive
wet days in the Yangtze River Basin. Furthermore, R20mm and R25mm tend to increase in
the middle and east of WMA, where there are areas with relatively low topography and
high extreme precipitation intensity. In the context of abrupt analysis for China, extreme
precipitation events experienced a sudden change in the early 1990s [52]. However, in the
Yangtze River Basin, the abrupt of extreme precipitation intensity and extreme precipitation
occurred in the mid-1980s, according to Su et al. [25] and Wang et al. [53]. In our study,
significant abrupt changes in extreme precipitation indices in WMA mainly occurred in the
1980s–1990s, which is not very consistent with the relevant research conclusions. This could
be partly explained by different datasets and different abrupt test methods. Additionally,
regional and local difference may contribute to the inconsistent results. Therefore, it is
necessary to further study the internal variation characteristics and reasons for the changes
of extreme precipitation.

The potential causes of spatial and temporal heterogeneity in variations of precipitation
extremes may include thermodynamic, dynamic factors and local effects. We found all
extreme precipitation indices except CWD in WMA to be well correlated with longitude
and elevation rather than latitude, which is in accord with Sun [47] and Li et al. [23], albeit
without discussion in detail. We consider that the enhanced discrepancy in the thermal
properties of land and sea due to climate warming may be part of the reason. Meanwhile,
apart from the high elevation in the north and west part, WMA is dominated by small and
medium relief mountains. The complex mountainous distribution may lead to different
degrees of influence by ocean water vapor in WMA, therefore extreme precipitation is well
correlated with longitude rather than latitude. However, in other mountainous area, such
as the Qingba mountain area, both longitude and latitude significantly impact the extreme
precipitation in Qinba mountains [18].

Global warming tends to enhance the intensities of extreme precipitation in WMA,
which is consistent with the results in the Yangtze River Basin [23,31]. Moreover, Li et al. [23]
pointed out that global warming has a tendency to increase frequencies of precipitation
extremes in the Yangtze River Basin. Although WMA belongs to the upper and middle
reaches of the Yangtze River Basin, we found different responses of extreme precipitation
frequency to climate warming. Global warming tends to raise the frequency of precipita-
tion in the east of WMA, but reduces the frequency of precipitation in the west of WMA.
It indicates that the previous studies on the Yangtze River Basin are not adequate to provide
detailed information about precipitation extremes in WMA because of the spatial hetero-
geneity and inconsistency. The effects of local warming on extreme precipitation are not
exactly the same as that of global warming on precipitation extremes. Local warming is
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likely to decrease the frequency of extreme precipitation, the maximum length of wet days,
annual total precipitation, and very wet days precipitation. This might lie in the decreased
relative humidity because of local warming, which could affect the precipitation trigger
and reduce the extreme precipitation [23].

Previous studies have reported that the East Asian summer monsoon (EASM) expe-
rienced a weakening tendency since the end of the 1970s [54,55]. This weakening was
manifested as tendencies toward increasing excessive rainfall in South China, along the
Yangtze River [56]. In the weakened EASM year, the southwest wind of the western anticy-
clone directly transports the water vapor from the South China Sea to the Yangtze River
basin, leading to an increase in precipitation extremes. In this study, EASMI and SCSSMI
have a significant negative influence on extreme precipitation in WMA. The weakening of
summer monsoon indices leads to stronger intensity of extreme precipitation. Therefore,
the summer monsoon is an important and main reason of extreme precipitation changes
in WMA. Meanwhile, the saturation vapor pressure of the atmosphere will increase if
the temperature increases [57]. Then, the atmosphere can hold more moisture, which
results in more precipitation in an extreme event [58], and the geographic position and
topographical features of WMA reinforced the effect. In July, the summer monsoon front
is coupled to the mountain alignment, extending from the southwest to the northeast
along the Wuling Mountain. The summer monsoon passes through the entire WMA from
the south to the north and is blocked by the mountains; then, part of the air mass sinks
and mixes with surface heat radiation and transpiration vapor to produce precipitations.
Furthermore, the movement of the southwest climatic front coincides with the direction
of Wuling Mountain, and the areas where the southern and northern climatic front meets
overlap with the distribution of Wuling Mountain. Thus, coupled with topographical
features of WMA, summer monsoon indices show control and significant influence on
the precipitation extremes in WMA. Additionally, a previous study found that ENSO
affects the variability of precipitation extremes of the YRB in both the current year and
the coming year [23]. Lv et al. [31] found that ENSO had negative correlation with the
winter maximum daily precipitation in the YRB. However, there is no obvious influence
of ENSO on extreme precipitation indices detected in this study. The possible reason for
this is that a different index was used to quantify the condition of ENSO. There are so
many indices used to reflect the impact of ENSO, such as MEI, the Oceanic Niño Index
(ONI), sea surface temperature (SST), and so on. The selection of different indexes may
produce different results. Moreover, the climate variability index of different time scales put
more uncertainty to the correlation between extreme precipitation and climate variability.
Under the complicated influence of multiple factors, the drivers and reasons of extreme
precipitation changes remain poorly understood [59]. More investigation should focus on
the mechanisms responsible for extreme precipitation changes.

6. Conclusions

Based on long-term meteorological observation data at 25 stations in Wuling Mountain
Area during 1960–2019, this paper presented a comprehensive study of trends and abrupt
changes of extreme precipitation. The influence of geographic factors, global warming,
local warming, and climate variability are investigated to explore the potential driving
factors for the variations of precipitation extremes in WMA. The main conclusions are
as follows.

(1) The results show that extreme precipitation intensities (Rx1day, R95p, and R99p)
and average precipitation intensity (SDII) increased significantly in WMA during
1960–2019. On the contrary, the maximum duration of wet days (CWD) decreases
obviously during the same period. Frequency-based precipitation indices (R10mm,
R20mm, R25mm) reduce at most stations, while increasing trends of frequency-based
precipitation indices display on the average regional scale. These indicate extreme
precipitation with shorter duration and stronger intensity in WMA, which might
increase the risk of floods and the resulting landslides and debris flows over WMA,
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especially in the middle and east part of WMA, where the elevation is relatively low,
but where the intensity and frequency of precipitation extremes tend to increase;

(2) There is no significant abrupt examined for R20mm, R25mm, SDII, or PCRPTOT in
WMA during 1960–2019. Significant abrupt changes for other extreme precipitation
indices mainly occurred in the 1980s–1990s, and there was an abrupt detected at Qian-
jiang and Sinan for CWD in the 1970s. The stations with obvious abrupt changes in
Rx1day, Rx5day, and R99p are located in the high-value area of extreme precipitation
in WMA; yet, sites with a significant abrupt of CWD was mainly distributed in the
middle region of WMA;

(3) Extreme precipitation indices except CWD are significantly positively correlated with
annual total precipitation, and CWD is weakly associated with other extreme precipi-
tation indicators except R10mm. Geographic factors, longitude, and elevation instead
of latitude markedly affect extreme precipitation indices, except for CWD, in WMA.
Precipitation extremes tend to decrease from east to west. Meanwhile, the extreme
precipitation decreases with an increase in elevation. These results are correspondent
with spatial patterns of average annual extreme precipitation indices over WMA.
Global warming has a tendency to increase the intensities (Rx1day, Rx5day, R95p,
R99p, and SDII) of extreme precipitation and decrease the maximum consecutive wet
days (CWD) across WMA. Besides, climate warming tends to raise the frequency of
precipitation in the east of WMA, but reduces the frequency of precipitation in the
west of WMA. The effects of local warming on extreme precipitation are not exactly
the same as that of global warming on precipitation extremes. Local warming is likely
to decrease the frequency of extreme precipitation, the maximum length of wet days,
annual total precipitation, and very wet days precipitation. However, the opposite
effects of local temperature may occur on maximum one-day precipitation, extremely
very wet days precipitation, and precipitation intensity. Different climate factors exert
different effects on precipitation extremes. The influence of AO, SOI, NAO, PDO, NOI,
and MEI on extreme precipitation is relatively weak in WMA. Compared with these
climate variability indices, summer monsoon indices, such as EASMI and SCSSMI,
have the most obvious impact on the extreme precipitation in WMA during 1960–2019.
The weakening of these summer monsoon indices tends to bring the stronger inten-
sity of extreme precipitation. The findings of this study highlight that it is essential
to systematically explore the possible driving factors of variations in precipitation
extremes in WMA, which is critical and helpful for natural disaster prevention and
reduction and adaptive management in this region.

The findings have displayed a clear spatiotemporal variation pattern of precipitation
extreme in WMA and have provided deeper understanding of the drivers and reasons
of extreme precipitation changes in mountain area. However, there are limitations of
this study. Only linear relations are used to measure the connections between extreme
precipitation and potential driving factors. However, their relationship may be nonlinear.
Future investigation should focus on the nonlinear relationship between precipitation and
influencing factors. Meanwhile, the combined effects of two factors or more factors are
worth paying attention to. More importantly, the physical mechanism of the potential
drivers on extreme precipitation is required in future work.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su14148312/s1, Figure S1: Spatial variations of annual average
extreme precipitation indices (a) R20mm (b) R25mm (c) Rx5day (d)SDII (e)R95p (f)R99p in WMA.
Figure S2: Spatial distribution of trends in extreme precipitation indices (a) R20mm (b) R25mm
(c) Rx5day (d) SDII (e) R95p (f) R99p in WMA. Figure S3: Spatial distribution of abrupt changes in
extreme precipitation indices (a) R10mm, (b) R20mm, (c) R25mm, (d) CWD, (e) Rx1day, (f) Rx5day,
(g) SDII, (h) R95p, (i) R99p, (j) PRCPTOT in WMA. Figure S4: Spatial pattern of correlation between
global temperature and extreme precipitation indices (a) R20mm (b) R25mm (c) Rx5day (d) SDII
(e) R95p (f) R99p in WMA. Figure S5: Spatial pattern of correlation between local temperature
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and extreme precipitation indices (a) R20mm (b) R25mm (c) Rx5day (d) SDII (e) R95p (f) R99p in
WMA. Figure S6: Spatial pattern of correlations between extreme precipitation and climate variability
in WMA.

Author Contributions: Conceptualization, H.D. and J.X.; Data curation, Y.L. and J.L.; Formal analysis,
H.D.; Methodology, H.D. and Y.Y.; Writing—original draft, H.D.; Writing—review and editing, J.X.
All authors have read and agreed to the published version of the manuscript.

Funding: The study was supported by the Fundamental Research Funds for the Central Universities
of South-Central Minzu University (Grant Number: CZD21005) and the National Natural Science
Foundation of China (Grant Number: 41901235).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the anonymous reviewers for their constructive feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Madakumbura, G.D.; Thackeray, C.W.; Norris, J.; Goldenson, N.; Hall, A. Anthropogenic influence on extreme precipitation over

global land areas seen in multiple observational datasets. Nat. Commun. 2021, 12, 3944. [CrossRef] [PubMed]
2. Khaing, Z.M.; Zhang, K.; Sawano, H.; Shrestha, B.; Sayama, T.; Nakamura, K. Flood hazard mapping and assessment in

data-scarce Nyaungdon area, Myanmar. PLoS ONE 2019, 14, e0224558. [CrossRef] [PubMed]
3. Liu, S.; Huang, S.; Xie, Y.; Leng, G.; Huang, Q.; Wang, L.; Xue, Q. Spatial-temporal changes of rainfall erosivity in the Loess

Plateau, China: Changing patterns, causes and implications. Catena 2018, 166, 279–289. [CrossRef]
4. Wang, S.; Zhang, K.; van Beek, L.P.; Tian, X.; Bogaard, T.A. Physically-based landslide prediction over a large region: Scaling

low-resolution hydrological model results for high resolution slope stability assessment. Environ. Modell. Softw. 2020, 124, 104607.
[CrossRef]

5. Shao, Y.; Mu, X.; He, Y.; Sun, W.; Zhao, G.; Gao, P. Spatiotemporal variations of extreme precipitation events at multi-time scales
in the Qinling-Daba mountains region, China. Quat. Int. 2019, 525, 89–102. [CrossRef]

6. Morrison, A.; Villarini, G.; Zhang, W.; Scoccimarro, E. Projected changes in extreme precipitation at sub-daily and daily time
scales. Glob. Planet. Chang. 2019, 182, 103004. [CrossRef]

7. Cardell, M.F.; Amengual, A.; Romero, R.; Ramis, C. Future extremes of temperature and precipitation in Europe derived from a
combination of dynamical and statistical approaches. Int. J. Climatol. 2020, 40, 4800–4827. [CrossRef]

8. Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet
regions. Nat. Clim. Chang. 2016, 6, 508–513. [CrossRef]

9. Zhou, B.; Xu, Y.; Wu, J.; Dong, S.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a
high-resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [CrossRef]

10. Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Tank, A.M.G.K.; Haylock, M.; Collins, D.; Trewin, B.;
Rahimzadeh, F.; et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos.
2006, 111, 1042–1063. [CrossRef]

11. Fang, J.; Yang, W.; Luan, Y.; Du, J.; Lin, A.; Zhao, L. Evaluation of the TRMM 3B42 and GPM IMERG products for extreme
precipitation analysis over China. Atmos. Res. 2019, 223, 24–38. [CrossRef]

12. Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the
Yangtze River Basin, China. Int. J. Climatol. 2017, 37, 1282–1298. [CrossRef]

13. Gao, T.; Wang, H. Trends in precipitation extremes over the Yellow River basin in North China: Changing properties and causes.
Hydrol. Processes 2017, 31, 2412–2428. [CrossRef]

14. Mei, C.; Liu, J.; Chen, M.T.; Wang, H.; Li, M.; Yu, Y. Multi-decadal spatial and temporal changes of extreme precipitation patterns
in northern China (Jing-Jin-Ji district, 1960–2013). Quat. Int. 2018, 476, 1–13. [CrossRef]

15. Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235.
[CrossRef]

16. Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484.
[CrossRef]

17. Alexander, L.V.; Uotila, P.; Nicholls, N. Influence of sea surface temperature variability on global temperature and precipitation
extremes. J. Geophys. Res. Atmos. 2009, 114, D18116. [CrossRef]

18. Wang, L.; Chen, S.; Zhu, W.; Ren, H.; Zhang, L.; Zhu, L. Spatiotemporal variations of extreme precipitation and its potential
driving factors in China’s North-South Transition Zone during 1960–2017. Atmos. Res. 2021, 252, 105429. [CrossRef]

http://doi.org/10.1038/s41467-021-24262-x
http://www.ncbi.nlm.nih.gov/pubmed/34230465
http://doi.org/10.1371/journal.pone.0224558
http://www.ncbi.nlm.nih.gov/pubmed/31770381
http://doi.org/10.1016/j.catena.2018.04.015
http://doi.org/10.1016/j.envsoft.2019.104607
http://doi.org/10.1016/j.quaint.2019.07.029
http://doi.org/10.1016/j.gloplacha.2019.103004
http://doi.org/10.1002/joc.6490
http://doi.org/10.1038/nclimate2941
http://doi.org/10.1002/joc.4400
http://doi.org/10.1029/2005JD006290
http://doi.org/10.1016/j.atmosres.2019.03.001
http://doi.org/10.1002/joc.4776
http://doi.org/10.1002/hyp.11192
http://doi.org/10.1016/j.quaint.2018.03.008
http://doi.org/10.1126/science.1140746
http://doi.org/10.1126/science.1160787
http://doi.org/10.1029/2009JD012301
http://doi.org/10.1016/j.atmosres.2020.105429


Sustainability 2022, 14, 8312 22 of 23

19. IPCC. 2021: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C.,
Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021;
in press.

20. Otto, F.E.L.; van Oldenborgh, G.J.; Eden, J.; Stott, P.A.; Karoly, D.J.; Allen, M.R. The attribution question. Nat. Clim. Chang. 2016, 6,
813–816.

21. Perlwitz, J.; Knutson, T.; Kossin, J. Large-scale circulation and climate variability. In Climate Science Special Report: Fourth National
Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global
Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 161–184. [CrossRef]

22. Mondal, A.; Mujumdar, P.P. Modeling non-stationarity in intensity, duration and frequency of extreme rainfall over India.
J. Hydrol. 2015, 521, 217–231. [CrossRef]

23. Li, X.; Zhang, K.; Gu, P.R.; Feng, H.T.; Yin, Y.F.; Chen, W.; Cheng, B.C. Changes in precipitation extremes in the Yangtze River
Basin during 1960–2019 and the association with global warming, ENSO, and local effects. Sci. Total Environ. 2021, 760, 144244.
[CrossRef]

24. Papalexiou, S.M.; Montanari, A. Global and regional increase of precipitation extremes under global warming. Water Resour. Res.
2019, 55, 4901–4914. [CrossRef]

25. Su, B.D.; Gemmer, M.; Jiang, T. Spatial and temporal variation of extreme precipitation over the Yangtze River Basin. Quat. Int.
2008, 186, 22–31. [CrossRef]

26. Nie, C.; Li, H.; Yang, L.; Ye, B.; Dai, E.; Wu, S.; Liu, Y.; Liao, Y. Spatial and temporal changes in extreme temperature and extreme
precipitation in Guangxi. Quat. Int. 2012, 263, 162–171. [CrossRef]

27. Zhang, K.X.; Pan, S.; Cao, L.; Wang, Y.; Zhao, Y.; Zhang, W. Spatial distribution and temporal trends in precipitation extremes
over the Hengduan Mountains region, China, from 1961 to 2012. Quat. Int. 2014, 349, 346–356. [CrossRef]

28. Zhang, X.; Chen, Y.; Fang, G.; Li, Y.; Li, Z.; Wang, F.; Xia, Z. Observed changes in extreme precipitation over the Tienshan
Mountains and associated large-scale climate teleconnections. J. Hydrol. 2022, 606, 127457. [CrossRef]

29. Shang, Z.K.; Shao, K. Natural disasters in Wuling Mountainous Area. Minzu Trib. 2020, 2, 59–66. (In Chinese)
30. Li, P.; Yu, Z.; Jiang, P.; Wu, C. Spatiotemporal characteristics of regional extreme precipitation in Yangtze River Basin. J. Hydrol.

2021, 603, 126910. [CrossRef]
31. Lv, M.; Wu, S.J.; Chen, J.; Chen, C.; Wen, Z.; Huang, Y. Changes in extreme precipitation in the Yangtze River basin and its

association with global mean temperature and ENSO. Int. J. Climatol. 2018, 38, 1989–2005.
32. Miao, C.; Duan, Q.; Sun, Q.; Lei, X.; Li, H. Non-uniform changes in different categories of precipitation intensity across China and

the associated large-scale circulations. Environ. Res. Lett. 2019, 14, 025004. [CrossRef]
33. Gao, T.; Zhang, Q.; Luo, M. Intensifying effects of El Niño events on winter precipitation extremes in southeastern China.

Clim. Dyn. 2020, 54, 631–648. [CrossRef]
34. Yu, H.; Wang, L.; Yang, R.; Yang, M.; Gao, R. Temporal and spatial variation of precipitation in the Hengduan Mountains region

in China and its relationship with elevation and latitude. Atmos. Res. 2018, 213, 1–16. [CrossRef]
35. Croitoru, A.E.; Piticar, A.; Burada, D.C. Changes in precipitation extremes in Romania. Quat. Int. 2016, 415, 325–335. [CrossRef]
36. You, Q.L.; Kang, S.C.; Aguilar, E.; Pepin, N.; Fluegel, W.A.; Yan, Y.P.; Xu, Y.W.; Zhang, Y.J.; Huang, J. Changes in daily climate

extremes in China and their connection to the large scale climate variability during 1961–2003. Clim. Dyn. 2011, 36, 2399–2417.
[CrossRef]

37. Hu, W.; Yao, J.; He, Q.; Chen, J. Changes in precipitation amounts and extremes across Xinjiang (northwest China) and their
connection to climate indices. PeerJ 2021, 9, e10792. [CrossRef]

38. Du, H.; Xia, J.; Zeng, S.D. Regional frequency analysis of extreme precipitation and its spatio-temporal characteristics in the Huai
River Basin, China. Nat. Hazards 2014, 70, 195–215. [CrossRef]

39. Song, X.M.; Zhang, J.Y.; Zou, X.; Zhang, C.; AghaKouchak, A.; Kong, F. Changes in precipitation extremes in the Beijing
metropolitan area during 1960–2012. Atmos. Res. 2019, 222, 134–153. [CrossRef]

40. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series.
Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]

41. Liu, S.Y.; Huang, S.; Huang, Q.; Xie, Y.; Leng, G.; Luan, J.; Song, X.; Wei, X.; Li, X. Identification of the non-stationarity of extreme
precipitation events and correlations with large-scale ocean-climate variability patterns: A case study in the Wei River Basin,
China. J. Hydrol. 2017, 548, 184–195. [CrossRef]

42. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [CrossRef]
43. Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975.
44. Gu, X.H.; Zhang, Q.; Li, J.F.; Singh, V.P.; Sun, P. Impact of urbanization on nonstationarity of annual and seasonal precipitation

extremes in China. J. Hydrol. 2019, 575, 638–655. [CrossRef]
45. Zhang, Y.; Li, C.B.; Wang, L.M. Application and comparison of several test methods for changepoints diagnosis in streamflow

variations. Water Resour. Hydro. Eng. 2020, 51, 38–47.
46. Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [CrossRef]
47. Sun, L. Drought Monitoring and Early Warning in Mountain and Hilly Area—A Case of Wuling Mountain Area. Ph.D. Dissertation,

China Agricultural University, Beijing, China, 2014.

http://doi.org/10.7930/J0RV0KVQ
http://doi.org/10.1016/j.jhydrol.2014.11.071
http://doi.org/10.1016/j.scitotenv.2020.144244
http://doi.org/10.1029/2018WR024067
http://doi.org/10.1016/j.quaint.2007.09.001
http://doi.org/10.1016/j.quaint.2012.02.029
http://doi.org/10.1016/j.quaint.2014.04.050
http://doi.org/10.1016/j.jhydrol.2022.127457
http://doi.org/10.1016/j.jhydrol.2021.126910
http://doi.org/10.1088/1748-9326/aaf306
http://doi.org/10.1007/s00382-019-05022-6
http://doi.org/10.1016/j.atmosres.2018.05.025
http://doi.org/10.1016/j.quaint.2015.07.028
http://doi.org/10.1007/s00382-009-0735-0
http://doi.org/10.7717/peerj.10792
http://doi.org/10.1007/s11069-013-0808-6
http://doi.org/10.1016/j.atmosres.2019.02.006
http://doi.org/10.1002/hyp.1095
http://doi.org/10.1016/j.jhydrol.2017.03.012
http://doi.org/10.2307/1907187
http://doi.org/10.1016/j.jhydrol.2019.05.070
http://doi.org/10.2307/2346729


Sustainability 2022, 14, 8312 23 of 23

48. Wotling, G.; Bouvier, C.; Danloux, J.; Fritsch, J.M. Regionalization of extreme precipitation distribution using the principal
components of the topographical environment. J. Hydrol. 2000, 233, 86–101. [CrossRef]

49. Zhang, Q.; Li, J.F.; Chen, X.H.; Bai, Y.G. Spatial variability of probability distribution of extreme precipitation in Xinjiang. Acta
Geogr. Sin. 2011, 66, 3–12.

50. Ahmed, K.; Shahid, S.; Chung, E.S.; Wang, X.J.; Bin Harun, S. Climate change uncertainties in seasonal drought severity-area-
frequency curves: Case of arid region of Pakistan. J. Hydrol. 2019, 570, 473–485. [CrossRef]

51. Gao, T.; Xie, L. Study on Progress of the Trends and Physical causes of Extreme Precipitation in China during the Last 50 Years.
Adv. Earth Sci. 2014, 29, 577–589.

52. Long, Y.Y.; Fan, G.Z.; Duan, L.; Feng, W.; Wang, Q.; Li, F.; Zhang, Y. A Study on the Characteristics of Summertime Extreme
Precipitation Events over China in Recent 54 Years. Clim. Environ. Res. 2016, 21, 429–438. (In Chinese)

53. Wang, J.; Jiang, Z.H.; Yan, M.L.; Zhang, J.L. Trends of extreme precipitation indices in the mid-lower Yangtze River valley of
China during 1960-2005. Sci. Meteorol. Sin. 2008, 28, 384–388. (In Chinese)

54. Liu, H.W.; Zhou, T.J.; Zhu, Y.X.; Lin, Y. The strengthening East Asia summer monsoon since the early 1990s. Chin. Sci. Bull. 2012,
57, 1553–1558. [CrossRef]

55. Chen, D.; Zhou, F.; Dong, Z.; Zeng, A.Y.; Ou, T.; Fang, K. A tree-ring δ18O based reconstruction of East Asia summer monsoon
over the past two centuries. PLoS ONE 2020, 15, e0234421. [CrossRef]

56. Ding, Y.; Wang, Z.; Sun, Y. Inter-decadal variation of the summer precipitation in east China and its association with decreasing
Asian summer monsoon. Part I: Observed evidences. Int. J. Climatol. 2007, 28, 1139–1161. [CrossRef]

57. Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [CrossRef]
58. Sharma, A.; Wasko, C.; Lettenmaier, D.P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 2018, 54,

8545–8551. [CrossRef]
59. Tandon, N.F.; Zhang, X.; Sobel, A.H. Understanding the dynamics of future changes in extreme precipitation intensity. Geophys.

Res. Lett. 2018, 45, 2870–2878. [CrossRef]

http://doi.org/10.1016/S0022-1694(00)00232-8
http://doi.org/10.1016/j.jhydrol.2019.01.019
http://doi.org/10.1007/s11434-012-4991-8
http://doi.org/10.1371/journal.pone.0234421
http://doi.org/10.1002/joc.1615
http://doi.org/10.3354/cr00953
http://doi.org/10.1029/2018WR023749
http://doi.org/10.1002/2017GL076361

	Introduction 
	Study Area and Data 
	Study Area 
	Data 
	Precipitation and Geographic Factors 
	Extreme Precipitation Indices 
	Global Warming and Local Temperature 
	Climate Indices 


	Methodology 
	Mann-Kendall Trend Test 
	Pettit Abrupt Test 
	Pearson’s Correlation Analysis 

	Results 
	Spatial and Temporal Variations of Extreme Precipitation 
	Trends in Extreme Precipitation Indices 
	Abrupt Changes in Extreme Precipitation Indices 

	Correlation with Potential Factors 
	Correlation between Extreme Precipitation Indices 
	Correlation with Geographic Factors 
	Correlation with Global Warming and Local Temperature 
	Correlation with Climate Indices 


	Discussion 
	Conclusions 
	References

