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Abstract: It is difficult to assess the characteristics of marine debris, especially on hard-to-reach
places such as uninhabited islands, rocky coasts, and seashore cliffs. In this study, to overcome the
difficulties, we developed a method for marine debris assessment using a segmentation model and
images obtained by UAVs. The method was tested and verified on an uninhabited island in Korea
with a rocky coast and a seashore cliff. Most of the debris was stacked on beaches with low slopes
and/or concave shapes. The number of debris items on the whole coast estimated by the mapping
was 1295, which was considered to be the actual number of coastal debris items. However, the number
of coastal debris items estimated by conventional monitoring method-based statistical estimation
was 6741 (±1960.0), which was severely overestimated compared with the mapping method. The
segmentation model shows a relatively high F1-score of ~0.74 when estimating a covered area of
~177.4 m2. The developed method could provide reliable estimates of the class of debris density and
the covered area, which is crucial information for coastal pollution assessment and management on
hard-to-reach places in Korea.

Keywords: coast debris; covered area; deep learning; image segmentation; mapping; marine debris

1. Introduction

Marine debris is defined as persistent solid material disposed of in marine and coastal
environments [1–4]. Coastal pollution by marine debris has a devastating impact on
ecosystems and on human and marine lives [5–7]. The solution to marine litter is likely to
be found in a transition towards more sustainable ways of production and consumption,
which are also promoted via the Sustainable Development Goals (SDGs) [8]. Recently,
the UN sustainable development agenda presented a plan of action involving 17 SDGs,
including targets to prevent and significantly reduce marine pollution of all kinds, including
marine litter [8,9]. Marine debris monitoring has played a crucial role in assessing pollution
characteristics for a suitable response to marine pollution.

Several studies have tried to assess coastal pollution and to estimate marine debris
standing stock with conventional monitoring methods [10–25]. The approaches based
on conventional monitoring methods help us to understand the pollution characteristics
of marine debris. However, the conventional monitoring methods are inaccurate and
expensive because they manually investigate marine debris in randomly selected narrow
areas [26–30]. According to the conventional monitoring method of Korea since 2018, a
transect of a 100 m width is divided by a sub-transect of a 5 m width, and then, four
sub-transects are randomly selected among them [30]. The number and weight of the
debris items distributed in the four sub-transects are manually investigated by local private
organizations. Although there are differences in the width of transect for each country, the
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conventional methods have manually investigated the number of debris items in selected
narrow areas [31]. In addition, the conventional monitoring methods are difficult to use
for the investigation of hard-to-reach places such as uninhabited islands, rocky coasts, and
seashore cliffs.

To overcome the disadvantages of the conventional monitoring methods, many studies
have recently tried to assess the debris quantity, type, and distribution with unmanned
aerial vehicles (UAVs) and machine/deep learning technologies [32–40]. The aerial survey
using UAVs has been recognized as a suitable and effective low-cost image acquisition plat-
form for high-resolution monitoring [41]. Moreover, machine/deep learning technologies
in marine science have great potential for the assessment of marine pollution. For assessing
the pollution level of marine debris, it is important to estimate its amount, distribution, and
area coverage. Some studies have assessed the areas polluted by marine debris using aerial
survey and image processing techniques [42,43]. However, there is still a lack of crucial
information to characterize the marine debris on hard-to-reach places.

In this study, we assessed and characterized the coastal pollution of debris distributed
on the whole coast of an uninhabited island using a deep learning-based segmentation
model with the images obtained by aerial surveys. The images were merged without
overlapping, and the number density of the debris items distributed on the whole coast
was visualized by heatmap. Then, the number of debris items estimated by the mapping
method was compared with that estimated by conventional monitoring method-based
statistical estimation. Moreover, a deep learning-based image segmentation model was
used to estimate the area covered by coastal debris. The image segmentation model
classified debris items into six classes and quantitatively estimated the area covered by
them. The methods developed in this study could provide essential information for the
assessment and management of the marine debris, especially on the hard-to-reach places in
the Republic of Korea.

2. Methods
2.1. Study Area

Seokdae-do (-do means an island) is an uninhabited island with a rocky coast and
a seashore cliff. The island is located in the region west of the Korean peninsula and
has a coastline composed of sands, pebbles, and rocks, as shown in Figure 1. The island
has a coastline ~2.1 km long and a total area of ~128,036.6 m2. The island is one of the
national beach-debris monitoring sites of Korea. Most of the marine debris on the beach of
Seokdae-do must be from the ocean because the island is an uninhabited island. In addition,
aquaculture farms are distributed around the island, and Muchangpo Beach, where there is
a leisure beach crowded with tourists in the summer, is nearby, as shown in Figure 1.
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2.2. Aerial Surveys Using Unmanned Aerial Vehicle (UAV)

Aerial surveys using a UAV were conducted twice with different height and pho-
tographing angles. A drone (Phantom 4 Pro V2.0, DJI, Shenzhen, China) with 20 megapix-
els (MP) camera took the pictures and the video. During the first survey, the drone took
pictures at a 60 m altitude with a camera angle of 90◦ (perpendicular to the water surface).
The 203 images collected by the first aerial survey were used to map the number (i.e.,
the number of debris items per unit grid (10 m × 10 m)). However, the images taken
by the first survey were not good enough to estimate the area covered by coastal debris
with high accuracy. So, a second aerial survey was conducted to obtain high-resolution
image data. Because the resolution of an image taken at a lower altitude is higher than that
taken at a higher altitude under the same camera conditions, we therefore took a video
along the coastline at a 40 m altitude with a camera angle of 45◦ to obtain high-resolution
images. Ninety-two images extracted from the video were used for the datasets of the
image segmentation model. Each image had a dimension of 4096 × 2160 pixels.

2.3. Workflows for Mapping and Classification of Coastal Debris

Figure 2 shows the workflows for mapping the distribution of coastal debris (Figure 2a)
and for estimating the class of the covered area (Figure 2b). Using the images by the first
aerial survey with a 60 m altitude and a 90◦ photographing angle, the debris items were
labelled and mapped on the merged image according to a process, as shown in the blue
dot box of Figure 2a. We used Agisoft PhotoScan Professional v.1.3.0 (Agisoft LLC, St.
Petersburg, Russia) to align the images acquired by aerial survey. To prevent the duplication
of a debris item, the overlapped area between each image was removed in the merging
process of the software. The debris items were labelled, counted, and classified into six
categories, including Plastic, Styrofoam, Metal, Rubber, Fishing gear, and Unspecified.
Then, the characterized debris items were visualized and mapped as a heatmap.
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In our previous study, we carried out an investigation to characterize beach debris
using an object detection model (i.e., YOLOv5) [44]. The object detection model showed a
good performance in detecting and classifying beach debris; however, that model could
not estimate the debris classes of the covered area [44]. To tackle the problem, we used the
image segmentation model to estimate the debris classes of the area covered in this study.
The red dot box of Figure 2b shows the image analyzing process in which the segmentation
model classified the items distributed on the whole coast into six classes and estimated
their coverage area. The covered area of debris items means the projected area of the items.
Ninety-two images extracted from a video by the second aerial survey with a 40 m altitude
and a 45◦ photographing angle were divided into 4600 patch images with 512 × 512 pixels,
and the patch images were used to train the segmentation model. For labeling the debris
items, a commercial geographic information system (GIS) program (i.e., ArcMap 10.7, Esri,
CA, USA) was used. In each patch image, a polygon was created by connected vertices
along the outer boundary of the debris item. Each polygon was marked as a debris item to
be distinguished from the background in the images. For the training of the segmentation
model, the labeled items were classified into six classes, including Plastic, Styrofoam, Metal,
Rubber, Fishing gear, and Unspecified. Moreover, a pair of images consisting of the original
patch image and a labeled image (i.e., ground truth) was configured as one dataset. Then,
the trained segmentation model could classify the debris items and estimate their pixels
with each class. The covered areas of each item were finally calculated by multiplying the
number of pixels and the average area per unit pixel (2.58 × 10−5 m2), as shown in Table 1.

Table 1. Calculated area per unit pixel of the test samples. The mean value of area per unit pixel of
the test samples was used to calculate the area covered by debris items.

Sample Actual Area (m2) Number of Pixels (Counts) Area per Unit Pixel (m2)

A 0.71 × 10−3 25 2.84 × 10−5

B 13.75 × 10−3 56 2.45 × 10−5

C 5.55 × 10−3 48 1.16 × 10−5

D 20.47 × 10−3 95 2.15 × 10−5

E 7.60 × 10−3 176 4.32 × 10−5

Mean (standard deviation) 2.58 × 10−5 (0.79 × 10−5)

2.4. Model Performance

We used the U-Net model based on a fully convolutional network (FCN) as an image
segmentation model to classify the debris items and to estimate the debris classes of
the covered area. The U-Net is a highly symmetric U-shaped architecture where skip
connections are used to directly link the output of each level from the encoder (contracting
path) to the corresponding level of the decoder (expansive path) [45]. The model transfers
the entire feature map to the corresponding decoders and concatenates them with the
upsampled decoder feature maps. The U-Net model showed a high performance even
when the amount of training data was insufficient.

The model performance was evaluated on the test set using the F1-score (the harmonic
mean of precision and recall), which is a quantitative metric useful for imbalanced training
data [46]. The F1-score shows the harmonic mean of precision and recall, where the
score reaches its best value at 1 and its worst value at 0. In addition, class-balanced (CB)
loss function was used to reduce the effect of the data imbalance on the model, which is a
method of weighting samples to fit a given data distribution [47]. The CB loss function gives
a high weight to the minor class and a low weight to the major class. Moreover, we used
a data augmentation method to compensate for the limited data. There are various data
augmentation techniques, such as geometric transformations, color space augmentations,
kernel filters, mixing images, random erasing, feature space augmentation, adversarial
training, generative adversarial networks, neural style transfer, and meta-learning [48]. For
the segmentation model used in this study, we applied position augmentation (such as
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flipping, rotation, and translation) and color augmentation (such as brightness, contrast,
and saturation adjustment) to our model to compensate for the limited data.

Using the R algorithm, a transect with a 100 m width and its 20 sub-transects of
a 5 m width were automatically selected, and the number of debris items in the sub-
transects was also counted automatically. Then, the number of debris items that was
statistically expanded with the length of the whole shoreline was compared with that by
the mapping method.

3. Results
3.1. Coastal Debris Mapping

Figure 3 shows the number of classified/counted debris items in the merged aerial
survey image. The debris items distributed on the coast were classified into six classes;
Plastic, Styrofoam, Metal, Rubber, Fishing gear, and Unspecified. The total number of
debris items was 1295. The number of Styrofoam items was found to be the highest, with
989 items (~76.4%), followed by Plastic, Unspecified, and Fishing gear, with 130 (~10.0%),
128 (~9.9%), and 34 (~2.6%) items, respectively. Rubber and Metal had 8 (~0.6%) and
6 (~0.5%) items, respectively.
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Figure 3. The number of classified/counted debris items in the merged aerial survey image.

Figure 4 shows the number density of the debris items investigated in the merged aerial
survey images. The number density of the debris items represented the number of debris
items per unit grid (10 m × 10 m), as shown in Figure 4a. The average density of debris items
was 0.07 counts·100 m−2. The proportions of the low-density (0.01–0.20 counts·100 m−2),
medium-density (0.21–0.40 counts·100 m−2), and high-density (0.41–0.60 counts·100 m−2)
items were 90.0%, 8.5%, 0.5%, respectively. The areas of low-density were widely dis-
tributed over the whole coast, but the areas of the highest density were located at Site 1
(0.53 counts·100 m−2) and at Site 2 (0.52 counts·100 m−2), respectively, as indicated in
Figure 4. The number density of the debris items was visualized as a heatmap, as shown
in Figure 4b. The heatmap shows simultaneously the number density of the debris of the
whole coast with the location and the morphological characteristics of the island.
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Figure 4. (a) The density of debris items with grid (10 m × 10 m) and (b) a heatmap representing the
number density of debris items.

3.2. Covered Area of Debris Items with Class

Four thousand six hundred patch images were generated from the ninety-two images
obtained using the second aerial survey, and the patch images were used as a dataset
of the segmentation model, as shown in Figure 2b (the red dot line). The datasets were
split into three parts: the training set (70%), the validation set (20%), and the test set (10%).
Figure 5 shows the F1-score of the segmentation model developed in this study. The average
F1-score is 0.74 (red dotted line in Figure 5). The F1-scores of Plastic (0.93), Styrofoam
(0.97), and Metal (0.86) were higher than the average F1-score, while those of Rubber (0.26),
Fishing gear (0.72), and Unspecified (0.69) were lower than the average F1-score.
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Figure 5. The F1-score of the segmentation model developed in this study.

Figure 6 shows examples of the image data, including patch image, ground truth, and
classification result. The patch image is the image segmented by 512 × 512 pixels from the
original image acquired by aerial survey. Ground truth means a “true” image labeled with
the six classes. Moreover, the classification result evaluated by the segmentation model
was labeled as Classification. The class of debris items was identified by color. The trained
model estimated the number of pixels with the six classes. Then, the covered area was
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calculated by multiplying the number of pixels and the average area per unit pixel, as
shown in Table 1. Figure 7 shows the number of pixels and the covered area with the debris
class, as estimated by the segmentation model. The total area covered by the debris items
was estimated to be ~177.40 m2. The area covered by Styrofoam was the largest area, with
~84.28 m2, which accounted for ~47.5% of the total area covered by marine debris. Plastic
was the second largest area, with ~60.21 m2, followed by Unspecified, Fishing gear, Metal,
and Rubber, with ~16.64 m2, ~7.60 m2, ~4.67 m2, and ~4.00 m2, respectively.
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Figure 8 shows the average area covered by a single debris item of each class dis-
tributed on Seokdae-do Island. The area covered per unit item of Metal was the highest
value, at 0.78 m2·count−1, but the number was the lowest, as shown in Figure 3. This means
that it has a remarkably larger size than the other classes. Interestingly, one of the six metal
items was the metal frame of the aquaculture farm, which took up most of the total covered
area of Metal. The area covered per unit item of Styrofoam was significantly lower, at
~0.09 m2·count−1, although the number of items, 989, was the highest, as shown in Figure 3.
Most of the Styrofoam items on the coast were Styrofoam buoys, which were almost broken,
so the covered area per unit item was relatively small. In addition, the Styrofoam, Metal,
and Fishing gear found on the island had to be from the aquaculture farms. Their total
number and area covered were 1029 (~79.5%) and 411.7m2 (~80.7%), respectively. This
means that the marine-based sources contributed more than the land-based sources to the
pollution by marine debris on Seokdae-do Island.
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3.3. Comparison of Mapping Method Using UAV and Conventional Monitoring Method

Figure 9 shows the conventional method-based statistical estimation of the debris on
the whole coast of Seokdae-do Island. The average number of debris items in four randomly
selected sub-transects was 64.2, and the standard deviation was the unreasonable value of
±18.7. The total number of debris items on the whole coast estimated by the conventional
monitoring method-based statistical estimation was 6741(±1960.0). However, the number
of debris items surveyed by the mapping method was 1295. The results showed that the
conventional monitoring method-based statistical estimation gave an overestimation that
was ~5.2 times higher than that of the mapping method.
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4. Discussion
4.1. Comparison of Mapping Method Using UAV and Conventional Monitoring Method

There are various conventional monitoring methods for beach debris [26–31,49]. The
conventional monitoring methods differ slightly from each other, but they have a com-
mon feature which is that the survey area is not the whole beach area. The conventional
monitoring method-based statistical estimation could highly overestimate, or also highly
underestimate, the amount of debris. Specifically, when the number of coastal debris items
investigated in the four sub-transects was statistically expanded along the length of the
whole coastline, the number of debris items increased from 64.2 (±18.7) to 6741 (±1960.0),
as shown in Figure 9. This means that the number of debris items estimated by the con-
ventional monitoring method-based statistical estimation highly depends on the randomly
selected transects. Therefore, it is hard to insist that the characteristics estimated by the con-
ventional monitoring method represent the characteristics of the debris of the whole beach.

4.2. Pollution Assessment

The topographical characteristics of the coastline could significantly affect the distribu-
tion of the marine debris. The coasts with a low slope and a wide, concave shape have high
litter abundance. It is particularly well known that the slope of a coast is one of the factors
that significantly influences the abundance of the coastal debris [50]. Site 2 in Figure 4a,
with a low slope and a wide, concave shape, had a debris density of 52 counts·100 m−2.
Moreover, Site 1 in Figure 4a, with a concave shape composed of gravel, had the highest
density with 52 counts·100 m−2. Most of the marine debris distributed on the Seokdae-do
coast was located and stacked on the coastal regions with a low slope and a concave shape,
as shown in Figure 4. The technique developed in this study can be applied to assess the
floating debris on the sea surface. However, a model should be established and trained
using new datasets of floating debris.

4.3. Accuracy

The accuracy of the segmentation model was significantly affected by the number
of datasets and the resolution of the acquired images. The lack of datasets reduces the
model performance and prediction accuracy. However, the low accuracy due to the data
imbalance caused by the lack of datasets could be improved by the CB loss function [46].
To compensate for the lack of datasets, we applied the CB loss function in the network
model, as mentioned in Section 2.4. Table 2 shows the pixels of the labeled items and their
class weight determined by the CB loss function. Among the six classes, Styrofoam had the
highest value of 4,911,259 pixels, and its class weight had the lowest value of 9.93, while
Rubber had the lowest value of 25,431 pixels, and its class weight had the highest value of
1917.29. The CB loss could improve the performance of the image segmentation model, but
it is difficult to completely overcome the lack of datasets. Interestingly, the number of Metal
items found in Seokdae-do Island was six, which was similar to that of Rubber, as shown
in Figure 3, but the F1-score of Metal was ~0.86, which was significantly higher than that of
Rubber (~0.26), as shown in Figure 5. The average area covered by Metal was relatively
higher than that of Rubber, as shown in Figure 8; moreover, the pixel count of labeled Metal
was ~12 times higher than that of Rubber, as shown in Table 2. It is notable that one of the
six metal items found on the coast of Seokdae-do was a very large steel frame from the
aquaculture farm, which accounted for most of the total metal pixels. This means that the
accuracy of the image segmentation model can be affected more by an item’s size and its
area of coverage than when the number of items is used as the dataset.

The prediction accuracy of the deep learning-based image analysis model is also
significantly affected by the resolution of the image data. Previous studies advise acquiring
data from a lower altitude to improve resolution [51,52], but there was a limitation of
altitude due to seashore cliffs and trees on the island. Therefore, we tried to improve the
resolution of the image data by an aerial survey conducted at a 40 m altitude with a camera
angle of 45◦. However, the covered area still includes errors due to the camera angle and
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the image resolution. Figure 10 shows the images taken under the same conditions of the
aerial survey when using samples of known size. The number of pixels of each sample was
counted, and the area covered per unit pixel of each sample was calculated, as shown in
Table 1. The mean and standard deviation of the area per unit pixel of the tested samples
were ~2.58 × 10−5 m2 and ~0.79 × 10−5 m2, respectively. The mean value of area per
unit pixel of the test samples was used to calculate the area coverage of the debris items
on Seokdae-do Island. The standard deviation accounted for ~31% of the mean, which
includes the errors in the projected area by camera angle and the number of pixels by
image resolution.

Table 2. Pixels of labeled items and their class weight by CB loss function.

Categories Pixels of Labeled Items Class Weight

Plastic 3,247,265 15.06
Styrofoam 4,911,259 9.93

Metal 303,451 160.68
Rubber 25,431 1917.29

Fishing gear 425,719 114.53
Unspecified 918,175 53.10
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5. Conclusions

It is difficult to assess the amount, distribution, and type of marine debris, especially
on hard-to-reach places such as uninhabited islands, rocky coasts, and seashore cliffs. In
this study, to overcome the difficulties, we investigated the mapping technology using
the combination of images obtained by UAV (i.e., a drone) and a segmentation model
based on a deep learning approach. A mapping method was developed and verified on
Seokdae-do Island, which is an uninhabited island with rocky coasts and seashore cliffs.
The number of debris items distributed on the coast was visualized as a heatmap of the
merged aerial image. The total number of debris items on the whole coast was discovered
to be 1295, and the average debris density was ~0.07 counts·100 m−2. Most of the marine
debris was concentrated on beach areas with a low slope and a concave shape. The amount
of whole-coastal debris estimated by the mapping method was compared with that by the
conventional monitoring method-based statistical estimation. The results show that the
statistical estimation based on the conventional monitoring method gave an overestimation
~5.2 times higher than that of the mapping method. Moreover, the area covered was
estimated by a segmentation model in conjunction with images obtained by a drone. The
result of the segmentation model shows a relatively high F1-score of ~0.74. In particular,
the F1-scores for Styrofoam and Plastic, which are the most serious pollutants as they are a
cause of microplastic, had the relatively high values of ~0.97 and ~0.93, respectively. The
assessment method developed in this study could provide reliable estimates of the debris
density and the area covered according to the class of item, which is crucial information for
coastal pollution assessment and the management of hard-to-reach places.
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