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Abstract: Micromobility service systems have recently appeared in urban areas worldwide. Although
e-bike and e-scooter services have been operating for some time now, their characteristics have only
recently been analyzed in more detail. In particular, the influence on the existing transportation
services is not well understood. This study proposes a framework to gather data, infer micromobility
trips, deduce their characteristics, and assess their relation to a public transportation network. We
validate our approach by comparing it to similar approaches in the literature and applying it to data
of over a year from the city of Aachen. We find hints at the recreational role of e-scooters and a larger
commuting role for e-bikes. We show that micromobility services in particular are used in situations
where public transportation is not a viable alternative, hence often complementing the available
services, and competing with public transportation in other areas. This ambivalent relationship
between micromobility and public transportation emphasizes the need for appropriate regulations
and policies to ensure the sustainability of micromobility services.

Keywords: scooter-sharing; bike-sharing; micromobility; first-mile last-mile; intermodality; spatio-
temporal analysis; sustainability

1. Introduction and Motivation

In recent years, advancements in information and communications technology have
enabled a digital transformation process. Two of the most prominent contributing factors
to this ongoing process have been the worldwide prevalence of the Internet and the
development of the first touchscreen smartphones in 2007. Nowadays, it has become
customary for people to be connected to the Internet. This always-connected state enabled
new business models and promoted progress in various areas. As such, digitalization
also facilitated a change in the transportation sector. Until recently, transport modes
could primarily be categorized as private or public transportation. Personal transportation
such as a private car is often very flexible and quick in urban areas. In contrast, it made
inefficient usage of available resources, such as a low average vehicle occupancy and a
low utilization rate per time, and came with large space requirements. On the other hand,
public transportation better uses the assigned resources in urban areas. However, it is often
slower and more cumbersome due to its inflexibility and fixed stations and timetables. With
digitalization, the gap between private and public transportation becomes more blurred:
novel mobility modes such as car-, bike-, scooter-, and ride-sharing have become available
to complement the available transportation modes. These novel modes, often summarized
as micromobility, have in common that they are most often accessed with the traveler’s
smartphone and offer personalized and flexible mobility services.

At the same time, global challenges such as urbanization and climate change have
become more pressing. Climate change, fueled by the emission of greenhouse gases, is
currently one of the leading global threats to the environment. Although greenhouse gas
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emissions have been stabilized in total in the European Union, the transportation sector
emits the largest amount of greenhouse gases compared to other sectors, and it is the only
sector in which emissions have continued to rise since 1990 [1]. Additionally, due to the
ongoing urbanization process, more and more people are moving to cities. The United
Nations expects 68% of the world’s population to live in urban areas in 2050 [2], up from
55% in 2019. Urbanization further stresses the often already congested and overcrowded
transportation systems. This development shows that current urban transportation systems
are neither sustainable from an ecological nor a transportation-oriented point of view; thus
viable alternatives must be developed.

In an attempt to reduce carbon emissions in the transportation sector, the internal
combustion engine of vehicles is currently being replaced by electric motors. While this
reduces greenhouse gas emissions, the congested transportation systems in urban areas
do not benefit from this step, as the number of private vehicles remains equal. As such,
ecologically sustainable transportation modes that also satisfy the mobility requirements
of travelers need to be promoted and improved. The inflexibility of public transportation
and the first-mile last-mile problem are primary hindrances to people not using public
transport [3]. The first-mile last-mile problem describes the difficulty of reaching the depart-
ing station from a starting location and reaching the destination from one’s arrival station
in public transit networks. With its spontaneous and ubiquitous availability in urban areas,
micromobility may strongly reduce the first- and last-mile problem by allowing travelers to
reach their public transport stops quickly. As such, micromobility may alleviate the gap in
flexibility between private and public transportation and enable more people to switch to
sustainable mobility modes by offering an alternative to personal vehicles.

Micromobility and sharing systems may play a pivotal role in building environmen-
tally sustainable transportation systems in urban areas. The characteristics of station-based
micromobility modes are already well investigated. Previous research has established
that micromobility can draw travelers from all other transportation modes, hinting at the
possibility of improving the sustainability of transportation systems. Although research
into micromobility is gaining more interest, data-driven analyses of real-world datasets
over a more extended period are still scarce according to a recent systematic literature
review by [4]. In particular, the characteristics of micromobility trips and their impact on
the environment and the transportation network have not been thoroughly researched on
real-world datasets with data-driven methods. Hence, it is still unknown whether, in a
real-world setting, micromobility complements public transportation or competes with it
and which factors influence this relationship. This study presents the results of a holistic
data-driven micromobility case study that first obtains a micromobility trip dataset from
available public data shared by micromobility operators, analyses the inferred trips and
finally compares the trips with the existing public transportation network.

This case study applies data-driven methods to a dataset obtained from three micromo-
bility service providers over a year in Aachen, Germany and compares it to data obtained
from the local public transportation company. The dataset consists of the crowdsourced
availability and location of the vehicles in the Aachen in a 10-min resolution obtained from
the micromobility operator’s API that we then transformed into a dataset obtaining the
trips performed with the vehicles in order to analyse and visualize the trips. Two providers
offer a dockless e-scooter service and one provider offers a docked e-bike service. We
developed a novel algorithm for inferring and categorizing trips to obtain trips from this
spatio-temporal timestamped dataset. The algorithm infers the origins and destinations
of trips and their purpose depending on the location and the vehicle’s state of charge
difference. This inference transforms the data from a temporal snaphsot representation
into a structured relational dataset, improving the manageability of the data. We show that
the data sampling and transformation process does not fundamentally change the data.
Furthermore, the inference step ensures the reproducibility of this work in other regions,
as all data we use in this work is often publicly available. Next, we analyze the fleet of
vehicles and the spatial and temporal characteristics of the micromobility usage from both
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a demand-side and supply-side viewpoint. Finally, we investigate its role in first- and
last-mile passenger transportation and hypothesize which kinds of micromobility trips are
used in Aachen. Here, we particularly focus on the relation to public transportation. With
the results, we hope to support further regulations and planning decisions regarding the
future of e-scooters as a part of sustainable intermodal mobility networks.

The results of the characteristics of micromobility usage agree with studies performed
before in other cities around the world, performed with operator data. Hence, we argue
that inferring trips from a spatio-temporal dataset of micromobility vehicle locations is
possible and also relatively insensitive to the sampling interval. The analysis highlights that
e-scooters are typically used for shorter trips than e-bikes. Furthermore, the temporal and
spatial usage characteristics indicate that e-scooters may be used more for recreational use,
whereas e-bikes are also used for commuting to work. When analyzing the location and
time of trips, we show that micromobility has the potential to compete with or complement
public transportation depending on the characteristics of the transportation network. This
result indicates that appropriate policies must be in place to ensure the sustainability
of micromobility.

This paper’s remainder is structured as follows: Section 2 reviews recent literature on
e-scooter- and bike-sharing data analysis. It focuses on case studies performed worldwide
and discusses different trip-inference algorithms. Next, Section 3 introduces the approach
and methodology of our approach. Here, we present the gathered dataset and the vari-
ous steps of the data analysis pipeline. Afterward, we first analyze the characteristics of
micromobility usage in Aachen with the introduced methods in Section 4. After under-
standing micromobility usage in Aachen, we analyze the impact of micromobility services
on public transportation. Finally, Section 5 concludes this work and presents possibilities
for further research.

2. Literature Review

In our research, we tackle the analysis of spatial and temporal characteristics of
docked e-bikes and dockless e-scooters with a particular focus on their influence on the
first mile and last mile of public transportation. For a broader literature review, we refer
the reader to available surveys about the topic micromobility [4–6]. Reck et al. [7] and
Heumann et al. [8] conducted thorough literature reviews for their research papers high-
lighting spatio-temporal e-scooter trip data analysis. Similar to the propagation of the novel
mobility modes themselves, the research in micromobility primarily started with docked
bikes [9], followed by dockless bicycles [10], continued with docked e-bikes [11], and finally
reached dockless e-scooters [12]. Docked (e-)bicycle systems are already well researched,
whereas shared dockless e-scooters have more recently appeared in cities worldwide [7].
Hence, this overview targets papers addressing more recent e-scooter research or research
of e-bikes in conjunction with e-scooters.

Reck et al. [7] categorized related work regarding data analysis into demand-side
and supply-side research. The supply-sided analysis covers, among other things, the (re-)
distribution of vehicles, the analysis of charging trips, the profitability of the provider,
and the management of the vehicle fleet. The supply-side analysis, therefore, has a strong
micromobility operator-centered viewpoint. The demand-side view analyzes how users
use services and which factors influence usage, taking a more user-specific perspective.
Data-driven approaches assume that the actual usage of the services also corresponds to
the demand, as actual demand is not measurable. As we infer trips based on the location
and state of charge of vehicles, we have access to demand and supply data and, therefore,
regard the distribution in time and space on both the demand-side and the supply-side in
this review.

Table 1 gives an overview of the current focus of data-driven mobility studies. The
data shows that the United States is currently a particular focus of micromobility research;
studies performed in Asia or Europe have just recently emerged and are more scarce. There
are two main reasons for this: First, e-scooters were earlier legalized in the United States,
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giving researchers earlier access to the data. Secondly, some micromobility datasets, such as
the dataset from Austin, are publicly available online (https://doi.org/10.26000/030.000003
accessed on 5 March 2022), explaining the large number of studies focusing on Austin. In
Europe and Asia, due to privacy concerns, such datasets are seldom publicly available,
requiring the data to be gathered for each study.

Table 1. List of data-driven e-scooters studies, categorized by continent, city, and publication year.

Continent City References

North
America

Austin [13–19]
Atlanta [20]
Indianapolis [21,22]
Kansas City [18]
Louisville [18,23,24]
Minneapolis [13,18]
Portland [18]
Washington [12,25–29]

Asia Singapore [30]

Europe
Berlin [8,31]
Stockholm, Paris, Madrid [31]
Zurich [7,32]

Although e-scooter and e-bike sharing are inherently similar, the trip characteristics
often differ in details. E-scooter trips are usually fairly short with a distance of around
650 m [12] to 2.6 km [31]. On the other hand, e-bike trips are often used for longer trips of
2.6 km [12] to 4.2 km [25]. The longer trips are sometimes attributed to the higher comfort
of e-bikes, which may also explain the higher mean speed of e-bike trips [17]. E-scooter
usage is often associated with recreation [14,24]. In contrast, e-bikes usage usually peaks
in the morning and the early evening, indicating a significant role in commuting [7,12].
Furthermore, trip destinations associated with workplaces have a higher trip count for
weekdays but not on weekends or holidays [33]. The same effect cannot be observed for
e-scooters. Nevertheless, some studies also find hints at commuting use for e-scooters [15].
Younes [27] compared dockless e-scooters with docked e-bikes and found significant
differences between the modes, both temporally and spatially. Noland [19] and Mathew [21]
found evidence of e-scooters and e-bike usage being negatively affected by weather factors
such as low temperature, precipitation, and strong wind. E-scooters, however, are less
affected by weather factors than e-bikes. Indeed, the current e-scooter usage is not fully
understood, and studies in different cities have come to different conclusions.

When analyzing the studies in different cities, the properties of e-scooter trips differ
from area to area, indicating a considerable influence of spatial factors. Huo et al. [18]
compared the e-scooter usage in five cities in the United States. The temporal distribution of
trips is similar, with peaks between 11:30 and 17:30. The authors note that these peak hours
are atypical when compared to public transportation or private car travel. Zou et al. [26]
investigated the influence of biking infrastructure on micromobility trips and discovered
that roads with biking infrastructure increase the likelihood of the road being used in a
micromobility trip. High usage of e-scooters has generally often been observed in the city
center and next to university campuses [16,18,24]. Similarly, a more significant density of
bus stops is related to more e-scooter trips [15,18,29]; however, whether e-scooter trips and
bus stops are independent is not clear. Luo et al. [22] concludes that most e-scooter trips
substitute walking or public transportation trips in Louisiana, hinting that e-scooter usage
is independent of bus stop density, as bus trips can be replaced with e-scooter trips.

Research about the relationship between e-scooters and public transportation is scarce.
Luo et al. [22] proposed a modeling framework for investigating the relationship between
e-scooter sharing systems and public transportation. Similar frameworks have also been
proposed for other modes, such as ride-sharing [34]. With the modeling framework, they
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have performed a use-case study in Indianapolis, Indiana, and concluded that depending
on the spatial features, e-scooter trips both compete with existing modes and complement
them in hours of non-service. In urban areas with a well-developed public transportation
network, e-scooters often compete with the existing network, and e-scooter operators
encourage this through their redistribution strategy by placing their vehicles near public
transportation stops. Espinoza et al. [20] observed that e-scooters are not often used to
access the public transportation system in Atlanta. In areas with underdeveloped public
transportation, e-scooters often complemented the public transportation system and are
seldom driven for the first mile and last mile to public transportation. The study of [35] in
Warsaw, Poland came to a similar conclusion. E-scooters have a higher probability of replac-
ing public transportation trips than shared bicycles. Nevertheless, the authors highlight
the possibility of e-scooters to support public transportation. Zuniga-Garcxia et al. [36]
observed that a better public transportation service decreases e-scooter demand and vice-
versa. Ziedan et al. [37] performed a case study in Nashville, Tennessee. They have found
only marginal effects of e-scooter sharing systems influencing the public transportation
network at all. To summarize, the current research on the effects of e-scooter sharing
systems on public transportation networks is still unclear. There are indicators that it can
complement or compete with public transportation depending on different temporal and
spatial factors.

When examining data-driven micromobility research, two kinds of datasets and
approaches emerge. For the first approach, aggregated trip data obtained from the operator
is used for the analysis. This approach has the advantage that the trips are already computed
and can be assumed to be correct, but it has the disadvantage that these trips are often
aggregated to traffic analysis zones due to privacy concerns [14]. Often such studies focus
on cities in the United States of America as the data is more readily publicly available
there. In the other approach, researchers infer the trips from the API intended for the
micromobility sharing application and compute the trips based on disappearing and
reappearing trips in the data stream. Here, the advantage is that highly detailed data
is available as more or less the exact location of the vehicles is known. However, the
disadvantage is that the data will be noisier than data directly obtained from the operator
as falsely identified trips are going to exist in the inferred dataset, whereas other trips will
be missing all together. From the above mentioned data-driven micromobility studies, infer
the trips based on the operator’s API [8,12,20,25,26,29,30,38], whereas the others analyze
trip data directly obtained from the operator.

Xu et al. [28] propose multiple algorithms to extract trips from general bikeshare feed
specification (GBFS) data. GBFS (https://github.com/NABSA/gbfs accessed on 5 March
2022) is a data format in which micromobility operators can publish their real-time data
about their fleet. They distinguish between three kinds of vehicle IDs in their trip inference
algorithm: a static ID, which stays constant for the whole observation period, a resetting
ID which resets after each trip, and a dynamic ID that randomly changes. The simplest
case is the static ID, where the sources of error are restricted to GPS measurement errors
and the sample rate of obtaining the vehicle’s location from the API. For static IDs, it is
possible to accurately reconstruct the data into trips, whereas for resetting it is possible
to infer trips without assigning them to specific vehicles, and for dynamic IDs it is only
possible to reconstruct unlinked trip origins and destinations. Our study works with
static IDs; therefore, we can infer high-quality data. Heumann et al. [8] improved their
trip inference algorithm to account for round, charging, and reallocation trips. Finally,
Zhao et al. [32] analyzed the required sampling rate for reconstructing micromobility trips
from the operator’s API. They validated different sampling rates and concluded that the
sampling rate itself has only a minor influence on the data quality for most scenarios.

We identify several gaps in the current literature. Most of the literature focuses on
data obtained from cities in the United States of America, as the data is often more readily
available there. This means that micromobility is still not widely researched for European
or Asian cities. This gap is problematic, as journey patterns could strongly diverge between

https://github.com/NABSA/gbfs
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different countries. Furthermore, the data used for analysis is often aggregated to traffic
analysis zones due to privacy concerns, restricting the resolution with which the data can be
examined. Lastly, the literature often only focuses on a single transportation mode. Some
studies analyze multiple transportation modes [7,12,27]; however the influence on multiple
micromobility with public transportation has not been well-researched. In particular, it
is still unclear what influence micromobility has on public transportation and whether it
replaces public transportation trips or whether it complements the service.

This paper attempts to address the identified gaps by proposing a framework to ana-
lyze micromobility trips obtained by polling the operator’s API. In this way, it is possible
to obtain high-resolution data for most micromobility modes by querying widely available
web services. This approach, therefore, fosters the transferability of the methodology to
other regions, as it does not depend on a special dataset. To the best of our knowledge, the
dataset covering trips over a whole year is the largest dataset obtained by querying the oper-
ator’s API up to date. Furthermore, we know of nearly no research attempting to assess the
relationship between micromobility and public transportation with a data-driven method.

3. Approach

In the following section, we introduce the methodology of this work. First, we sketch
the implemented data pipeline with the trip and public transit inference algorithms. Then
we give an overview of the gathered dataset and the inferred fleet of micromobility in
Aachen, Germany.

Figure 1 shows the developed data pipeline. In regular intervals, we obtain the vehicles’
location and state of charge from three micromobility operators in Aachen. We queried
their APIs, which they also employ for their mobile information systems for customers.
Therefore, the sketched approach is generalizable to all micromobility services, in which
the operator offers an application that lists locations, availability, and the state of charge of
their vehicles. As a second step, we clean the data and normalize the vendor-specific data
format by transforming it into a GBFS-conforming dataset. We store this GBFS data into a
time-series database with a resolution of 10 min.

Data collection

1. ScrapeOperator's 
API

Openstreetmap  
Data

Graphhopper
Routing
Engine

Data Scraper

Public Transit 
GTFS Data

Data Preprocessing

7. Clean

Inferred Trip Data

Location Data
Stream

Transform  
into GBFS

3. Store

6. Store
Infer
Trips

4. Infer origins and desinations

Data Cleaning 
and 

Aggregation

5. Compute 
Routes

2. Transform

Data analysis & visualization

Python data analysis

Spatial 
analysis

Temporal 
analysis

Descriptive
statistics

First-mile Last-
mile analysis

9. V
isualize

Visualization

8. Analyze

Figure 1. Extract-Transform-Load (ETL) data pipeline developed for this research. Data is obtained
from publicly available sources such as the micromobility provider’s API, then transformed into trips
and finally loaded for visualization.

From this time-series GBFS data, we infer the trips by comparing the differences
between the snapshot logs. If a vehicle’s location drastically changes between two logs,
we assume that a trip occurred between the snapshots. This inference step is mostly a
data-transformation step and does not fundamentally change the data obtained from the
operators. Depending on the characteristics of this inferred trip, we can assign a category to
the trip; similar to [8], we differentiate between customer trips, charging trips, rebalancing
trips, and deployment trips. Each inferred trip has an origin and destination and an
approximate duration inferred by comparing the time difference between two logs. We
calculate a probable routes with the Graphhopper routing engine (https://github.com/
graphhopper/graphhopper accessed on 5 March 2022) by using a designed e-scooter

https://github.com/graphhopper/graphhopper
https://github.com/graphhopper/graphhopper
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routing profile to increase the computed route’s authenticity. The computed trips with their
routes are then stored in a relational database for further analysis.

Before analyzing the trips, we further clean the data and discard implausible trips. The
analysis consists of a descriptive analysis, where we investigate the fleets of the different
mobility modes. Furthermore, we look at the number of active service days and the usage of
the vehicles. Next, we regard spatial features of the trips and regions where the supply and
demand are particularly significant. In the spatio-temporal analysis, we explore differences
in trips depending on the time of day, the day in the week, and the month in the year. As a
next step, we determine the influence of the trips on public transportation, depending on
the trip’s spatial and temporal characteristics. Finally, we visualize all results with suitable
visualization tools.

3.1. Data Collection and Trip Inference

We have collected the micromobility trips from Aachen, Germany, from 4 December
2020, to 4 December 2021. Aachen is situated next to the border of The Netherlands and
Belgium in the west of Germany and is a mid-sized city with 245,000 inhabitants and is
overall fairly hilly. We chose Aachen as a city for this study, as it is a mid-sized city with
many students and tourists. Students have different mobility patterns than other people,
and in Aachen the biggest difference is that students can use public transportation free
of charge. Tourists on the other hand also differ in their mobility behavior from regular
residents. Next, most other studies have been performed in large cities with populations
of several million people. Furthermore, Aachen was one of the first cities in Germany
to have a diverse intermodal transportation network due to the project Mobility Broker,
which integrated multiple transportation modes into a single platform. Hence, the data
obtained in this study can help to better understand micromobility usage in mid-sized cities.
The micromobility operators’ service area strongly focuses on the urban area of Aachen
(see Figure 2a). We have obtained data points for around 55,000 time instants during
the year, roughly corresponding to a data point every 10 min, totaling to approximately
72 million distinct data points for all vehicles. Figure 2b shows that a total of 900,000 raw
trips have been inferred from that dataset. From this, we filtered trips that were either
substantially too long or far too slow. We then categorized the resulting 850,000 trips based
on their characteristics.

(a)

Set of logs 
71,905,373

Raw inferred trips
915,135

Filtered long trips 
10,436

Filtered slow trips 
60,769

Filtered trips 
843,930

Customer trips 
711,654

Charging trips 
115,356

Deployment trips
 2601

Rebalancing trips 
14,319

(b)

Figure 2. (a) Overview of the service area of micromobility in Aachen. Blue areas show e-scooter
area, gray pins show bike-sharing stations, and red areas are no parking zones. (b) Overview of the
gathered dataset, the trip’s filtering, and the trip inference results.

Algorithm 1 sketches the trip inference algorithm to infer the set of trips T from a set
of logs L. The key idea of the algorithm is to use the disappearance and reappearance of
vehicles in the data stream similar to other studies. If a vehicle disappears from the data
stream and later reappears, or it significantly changes its location, it is likely that a trip
has been conducted. As input, the algorithm receives the time of the first snapshot tfirst
and a set of logs L containing the vehicle’s location lk at time tk with state of charge bk,
vehicle id id from operator op. Hence, we define a log as l = (lk, tk, bk, op, id) for a specific
snapshot k. We define a trip t ∈ T to have an origin or and a destination dst corresponding
to the locations lk of two different logs. Analogously, a trip contains a start time tstart and
an end time tend, which define the starting and ending time of the trip and are defined



Sustainability 2022, 14, 8247 8 of 27

by the difference of time tk of two different logs. Furthermore, a trip has the battery
difference for the trip ∆b, set by the difference of the state of charge bk of two different
logs. Lastly, a trip has the operator of the vehicle op, the vehicle id id from the respective
two logs lk, and an inferred trip type type. Therefore, the set of trips T consists of trips
t = (or, dst, tstart, tend, ∆b, op, id, type).

Algorithm 1 Trip Inference Algorithm.
Input all snapshot logs L, first log time tfirst
Output set of inferred and categorized trips T

1: V ← Set of vehicle IDs in L
2: for j in V do
3: Lj ← Logs with vehicle ID j in L sorted by time
4: for k in 1 : |Lj| − 1 do
5: (Log time tk, vehicle location lk, vehicle battery level bk, op, id)← Lj[k]
6: if k = 1 and tk 6= tfirst then
7: save deploying trip (lk, lk, tk, tk, 0, op, id, deploying) to T
8: continue
9: end if

10: (Log time tk+1, vehicle location lk+1, battery level bk+1, op, id)← Lj[k + 1]
11: ∆t← Time interval: tk − tk+1
12: ∆b← Battery difference: bk − bk+1
13: if ∆b > 7 then
14: save charging trip: (lk, lk+1, tk, tk+1, ∆b, op, id, charging) to T
15: continue
16: end if
17: d← distance d(lk, lk+1) between origin and destination
18: if d > 200 meters then
19: if ∆t > 3 hours for e-scooter or ∆t > 5 for e-bike then
20: discard trip
21: continue
22: end if
23: save customer trip: (lk, lk+1, tk, tk+1, ∆b, op, id, customer) to T
24: end if
25: end for
26: end for
27: for t in {(or, dst, tstart, tend, ∆b, op, id, type) ∈ T | type = customer} do
28: ∆test ← Compute trip duration with Graphhopper routing(or, dst, type).
29: ∆tk ← tend − tstart
30: n← number of trips with same op, tstart and tend, and or and dst.
31: if ∆b < 2 and (n > 2 or ∆tk < ∆test + 10) then
32: reclassify rebalancing trip: (or, dst, tstart, tend, ∆b, op, id, rebalancing) in T
33: continue with next novel trip
34: end if
35: end for

As input, the algorithm requires the time-series data of all vehicle logs L and the time
of the first snapshot tfirst. The output is a set of trips T. From L, we define a list of log
files Lj of vehicle id j that is sorted ascending by time tk. The algorithm starts iterating
over all unique vehicle IDs in L. For each vehicle ID j, the algorithm iterates over all log
files of vehicle j for all snapshots k, denoted as Lj[k] . A vehicle log at snapshot k consists
of a location lk, a log time tk, a battery level bk, an operator id op and a unique vehicle
identification id. The construction of the list of vehicles Lj ensures that a vehicle j is in
the list Lj[k] for each k. The algorithm needs to decide whether a trip has been performed
between snapshot k and k + 1. A trip can only be performed between two consecutive
snapshots in the list, as we only iterate over the logs Lj in which vehicle j was part of
the logs.
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Therefore, to decide whether and which kind of a trip has been performed, the
algorithm compares the log time t, the vehicle location l and the vehicle battery level
b of the log at snapshot k with the log at snapshot k + 1. If the vehicle was first observed for
snapshot k and the time is not the start of the observation period tfirst, we assume that the
vehicle was newly deployed and save the trips as a deploying trip. This check is necessary,
in order to not classify all trips as deploying trips for the first occurrence of the vehicles
when data sampling has first started. In case a positive battery difference of more than 7%
is observed, we assume that the vehicle has been charged and classify the trip as a charging
trip. We choose this value to account for fluctuations in the measurement of the battery
level. If the trip was neither a deploying trip nor a charging trip, we compute the beeline
distance between the locations lk and lk+1. If the distance between both locations is less
than the threshold of 200 m or the trip lasted far too long, we discard the trip. The threshold
of 200 m is chosen to account for any GPS inaccuracies or slight movements of the vehicle
without a real trip occurring, e.g., when the operator slightly moves the vehicles. Next,
if the trip could not be classified as anything else and was not yet discarded, we identify
the trip as a customer trip. After iterating over all logs Lj for all vehicle IDs j, all trips will
be identified. Lastly after identifying all trips, we perform a final post-processing step to
identify the rebalancing trips. For this, the algorithm checks for two cases; either multiple
trips occur from the same origin to the same destination in the same time, or it checks for
trips that were too fast, when comparing the trip time from the logs tk with the trip time
computed by a routing engine test. If either of the conditions is true, we assume that all
identified trips occur while being inside a van for rebalancing and classify the trip as a
rebalancing trip.

After inferring the trips from the GBFS data stream, we analyze the potential influence
of micromobility trips on the public transportation network. For this, we compute the
public transportation travel time of the trip with Graphhopper by importing the public
transportation schedule in the GTFS format (https://developers.google.com/transit/gtfs/
accessed on 5 March 2022). If no reasonable public transportation trip is found, we compute
the walking time for the trip. For the analysis, we assign each customer trip a label with
the workflow presented in Figure 3. The label categorizes a trip as a potential competing
or complementing trip. A trip may either be complementing because the bus service is
currently not in operation or because no public transportation stations were in the vicinity
of the origin and destination of the stop. If the trip could also reasonably be undertaken
with public transportation, we classify the trip as a competing trip. If the public transit trip
was not reasonable, we assume that the public transportation offer in that area or time is not
good enough developed, so that micromobility rather complements a non-existing public
transportation route. We define a reasonable trip to be a trip, for which the trip time t of the
micromobility is not factor f times faster than the fastest public transportation trip. Thus
competing is defined as follows: trip is competing ⇔ f · tmicromobility ≥ tpublic transit. This
means that we define a public transportation trip to be reasonable, if it is not substantially
slower than the corresponding micromobility trip. Graphhopper also incorporates possible
waiting times at public transportation stops when computing the public transportation
trip time. If the trip is not directly classified as a competing trip, we also consider trips
extending first- or last-mile trips to/from public transportation stations. The cutoff range
for the next public transportation stop is defined as 200 m as it gives a reasonable balance
between trips starting or ending near public transportation stations. If a service public
transportation stop is at the trip’s origin but not at the trip’s destination, we classify the trip
as possible extending first-mile trip. Respectively, if a service stop is nearby the destination
of a trip, but not at the origin, we define a trip as a possible extending last-mile trip. Finally,
if the trip occurs neither near a public transportation stop nor ends there, we classify the
trip as complementing. The complementing and competing labels give a good overview of
whether micromobility is used in conjunction with public transportation or instead rather
replaces it. The assignment of a potential first-mile or last-mile extending trip instead
represents the potential of micromobility in conjunction with public transportation rather

https://developers.google.com/transit/gtfs/
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than verifying how a trip has been conducted, as we only check whether a trip starts or
ends near a public transportation stop.

Set of Trips Public transit 
route reasonable? 

Yes

 No PT stop 
within 200m of 

origin?

Competing trip

Yes

 NoPT stop 
within 200m of 
destination?

Possible Extending
first-mile trip

Possible Extending
last-mile trip

Yes

Yes

 No

Complementing trip 
(no good connection)

PT stop 
within 200m of
destination?

 No Complementing trip
(no stops nearby)

Figure 3. Workflow of the public transit first-mile/last-mile impact assessment analysis. Categoriza-
tion of complement, competing, and extension based on the speed of available public transportation
routes and the location of available stops.

3.2. Validation of Trip Inference

In this study, we cannot directly compare the list of identified trips with the usage
data of the micromobility operators as we do not have any usage data as a ground truth.
Reck et al. followed a similar approach to ours for inferring trips from the operator’s API
while also having access to real usage data from the operator [7]. They compared the
inferred trips with the list of actual bookings (i.e., trips) and reached an accuracy of around
95% on data with a resolution of 1 min with their algorithm. This means that the largest
remaining unknown variable for possible inaccuracies in the inference step is the sampling
interval of the data. As our study analyzes the data for over a year to identify seasonal
trends, we opted for a 10-min resolution for the whole dataset. To analyze the inference
algorithm’s validity with a 1-min interval, we assume that, due to the similarity of the
algorithms, our implemented trip inference also reaches a comparable accuracy to [7] on a
1-min dataset. To examine the accuracy regarding a 10-min resolution, we captured 1-min
data for roughly 3 weeks. With the 1-min dataset as ground truth, we compare its results
with the results of the 10-min dataset in the same time to determine the impact of the
sampling rate on the trip inference algorithm.

Table 2 shows the descriptive analysis of the 1- and 10-min datasets, and Figure 4
shows a histogram of the number of customer trips plotted against the distance of the trips
for both datasets. Table 2 differentiates between different time measurements of the trip.
The metric ∆tk measures the time by just comparing the logs, thus likely being accurate
for the 1-min dataset, but not for the 10-min dataset. ∆test is the trip time of the fastest
route computed by the routing engine Graphhopper with special e-scooter and e-bike
profiles. The travel time ∆test was often observed to be too fast when comparing it to ∆tk
on the 1-min dataset; therefore ∆tapprox approximates the travel time by adding offsets to
∆test that incorporate the time required for starting and ending a trip. The travel time
approximation ∆tapprox has proven to be the most accurate and most insensitive to different
data resolutions; hence we apply this metric for the remainder of the evaluation.
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Table 2. Descriptive statistics with a 1-min and 10-min resolution over a timespan of 3 weeks. For the
10-min resolution the deviation to the 1-min resolution is given in percentages.

One-Min Resolution Ten-Min Resolution

E-Scooter E-Bike E-Scooter E-Bike

Total number of trips 44,257 3736 45,935 (3.65%) 3429 (8.22%)
Number of customer trips 34,410 3603 39,761 (15.55%) 3376 (6.3%)
Number of charging trips 4920 0 5384 (9.43%) 0 (0%)
Number of rebalancing trips 4927 133 790 (83.97%) 53 (60.15%)

Mean trip distance 1946 m 3327 m 1721 m (11.56%) 3322 m (0.15%)
Mean trip duration ∆tk 665 s 960 s 1082 s (62.71%) 1420 s (47.92%)
Mean trip duration ∆test 418 s 719 s 371 s (11.24%) 718 s (0.14%)
Mean trip duration ∆tapprox 606 s 883 s 546 s (9.99%) 888 s (0.57%)

Total fleet size 1878 264 1803 (3.99%) 264 (0%)
Total used fleet size 1749 258 1757 (0.46%) 257 (0.39%)

Table 2 shows that overall the number of trips stays similar. However, more e-scooter
customer trips have been identified in the 10-min dataset, whereas fewer e-bike customer
trips have been identified. The histogram in Figure 4 shows that the inference algorithm
more often misclassifies short e-bike customer trips in the low-resolution dataset. With
a higher resolution of 1 min, these trips could more likely be identified as false positives.
Longer e-scooters trips are more consistently identified in both datasets. For e-bikes, short
trips have often been filtered as too fast in the 1-min dataset, whereas the algorithm could
more accurately detect them in the 10-min dataset. Additionally, more e-scooter trips
are classified as rebalancing in the 1-min dataset. This is most likely due to the higher
resolution of the data, as it is more likely to identify trips that were too fast to be driven with
the vehicle itself. The algorithm identifies more long customer trips in the low-resolution
dataset for e-bikes. This effect may occur when a returned vehicle is instantly rented again,
resulting in a non-capture of the availability of the vehicle in the dataset. The algorithm
may then misclassify several trips performed with the same vehicle as a single longer trip.
This effect is more likely to occur for e-bikes, as the utilization rate of e-bikes is higher due
to fewer vehicles being available, i.e., the chance of the same vehicle being rented shortly
after being returned is higher.
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Figure 4. Histogram showing the (a) number of e-scooter trips and (b) number of e-bike trips inferred
with 1- and 10-min resolution data grouped by distance.

The mean distance of customer trips in the low-resolution data set is longer for e-
scooters and nearly identical for e-bikes. For e-scooters, more short-distance trips are
detected in the low-resolution data set, hence shortening the mean distance. For e-bikes,
the mean distance is nearly identical; hence, the previously discussed distinct effects for
identifying fewer short trips and more long trips in the low-resolution dataset seem to
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cancel each other regarding the average. Table 2 shows that the value of ∆tk strongly differs
between both datasets. Unsurprisingly, the low-resolution data set has much longer trip
durations. A trip can only be intervals of 10 min long, whereas the high-resolution data
set has a better approximation of the trip duration based on the inference. To compensate
for this significant difference in the duration, we compute an estimated trip duration ∆test
with a routing engine utilizing OpenStreetMap data. The time ∆test is the duration of
the fastest route between the origin and destination. With this metric, the trip duration
between the 1- and 10-min datasets are much closer to each other again. In practice, the
computed trip distance with the routing engine did not capture the duration in which the
scooter was in use. This becomes apparent when looking at ∆tk for the 1-min resolution
and ∆test, where ∆test is much lower. One hypothesis is that the user requires some time
for starting and ending the trip, as such ∆tapprox compensates for this with its offset. ∆tk is
therefore inaccurate for a low resolution, whereas it is highly accurate for high-resolution
data. Overall, ∆tapprox works well on both low- and high-resolution data. The fleet size of
all providers is nearly identical, where slightly more vehicles have been observed in the
high-resolution data set. This difference can most likely be attributed to vehicles for which
information has only been published for a brief duration. Zhao et al. [32] summarizes
that the sampling rate of the data does not significantly influence the spatial and temporal
properties of the trips if it is not larger than 10 min. We agree with the conclusion, as
for most tasks, a 10-min resolution of the data is already reasonable, particularly when
compensating for the occurring effects with external data such as OpenStreetMap as for
most metrics the error is less than 10% after adjusting for inaccuracies. However, specific
patterns in the data are missed in our implementation with a low resolution, especially
when trips are short and a high utilization of vehicles is reached. Then the classification
of trips suffers, whereas the total number of inferred trips stays similar. Hence, a higher
resolution should be preferred for specific tasks or when an exceptionally high data accuracy
is necessary. For a general understanding of the usage characteristics a resolution of 10 min
is accurate enough and shows that the inference step reliably transforms the operator’s
data into a list of trips.

4. Analysis of the Aachen Case Study

The analysis covers the supply-side (operator view) and demand-side (traveler’s view)
analysis of the data. For the supply-side view, we analyze the micromobility operator’s fleet
and the distribution of vehicles in the service area. The demand-side study features both
a spatial, temporal, and spatio-temporal analysis. For this, we analyze temporal patterns
in the usage characteristics over a year. Furthermore, we examine the starting points and
endpoints of trips in terms of land use to elicit possible trip purposes. Lastly, we compare
the demand for micromobility to the supply of public transportation to understand how
micromobility interacts with public transportation.

4.1. Results

Table 3 shows the overview of the inferred trips from December 2020 to December
2021. The largest number of identified trips are customer trips for e-scooters and e-bikes.
For the docked e-bike-sharing system no charging trips have been detected as they are
automatically charged upon docking, whereas e-scooters have regularly been manually
charged. E-scooters have a higher number of rebalancing trips, most likely as their location
is not determined by a location of a dock but only by a geofence. Overall, the fleet of
e-scooters is much larger than the e-bike fleet, thus also decreasing the mean vehicle
utilization rate.
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Table 3. Descriptive statistics for the micromobility supply and demand in Aachen in a year with
aggregated mean values.

E-Scooters E-Bikes

Total number of customer trips 664,614 47,040
Total number of charging trips 115,356 0
Total number of rebalancing trips 13,383 936
Total number of deploying trips 2495 106

Mean trip distance 1680 m 3219 m
Mean trip duration ∆tapprox 534 s 865 s

Mean available fleet size 1163 213
Total number of vehicles observed 3931 289
Total number of vehicles observed with swappable battery 2650 0

In Table 4, the average data per device is shown. The table shows that e-scooters
have a more limited usage duration than e-bikes. E-scooters are in operation for roughly
131 days, whereas e-bikes are in service for 314 days, i.e., nearly the complete observation
period. When regarding the number of observed vehicles in Table 3, we can see that a
much larger number of vehicles have been observed for e-scooters. This means that either
e-scooters are being replaced after 131 days in average, that the providers change the
IDs of the vehicles, or that the vehicles are swapped with vehicles in other cities, outside
of our data. Interestingly, due to the larger number of trips performed with e-scooters
in total, the number of trips per vehicle is comparable between e-bikes and e-scooters,
even though the e-scooter fleet is much larger. On average, the distance driven with each
e-bike is nearly twice as considerable as for e-scooters. In contrast, the total operating
time per vehicle is around 10 h longer. These results agree with other studies’ results that
e-bikes are often used for longer trips than are e-scooters. Furthermore, e-scooters are more
often used, possibly due to their ubiquitous availability, resulting in higher flexibility. The
mean number of utilized vehicles is higher for e-bikes, most likely because fewer vehicles
are available, thus increasing the utilization. Even on the days with the highest vehicle
utilization, not all vehicles have been used for trips, possibly hinting at a potential for
optimization by reducing the micromobility fleet.

Table 4. Descriptive operational statistics for an average vehicle in Aachen in a year.

E-Scooters E-Bikes

Average service days per vehicle 131.13 days 314.94 days
Average number of trips per vehicle 155 155
Aggregated trip distance per vehicle 261.34 km 497.80 km
Aggregated trip duration ∆tapprox per vehicle 23.07 h 37.02 h

After the overview over the fleet size of the different providers, the aggregated dis-
tribution of the vehicles in the city is shown in Figure 5. The supply of available vehicles
forms multiple hotspots in the city. The three main hotspots occurring are around the
general city center, particular buildings of the university campus in the West, and Aachen
central station in the South. This agrees with previous research that micromobility usage
is especially high in the city center and near areas of the university campus. Interestingly,
the hotspots for e-scooters and e-bikes are different. The results indicate that e-bikes are
used for different types of trips than are e-scooters or that different patterns of hotspots are
induced due to the location of the e-bike docks. For e-bikes, the hotspots are more dense
and the spread in the locations is narrower, most likely due to the station-based concept.
For e-scooters, the distribution in the city is more even. The distribution of e-scooters and
e-bikes matches the service area or bike-sharing station locations shown in Figure 2a.
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Figure 5. Kernel density estimation showing hotspots of supply from (a) e-scooters, and (b) e-bikes
in Aachen. Boxplot (c) of the trip distances of customer trips for e-scooters and e-bikes.

Figure 5c shows a boxplot of the distance of e-scooter and e-bike trips. The figure
confirms the results of related work that e-bike trips are substantially longer, whereas
e-scooters are primarily utilized for trips shorter than 2 km. E-bikes are still often used
for trips with a distance of 4 km. The distribution of different distances is also plotted
in Figure 6. For e-scooters, the graph ascends quite fast and forms a strong slope with a
maximum at around 2 km. Nearly no trips with a distance longer than 6 km are performed.
On the other hand, e-bikes have their peak at around 3 km. Afterward, the distances do not
descend as abruptly, with longer distances, as e-scooters, meaning that e-bikes are regularly
used for longer trips. The e-bike data also shows more irregular spikes in the distances
than the e-scooter data shows. This effect may hint at the station-based nature of the e-bike
service, meaning that popular routes between stations yield specific distances, explaining
the discrete-looking spikes in the graph.
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Figure 6. Histogram of customer trip distance distribution in Aachen for (a) e-scooters and (b) e-bikes.

4.1.1. Spatial

After analyzing the general features of micromobility trips in Aachen, we move to the
spatial analysis. Here, we focus on the origin and destination of trips and on the feature of
these areas. Figure 7 shows the number of e-bike trips starting and ending of trips in specific
zones in Aachen in the morning (05:00–12:00) and in the afternoon (12:00–09:00) over the
whole analysis period. Analogously, Figure 8 shows the trip’s origin and destination in the
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morning and afternoon for shared e-scooter traffic. We start with the number of e-bike trips
as certain patterns are more visible.

In the morning, most e-bike trips originate near Aachen central station, a geographi-
cally small area in the south of the city center. The smaller hotspots in the middle correspond
to areas near the city center. The hotspot in the west is an active part of the university
campus hosting a large university hospital and a large university dormitory. Interestingly,
when looking at the destination of the trips in the morning, they primarily target the large
campus and university hospital area. All other locations are significantly less likely to be
the destination of a trip. Even the central station is not a popular destination, meaning that
more people use e-bikes to travel from the train station to their destination than people use
them to reach the central station. It is clear that the university campus area to the west has
a large inflow effect for e-bike journeys.
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Figure 7. E-bike trip’s (a) origins and (b) destinations in the morning and (c) origins and (d) destina-
tions in the afternoon.

In the afternoon, the observed pattern, interestingly, mainly flips. Most trips start near
the university campus area to the west. In the afternoon other areas such as the city center
and the central station are also likely origins for trips. The destinations of most trips is the
central station, the city center area, and also the campus area. The substantial trips to the
central station could be attributed to commuters returning to the central station. Overall,
the destinations are more evenly spread over the whole city. The patterns in the morning
and in the afternoon indicate that e-bikes are often used for commuting in Aachen as many
travelers travel from the central station and various other areas mostly to the campus and
the university hospital region. This area features many employment opportunities and is
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also an important area for students. In the afternoon, many trips originate there, going back
to the central station and various other regions, which may indicate that travelers return
to their home locations. The larger spread in origins and destinations over the city in the
afternoon could be attributed to more recreational trips occurring in the afternoon than in
the morning.
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Figure 8. E-scooter trip’s (a) origins and (b) destinations in the morning and (c) origins and (d) destinations
in the afternoon.

For e-scooters, the observations in Figure 8 differ from the spatial results for e-bike
use. Although the most frequently traveled e-bike districts are also one of the most traveled
e-scooter districts (Aachen central station and large university campus), the journeys
are additionally more evenly spread out in the city. This can be seen especially well in
Figures 7b and 8b. The hotspots of the trip destination of e-bikes and e-scooters are very
similar, but the hotspots are more focused for e-bikes. One explanation would be the
location of the e-bike stations, i.e., only certain districts have an e-bike station, causing the
demand to be focused on these districts. When looking at the distribution in Figure 2a,
it can be seen that the stations themselves are also located in nearly all districts; thus the
difference between the usage is more likely due to different usage characteristics of the
services. In general, the analysis show that e-scooter usage of origins and destinations
does not differ that much with time, and the most important areas for trip origins and
destinations in Aachen are the central station, the large area of the university campus,
and the city center. In contrast to e-bike trips, e-scooter trips are fairly balanced with the
most popular trip origins also being popular trip destinations for both the morning and
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afternoon. In summary, the results indicate that e-scooter usage is more spread out with a
smaller focus on certain areas than e-bikes.

Next, land use for trip origins and destinations has been analyzed by using the land use
data from OpenStreetMap with an Overpass server. Under the assumption that the inferred
trip’s origin and destination is correct, the land-use assignment corresponds to a simple
look-up of the land-use type in the OpenStreetMap data. This means that the analysis is as
accurate as the data in OpenStreetMap. The analysis differentiates between the different
land use types of residential, recreational, commercial and public areas, similar to [8]. For
this, we have also grouped the detailed land use data obtained from OpenStreetMap into
coarser buckets of land use in order to visualize this data.

Table 5 shows the raw data and Figure 9 shows a chord diagram visualizing the trips
between different land use types. The arcs inside the chord diagram visualize the number of
trips with a specific land use type at the origin of the trip. The width of the arrows between
the arcs visualize how many trips have certain land use destinations. The residential and
the public areas are the largest trip origins and destinations. These land use types are also
consistently the largest areas in the observed area of Aachen. When analyzing whether
certain areas are more often the origin or destination of a micromobility trip related to their
size, we did not find many hints that certain areas are favored. Overall, the size of the
area strongly correlates to the fraction of trips originating from this land use type. This
indicates that micromobility vehicles are used for all kinds of activities and that their usage
is not restricted to certain activities such as commuting, as the land use area percentage is
similar to the trip share. Commercial and public areas are slightly underrepresented when
compared to residential areas; however, this can largely be attributed to where scooters are
parked after a trip, making it more uncommon to directly park an e-scooter in a commercial
area, rather than a nearby road, which may already belong to the residential area again.
For policy-makers this means that micromobility may not be restricted to a single use-case
but rather micromobility users use this transportation mode for all kinds of purposes.
As such, it may be difficult for policy-makers to directly target micromobility users with
new regulations. In summary, this indicates that e-scooters and e-bikes are used for all
kind of trips from a land-use analysis. Nevertheless, the previous temporal and spatial
analysis remains valid when it shows that, regarding micromobility trips in more detail
with contextual knowledge of the spatial properties in Aachen, certain characteristics are
extractable that are missed when regarding the land-use type. This result highlights the
need to manually analyze the trip data in-depth as otherwise correlations might be missed.
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Figure 9. Chord diagram for trips between different land use types for e-scooters and e-bikes.
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Table 5. Land-use statistics and respective e-scooter and e-bike trips starting and ending in
those areas.

Land Use Type Area Trip Share Land Use Filter

Total Percent Origin Dest.

Residential 14.52 km2 64.90% 56.12% 56.35% Residential Buildings and Garages

Commercial 2.462 km2 11.00% 14.54% 14.99% Commercial, Industrial, and Retail

Recreational 0.924 km2 4.13% 4.77% 4.73% Allotments, Parks, Forests, Meadow, Greenfield, Flowerbed,
Religious, Village Green

Public Area 4.465 km2 19.95% 24.57% 23.93% Brownfield, Cemetery, Construction, Railway, Road, Civic,
Grass, Farmland, Farmyard

4.1.2. Temporal

As a next step, we investigate the temporal characteristics of micromobility usage.
Figure 10 shows the distance of trips during a day and a week. The figures show that there
is no considerable variation in the distance of trips for different times. Slight variances
in trip length exist for interday time differences, whereas intraday variations are barely
noticeable. E-scooter trips show even less variation, whereas e-bike trips have a minor
increase in distance in the early morning hours. This may indicate longer trips may be
performed when commuting to the workplace, however, a similar peak cannot be seen in
the afternoon.
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Figure 10. Temporal analysis for (a) hourly and (b) daily average trip distances.

Figure 11 shows the aggregated hourly, weekly, or monthly mean number of trips.
The peak of micromobility usage is often reached in the late afternoon and early evening
hours from 16:00 to 18:00. In contrast, the least micromobility is used in the early morning
from 03:00 to 05:00 (see Figure 11a,b). E-bike usage also shows a significant peak at 08:00 in
the morning and at 17:00 in the afternoon, hinting at the possibility of commuting to and
from work as this pattern matches a typical commuting pattern. These peaks also exists
for e-scooters, but are not as distinct as for e-bikes and are more spread out. E-scooters are
most often used in the late afternoon until late in the evening, indicating that e-scooters
may more often be used for recreational trips. The number of e-bike trips already declines
much earlier in the day, bu e-scooter usage is still quite high in the very late-night hours
and very early morning hours.

When looking at the number of trips aggregated to days in a week in Figure 11c,d,
one can observe that e-scooters are most often used on Friday and Saturday. The large
usage of e-scooters on Saturday supports the hypothesis that many e-scooter trips are for
recreational purposes. The lowest usage of e-scooters is recorded on Sundays. Docked e-
bikes, on the other hand, are primarily used during the week and the least on Saturday and
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Sunday. In particular, the drop on Saturday is very distinct for e-bikes, further indicating
their commuting purpose. We can identify no clear trend for the remaining days, and the
variations in the number of trips do not show a clear pattern.
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(a) Hourly mean number of trips for e-scooters.
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(c) Daily mean number of trips for e-scooters.
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(e) Monthly mean number of trips for e-scooters.
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(f) Monthly mean number of trips for e-bikes.

Figure 11. Temporal analysis of (a) e-scooter and (b) e-bike hourly, (c) e-scooter and (d) e-bike weekly,
and (e) e-scooter and (f) e-bike monthly mean number of trips.

The aggregation to periods of months shown in Figure 11e,f is given mainly for
completeness. During the data gathering, there was a soft lockdown in Germany due to
the COVID-19 pandemic from April 2021 to June 2021 with a nightly curfew; even before
that, local lockdowns and restrictions strongly influenced the mobility behavior. These
lockdowns can also be seen in the data. The number of trips strongly rises in June 2021,
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most prominently shown in the e-bike data. However, the data may slightly hint at a lower
micromobility usage in the winter months (e.g., in November 2021), probably due to more
precipitation, as shown by [21]. In further research, we hope to obtain data that are not
influenced so strongly by external factors such as travel restrictions.

4.1.3. Impact on Public Transportation

As a final step of the analysis, we analyzed the interactions between micromobility
trips and the existing public transportation. For this, we followed the workflow as described
in Figure 3, i.e., for all inferred micromobility trips, we computed how long this trip would
have taken with public transportation, taking into account the locations of public transport
stops and its fixed schedule. Figure 12 shows the distances of origins and destinations
to public transportation stops. It shows that for both e-bikes and e-scooters the nearest
public transportation station is most often not further away than 350 m to the origin or
the destination of the micromobility trips. In Aachen, most of the micromobility usage is
observed in the central areas of Aachen, where a significant density of public transportation
stops exists, explaining the proximity to public transportation stops. However, in a public
transportation network, being near a stop does not necessarily mean that there exists a
good connection to the destination. The figure shows that users most likely do not prefer
micromobility over public transportation because of missing public transportation stops,
as the next bus stop is not always far away. We hypothesize that users are more likely to
perform a trip with micromobility in areas or times where public transportation is not as
accessible, thus increasing the time required for users to perform the trip.
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Figure 12. Kernel density estimation of distance to the nearest public transportation station from
trip’s origin and destination for (a) e-scooters and (b) e-bikes.

For further investigation, we have also regarded the time it would have taken to
travel from the origin to the destination of all trips via public transportation or walking
if no bus is reasonably available. The time for taking public transportation is therefore
defined as the minimum of the time using public transportation or walking the entire
length of the trip. Figure 13a shows a boxplot of the time of trips for micromobility and
assumed public transportation trips, whereas Figure 13b shows a distribution of assumed
public transportation trips over hour per day, categorized by whether walking or public
transportation is faster. The boxplot shows that micromobility journeys are substantially
faster than the assumed public transit journeys for the same trips. This is due to the fact that
public transit journeys also take into account the walk to the nearest stop, the wait for the
vehicle, and the taking of the vehicle, the potential transfer to other vehicles, and the walk
from the final stop to the trip’s destination. Figure 13b shows that for a substantial number
of trips, it is actually faster to walk the entire trip length than to take public transportation.
In particular, at night, when public transportation is unavailable, the number of trips for
which is faster to walk strongly rises. This indicates that micromobility complements
public transportation as for many micromobility trips, and it is even faster to walk the
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trip than to take public transportation; hence public transportation is likely not seen as a
viable alternative.
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Figure 13. Boxplot of trip durations (a) if performed with micromobility or assumed public trans-
portation and (b) overview of whether public transport or walking is faster per hour of the day.

Next, for quantifying which trips might be complementing or competing with public
transportation, we categorized trips based on the difference in duration between micromo-
bility trip and public transportation trips. Table 6 shows the classified trips in Aachen for
different factors f indicating how much faster a micromobility trip must be before being
categorized as complementing public transportation. Here, the key idea is that people
accept that the public transportation trip takes longer, but if it takes substantially longer,
it is no longer seen as a reasonable alternative. We have tested the competition between
micromobility for factors f of 1.5, 2, and 3. A factor of 2 means that a micromobility trip
is assumed to be competing, if it takes less than twice the time of the respective public
transportation trip from the same origin to the same destination. The results indicate
for a lower threshold of accepting slower public transportation as an alternative, many
micromobility trips are complementing public transportation. When increasing the factor
f , the number of competing trips sharply rises. At the same time, the table also highlights
that micromobility complements public transportation by offering their service mostly in
times when public transportation is not an option, i.e., compare number of complementing
trips for f = 3. Here, micromobility trips are already competing with the walking trips
when no public transport route is available and the only complementing trips are trips that
are very long. It is unclear which factor f best represents the mode choice for people, i.e.,
starting with which factor people will prefer micromobility over public transportation or
walking. Furthermore, the results confirm that most often the distance to the next public
transportation station is not the problem, but the connection between different bus lines
with transfers. This can be seen by the low number of complementing trips occurring due
to no stop point being present and the distance of public transport stops to trip origins and
destinations in Figure 12. Micromobility has the advantage of being usable door-to-door
and that no transfers are necessary, thus strongly reducing the time required for certain
routes in comparison to public transportation. Under the assumption that people accept
public transportation as an alternative if it is not less than half as fast as a corresponding
micromobility trip with f = 2, around 50% of e-scooter trips are competing and another
40% of trips are complementing public transportation. When setting the factor to 3, pri-
marily long trips in the night when the bus service is not operating at all are marked as
complementing trips, whereas during the day most trips are marked as competing.
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Table 6. Comparison of customer trips based on their relation to public transport. The factor f defines
how much faster a micromobility trip must be compared to the respective public transportation
in order for the trip to be classified as complementing. This means that the factor f defines the
reasonability of the public transportation route.

f Mode Compete Extend (First- or Last-Leg) Complement (Stop) Complement (Connection)

1.5 E-scooters 165,447 (24.90%) 111,919 (16.85%) 7834 (1.18%) 379,338 (57.08%)
E-bikes 8806 (18.72%) 774 (1.65%) 925 (1.96%) 36,533 (77.66%)

2.0 E-scooters 334,501 (50.48%) 74,003 (11.14%) 5386 (0.81%) 249,648 (37.57%)
E-bikes 21,415 (45.53%) 659 (1.40%) 745 (1.58%) 24,219 (51.49%)

3.0 E-scooters 569,447 (85.70%) 21,569 (3.25%) 1579 (0.23%) 71,943 (10.82%)
E-bikes 41,016 (87.20%) 308 (0.65%) 41 (0.09%) 5673 (12.06%)

Figure 14 shows the number of complementing, competing, and extending trips per
hour of the day depending on whether f = 1.5 or f = 2. Here, we can see that during
the day the relative number of competing trips is higher than in the night where public
transportation is unavailable. When comparing the figure with Figure 13b it becomes
apparent that the number of competing trips rises with the number of trips that are feasible
with public transportation. Most of the complementing trips are faster not because the
public transportation system is unavailable in the night hours or because the next public
transportation stop is too far away, but because the public transportation route between the
trip’s origin and destination takes too long, possibly because of the wait for the vehicles
and the transfer to other vehicles. The figures show that in Aachen, micromobility trips are
often not replacing public transportation, but complement them by offering a service that
serves origins and destinations that are not well connected by public transportation.
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Figure 14. Number of competing and complementing trips for factor (a) f = 1.5 (b) f = 2.

The overall results indicate that e-scooter and e-bike trips are often started or ended
near public transportation stops as the public transportation network is dense in the service
area. For e-bikes, the first- and last-mile extension is much lower, because most bike-sharing
stations are built next to public transportation stations, which means that our algorithm
does not flag these trips as public transit extension, as both origin and destination are nearly
always near public transportation stops. For e-scooters, the number of competing trips
is larger than for e-bikes. The main reason for this may lie in the origin and destination
of trips. E-bikes are used relatively often for the trip from Aachen central station to the
university campus area, for which no good public transportation route exists, thereby
lowering the number of e-bike competing trips. E-scooters, on the other hand, are often
rented because of their flexibility, possibly indicating that e-scooters are more often used
even though there is a viable public transportation route. In practice, the time required
for the trip is not the only factor influencing mode choice, but the results show how much
faster micromobility can be in comparison to public transportation. In summary, the results
indicate that micromobility trips can replace public transportation trips, but are mostly
complementing public transportation services when the service is not operating or not
well developed.
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4.2. Discussion

The study shows the feasibility of reconstructing trips from the vehicle availability
data from the operator enriched with information from openly available geography data
and public transportation schedules. In this study, we examined the difference in usage
characteristics between dockless e-scooters and docked e-bikes and their potential influence
to the existing public transportation network. The results of this study regarding e-scooter
and e-bike trips mostly agree with the results of previous studies, confirming the viability
of the approach of gathering vehicle locations and inferring the relevant trips. E-bikes
are often favored for longer trips when compared with e-scooter usage, possibly due to
their higher comfort. E-scooters, on the other hand, are the preferred mode of travel for
shorter journeys, possibly due to their high availability and flexibility. In the literature, the
primary purpose of e-scooter and e-bike trips are still an ongoing research topic. This study
found evidence for a stronger commuting purpose for e-bikes and a larger recreational
role for e-scooters; however, further research is necessary. Our results also show especially
high micromobility usage in the city center, near the university campus, and near the
central station area, agreeing with previous studies. With spatial trip data such as this, the
authorities could improve the routes for e-scooters and e-bikes between the most traveled
origins and destinations to increase the safety of the transportation mode. The land use
analysis has shown that micromobility trips serve all kinds of purposes as the fraction of
trips starting or ending in most land use regions equals its relative size.

This study is also one of the first studies to research the connection between micro-
mobility and public transportation with data-driven methods. The role of micromobility
together with public transportation is still ambivalent. Although micromobility comple-
ments public transportation in times of non-operating or not well-developed areas, some
trips also seem to replace public transportation trips. This could indicate that people favor
the flexibility and speed of micromobility over public transportation or walking trips, even
if viable alternatives are available. These results are especially surprising as all students at
the university, the primary usage group of micromobility according to other studies, have
free access to public transportation in Aachen, possibly indicating that the trip’s cost is
not the primary concern of micromobility users. E-bikes have a higher ratio of trips that
have been identified as complementary, agreeing with previous studies that bike-sharing
systems can improve the number of possibly commuting multimodal trips. In summary,
micromobility definitely complements public transportation in areas and times where it is
not an alternative, or when the available public transportation schedules do not connect the
origin with the destination in a satisfactory manner. The reason for complementing is nearly
always because of the connection between the origin and destination and not because of
the absence of public transportation stops. At the same time, however, micromobility also
replaces some viable public transportation trips.

The results show that further research is necessary to find regulations that establish
micromobility as a service next to public transportation that complements its usage rather
than competing with it. When regarding the complementary trips of micromobility, it
becomes evident that the public transportation network is fairly inaccessible in certain
areas, even when vehicles are operating (Figure 13b). When adapting the public transporta-
tion network, these areas are of particular interest, because there micromobility is much
faster than public transportation for most routes. Hence, one reason for people choosing
micromobility over public transportation or an intermodal trip is likely the shorter duration
of the door-to-door micromobility journey as no transfers are necessary. This choice is
particularly noteworthy here, as the primary user group of micromobility identified in
other studies is comprised of students near the campus area, which have free access to
public transportation in Aachen. Therefore, policymakers and transportation planners
should expand the public transportation service so that more routes are adequately served.
Furthermore, the advantages of each transportation mode should be exploited as well
as possible, meaning that the switch between different modes must be simplified. One
proposal from the literature is the creation of so-called mobility hubs, where all kinds of
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mobility services are offered, increasing the feasibility of easily transferring between modes.
In the case that mobility operators create such mobility hubs in Aachen at suitable locations,
they may promote the usage of micromobility for the first- and last-mile while fostering the
use of public transportation between well-connected mobility hubs. In further research, we
want to determine the impact of the mobility in Aachen when creating mobility hubs at
certain key locations by simulating the potential passenger flow.

5. Conclusions and Future Work

The offer of micromobility services has strongly risen in the past years in urban areas
worldwide. The impact of this development and micromobility usage characteristics have
often only been researched in cities in the United States of America on data directly offered
by the provider due to the legislation in certain cities. Unfortunately, such trip-oriented data
is often not readily available in other parts of the world. Therefore, we present an algorithm
to infer trips from the availability data providers share with their API to offer their services
through their application. We examined the temporal and spatial properties of e-scooter
usage with the inferred trips, focusing on the interaction between public transportation
and micromobility.

To the best of our knowledge, this study analyzes the most extensive dataset of high-
quality self-inferred trips up to date. Compared to the publicly available datasets, the set of
inferred trips offers a larger spatial and sometimes also a temporal resolution. For temporal
factors, we have shown that e-scooter and e-bike trips follow a similar daily pattern, with
slight indications that e-bikes are more used for commuting purposes as their specific peaks
in the morning and afternoon hours are slightly more pronounced. Regarding the weekly
distribution of trips, we have determined that both e-bike and e-scooter trips are most often
performed during the week and less during weekends. The drop in e-bike trips on the
weekend is more pronounced here, indicating that e-bikes have more commuting use and
e-scooter usage is focused more toward recreational uses.

The spatial analysis uncovered that docked e-bike usage is more concentrated in
specific regions, whereas e-scooter trips are spread out more evenly. Similar to other
studies, the hotspots of micromobility use have formed around the campus area, the central
station, and the city center. The primary reason for this is most likely the docked nature of
the e-bike service provider in Aachen, where travelers particularly favor certain stations.
For e-bikes, the regions of Aachen more often associated with work are more often the
destination of trips in the morning, whereas the destination in the afternoon is more spread
out throughout Aachen. E-scooter trips are significantly shorter than corresponding e-bike
trips. The land use of trips’ origins and destinations show that micromobility is used in all
kind of land types, highlighting that its usage is accepted for various travel needs.

This study has also analyzed the interaction between public transportation and mi-
cromobility usage. Although the relationship between micromobility remains ambivalent,
indicating both complementing and competing usage patterns, certain characteristics have
been identified. Most of the time, micromobility trips are faster than a corresponding
public transportation trip; even walking trips are faster most of the time than the respective
assumed public transportation trip. This indicates that micromobility is already often
used for journeys to places where public transportation is not well-developed. In this
study, we analyzed the viability of public transportation with a metric on how much faster
the micromobility trip is compared to the public transportation trip. For lower values
(i.e., people strongly prefer a low duration of their micromobility trip), many trips are
complementing, because public transportation is not even seen as a viable alternative. For
higher values (i.e., people are not primarily interested in the duration of their journey),
many trips that have been performed with micromobility could also be conducted with
public transportation. In summary, this study has shown that micromobility can compete
with public transportation as the trips are often substantially faster; however, in areas or
times with low public transit service coverage, micromobility also largely complements
the service.
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This study of micromobility usage in Aachen exhibits several limitations. The most
substantial limitation is the period in which data has been gathered. During this time,
several lockdowns were in place due to the situation with the COVID-19 pandemic. These
curfews most likely had a strong impact on the data; this becomes apparent when regarding
Figure 11e,f, as the number of trips strongly rises once the curfew is lifted. Next to the
COVID-19 pandemic, two new e-scooter providers started in March 2021 and September
2021. Switching between e-scooter providers is not complex. Therefore, people might have
performed trips with one of the new providers instead of the already established ones.
Unfortunately, we do not have access to these providers’ data and could not integrate them
into this analysis. In comparison to other studies, we also do not have any ground truth
available to check the accuracy of our trip inference algorithm. As our algorithm is similar
to the approach of [7], we have assumed that our implementation is equally accurate.

The low resolution of the data might pose another limitation of this study, as potential
trips might be missed. Furthermore, the algorithm cannot sufficiently identify round trips
with such a low resolution. Indeed, multiple short e-bike trips that have been successively
performed after each other may have been misclassified as a single long trip. However,
when taking the 1-min high-resolution data as ground truth, the total number of trips
misidentified is low. As another limitation, the actual computed routes might not represent
the exact routes taken by travelers. Even with routing profiles adapted to e-scooters and
e-bikes, there is no way to infer which routes are preferred by travelers with the current
data. For this, traffic counts and demographics are required to determine popular routes.
The main idea of the land use analysis was to infer the reason for the trip undertaken. With
the current analysis of regarding the land use type in OpenStreetMap, this could not be
sufficiently solved as points of interest have not been regarded.

Some results presented in this study also warrant further research. For example, this
study mostly regarded trip-level attributes of e-scooter usage. Factors related to external
data such as vacations or weather have not been considered. Other studies have found a
considerable influence of precipitation on e-scooter ridership [19], which has not yet been
regarded for this dataset. Furthermore, the traveler’s perspective was slightly neglected, as
neither the sociodemographic aspects have been viewed, nor have their potential public
transit service membership. These aspects are critical in Aachen as all students can use
public transportation free of charge. In addition, the inferring of the reason for the trip
must be extended to also include nearby points of interest. Regarding the impact on public
transportation, the focus was only on the possibility of also taking a public transportation
trip when analyzing the e-scooter trips. The study does regard whether bus trips have
been influenced, as no ridership data of the buses is available. Further research could also
incorporate public transit ridership data to deepen understanding of the e-scooter’s impact
on bus ridership. Next, the transfer between micromobility and public transportation
requires more research. Currently, so-called intermodal transportation hubs are being
widely researched, which attempt to allow people to easily switch between different modes.
Lastly, integrating e-scooters into agent-based simulations could help to understand further
the impact of e-scooters on the existing transportation network. This approach would
also allow modeling policies that improve the complementary effect of sharing systems on
public transportation before employing them in practice.
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26. Zou, Z.; Younes, H.; Erdoğan, S.; Wu, J. Exploratory Analysis of Real-Time E-Scooter Trip Data in Washington, D.C. Transp. Res.

Rec. J. Transp. Res. Board 2020, 2674, 285–299. [CrossRef]

http://doi.org/10.1016/j.trd.2021.102734
http://dx.doi.org/10.3390/su12229505
http://dx.doi.org/10.3390/su13073692
http://dx.doi.org/10.1016/j.trc.2020.102947
http://dx.doi.org/10.3390/su132212527
http://dx.doi.org/10.3141/2247-05
http://dx.doi.org/10.1016/j.trd.2014.05.013
http://dx.doi.org/10.1016/j.trc.2016.03.004
http://dx.doi.org/10.1016/j.jtrangeo.2019.05.007
http://dx.doi.org/10.1016/j.tbs.2020.04.005
http://dx.doi.org/10.3390/ijgi9020135
http://dx.doi.org/10.1016/j.trd.2020.102396
http://www.ncbi.nlm.nih.gov/pubmed/32834737
http://dx.doi.org/10.1080/10630732.2020.1843384
http://dx.doi.org/10.1080/15568318.2020.1833117
http://dx.doi.org/10.1016/j.jtrangeo.2021.103084
http://dx.doi.org/10.1016/j.tra.2021.05.003
http://dx.doi.org/10.1109/ITSC.2019.8917121
http://dx.doi.org/10.1016/j.trd.2021.102877
http://dx.doi.org/10.32866/7747
http://dx.doi.org/10.1016/j.jtrangeo.2021.103016
http://dx.doi.org/10.1016/j.compenvurbsys.2019.101418
http://dx.doi.org/10.1177/0361198120919760


Sustainability 2022, 14, 8247 27 of 27

27. Younes, H.; Zou, Z.; Wu, J.; Baiocchi, G. Comparing the Temporal Determinants of Dockless Scooter-share and Station-based
Bike-share in Washington, D.C. Transp. Res. Part A Policy Pract. 2020, 134, 308–320. [CrossRef]

28. Xu, Y.; Yan, X.; Sisiopiku, V.P.; Merlin, L.A.; Xing, F.; Zhao, X. Micromobility Trip Origin and Destination Inference Using General
Bikeshare Feed Specification (GBFS) Data. arXiv 2020, arXiv:2010.12006.

29. Hawa, L.; Cui, B.; Sun, L.; El-Geneidy, A. Scoot over: Determinants of Shared Electric Scooter Presence in Washington D.C. Case
Stud. Transp. Policy 2021, 9, 418–430. [CrossRef]

30. Zhu, R.; Zhang, X.; Kondor, D.; Santi, P.; Ratti, C. Understanding Spatio-Temporal Heterogeneity of Bike-Sharing and Scooter-
Sharing Mobility. Comput. Environ. Urban Syst. 2020, 81, 101483. [CrossRef]

31. Engdahl, H.; Englund, C.; Faxér, A.; Habibi, S.; Pettersson, S.; Sprei, F.; Voronov, A.; Wedlin, J. Electric Scooters’ Trip Data
Collection and Analysis. In Proceedings of the 33rd Electric Vehicle Symposium (EVS33), Portland, Oregon, 14–17 June 2020;
p. 11.

32. Zhao, P.; Haitao, H.; Li, A.; Mansourian, A. Impact of Data Processing on Deriving Micro-Mobility Patterns from Vehicle
Availability Data. Transp. Res. Part D Transp. Environ. 2021, 97, 102913. [CrossRef]

33. Noland, R.B. Bikeshare Trip Generation in New York City. Transp. Res. Part A Policy Pract. 2016, 94, 164–181. [CrossRef]
34. Jiang, S.; Guan, W.; He, Z.; Yang, L. Exploring the Intermodal Relationship between Taxi and Subway in Beijing, China. J. Adv.

Transp. 2018, 2018, 3981845. [CrossRef]
35. Nawaro, Ł. E-Scooters: Competition with Shared Bicycles and Relationship to Public Transport. Int. J. Urban Sustain. Dev. 2021,

13, 614–630. [CrossRef]
36. Zuniga-Garcia, N.; Machemehl, R. Dockless Electric Scooters and Transit Use in an Urban/University Environment. In Proceed-

ings of the 99th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 12–16 January 2020; p. 20.
37. Ziedan, A.; Shah, N.R.; Wen, Y.; Brakewood, C.; Cherry, C.R.; Cole, J. Complement or Compete? The Effects of Shared Electric

Scooters on Bus Ridership. Transp. Res. Part D Transp. Environ. 2021, 101, 103098. [CrossRef]
38. Baltra, G.; Imana, B.; Jiang, W.; Korolova, A. On the Data Fight between Cities and Mobility Providers. arXiv 2020, arXiv:2004.09072.

http://dx.doi.org/10.1016/j.tra.2020.02.021
http://dx.doi.org/10.1016/j.cstp.2021.01.003
http://dx.doi.org/10.1016/j.compenvurbsys.2020.101483
http://dx.doi.org/10.1016/j.trd.2021.102913
http://dx.doi.org/10.1016/j.tra.2016.08.030
http://dx.doi.org/10.1155/2018/3981845
http://dx.doi.org/10.1080/19463138.2021.1981336
http://dx.doi.org/10.1016/j.trd.2021.103098

	Introduction and Motivation
	Literature Review
	Approach
	Data Collection and Trip Inference
	Validation of Trip Inference

	Analysis of the Aachen Case Study
	Results
	Spatial
	Temporal
	Impact on Public Transportation

	Discussion

	Conclusions and Future Work
	References

