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Abstract: Water-use efficiency (WUE) is a crucial physiological index in carbon–water interactions
and is defined as the ratio of vegetation productivity to water loss. The variation in climatic variables
and drought have the most significant effects on WUE and evapotranspiration (ET). Nevertheless,
how WUE varies with climate factors and drought processes in the Tianshan Mountains (TMS) is
still poorly understood. In the present work, we analyzed the spatiotemporal variations in WUE,
and investigated the correlations between WUE, climate factors, and drought, in the study area.
The results showed that, in the TMS during 2000–2020, annual net primary productivity (NPP)
ranged from 147.9 to 189.4 gC·m−2, annual ET was in the range of 212.5–285.8 mm, and annual WUE
ranged from 0.66 to 0.78 gC·kg−1·H2O. Both NPP and ET exhibited an increasing trend with some
fluctuation, whereas WUE showed the opposite tendency during the study period. The obtained
results demonstrated that the decrease in WUE was primarily because of the increase in ET. There
were obvious differences in WUE, under different land-use types, caused by NPP and ET. However,
the interannual variation in WUE showed small fluctuations and the dynamic process of WUE in each
land-use type showed good consistency. Temperature and wind speed had a positive influence on
WUE in the middle and eastern regions of the TMS. Precipitation also played a mainly positive role in
enhancing WUE, especially on the northern slope of the TMS. There was strong spatial heterogeneity
of the correlation coefficient (0.68, p < 0.05) between WUE and the temperature vegetation drought
index (TVDI). Moreover, the slopes of WUE and TVDI showed good consistency in terms of spatial
distribution, suggesting that drought had a significant impact on ecosystem WUE. This work will
enhance the understanding of WUE variation, and provide scientific evidence for water resource
management and sustainable utilization in the study area.

Keywords: water-use efficiency; climate factor; spatiotemporal variation; drought; Tianshan Mountains

1. Introduction

Water-use efficiency (WUE), the ratio of carbon assimilation during photosynthesis to
water loss through transpiration, is a significant ecological index that connects physiological
processes controlling carbon with water cycling in terrestrial ecosystems [1,2]. Dryland
ecosystems account for more than 40% of the global land surface, and these areas are
important in the global carbon cycle because of the inherent variability in the water status [3].
Thus, analyzing the patterns, magnitude, and influencing factors of WUE for natural
ecosystems, and the management of WUE in arid regions, is extremely significant for
estimating carbon and water balances, and thus supports the sustainable management of
water resources in arid regions and fragile ecological environments.

At the ecosystem scale, three definitions of WUE are extensively used, namely:
(1) Gross Primary Production (GPP)-based WUE: GPP/ET; (2) Net Primary Productiv-
ity (NPP)-based WUE: NPP/ET; and (3) Net Ecosystem Production (NEP)-based WUE:
NEP/ET [4–7]. ET is the key step in the process of the hydrological cycle and is the main
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component of the energy–water balance in agriculture ecosystems. It is also widely re-
garded as the quantity of water consumed by vegetation to provide ecosystem services [8].
NPP is a crucial indicator for evaluating ecological health, and is also important for esti-
mating the carbon sink and ecological change. NPP is defined as the new carbon stored
in living plants per unit time (annually) per unit surface area. Compared with GPP and
NEP, the NPP index deducts organic carbon consumed by plant respiration, and can ob-
jectively reflect the net cumulative organic carbon. Therefore, it is of great significance to
investigate the spatiotemporal variation in ET and NPP. Several models and studies have
been proposed to calculate NPP at different scales (global, regional, or local), which can
be classified into climate-related models, process-based models, and light-use efficiency
models [9]. Climate-related and process-based models have been extensively applied in
previous research. Nevertheless, process-based models (e.g., the LPJ-GUESS model) are not
inappropriate for calculating NPP in areas disturbed by frequent and significant human
activity [10]. By comparison, climate-related models (e.g., the Miami model) can be used
to evaluate the potential vegetation productivity [11]. In contrast, the theoretical model
of the Carnegie-Ames-Stanford Approach (CASA) was developed based on light-use effi-
ciency, and includes temperature, precipitation, solar radiation, the Normalized Difference
Vegetation Index (NDVI), and land cover as input variables [12,13]. The CASA model has
been well demonstrated in some areas and can accurately calculate NPP [11,14,15]. More
importantly, it has been proven that the CASA model is suitable for estimating activity in
Xinjiang, China [14,15].

Traditional studies of WUE have mainly focused on crop leaves or individual levels,
and have used gas exchange methods and field monitoring to estimate WUE [16]. In
recent decades, due to the development of observation facilities and theoretical models, the
investigation scale of WUE has been extended to ecosystems, including those at the local
scale [17], regional scale [18], and global scale [19,20]. Because the influencing factors of
WUE change with the research scale and vegetation type, significant variability exists in
the characteristics of the spatiotemporal variation in WUE. For example, the average WUE
in China’s ecosystem during 1979–2012 obtained by a process-based model was negatively
correlated with the averages of annual precipitation and annual temperature [21]. Recently,
Liu et al. [20] reported that variations in terrestrial ecosystem WUE at the global scale
are mainly related to soil moisture. According to reports published by the government’s
climate change committee, the global average surface temperature will rise by 1.8–3.7 ◦C
and global precipitation will change greatly by the end of the 21st century; these variations
will influence carbon and water balancing processes in the ecosystem [22].

In addition to the drivers mentioned above, drought is a typical hydrometeorolog-
ical phenomenon and the main environmental factor that affects the functioning of the
ecosystem [23]. Drought events are becoming more frequent and more severe in the context
of climate change [24], and these changes have been considered to be a dominant factor
responsible for increasing plant mortality [25] and ecosystem degradation [26,27]. However,
the consequences of droughts on ecosystem WUE differ depending on whether they occur
in dry or wet zones, the drought severity, and the vegetation type. Although it has been
reported that drought can decrease ecosystem WUE [28], other studies reported increases
in WUE due to drought [29]. For instance, at the global scale, WUE showed a negative
relationship with drought in arid areas, but showed both positive and negative responses
in humid areas [30]. Another study reported that the trend of increasing drought resulted
in a decrease in WUE in Central Asia during 2000–2014 [31]. It can be concluded that the
response of WUE to drought is obviously different in different climate zones. Desert, oasis,
and alpine ecosystems are widely distributed in the arid and semi-arid regions in the west-
ern part of China [3]. These areas are of vital importance to agriculture management and
ecological protection. The Tianshan Mountains (TMS), located in the hinterland of Eurasia,
are the main water source in the middle section of the Silk Road Economic Belt. The water
circulations of the TMS are characterized by significant spatiotemporal variations, complex
water-generation mechanisms, multiple runoff compositions, and fragile water systems.
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Ecosystem WUE is very sensitive to small changes in hydrological elements caused by
climate change and human activity.

Therefore, MODIS products were applied to investigate the spatiotemporal variations
in the relationship between meteorological factors and the temperature vegetation dryness
index (TVDI), and the changes in WUE under different vegetation cover types, in the
terrestrial ecosystems of the TMS during 2000–2020. The specific objectives of the present
work were to: (1) investigate the temporal and spatial variations in annual NPP, ET, WUE
and drought in the TMS in the past two decades and the trends in the annual values;
(2) clarify the spatial distribution characteristic in WUE under different land-use types;
(3) and investigate the relationship between WUE and meteorological factors (temperature,
precipitation, sunshine duration), drought, NDVI, NPP, ET, and WUE during the past
two decades.

2. Materials and Methods
2.1. Study Area

The Tianshan Mountains (TMS) are in Xinjiang, north-western China (34.34◦–55.43◦ N,
75◦–96.37◦ E) (Figure 1). The study area has a typical temperate continental climate char-
acterized by wide temperature and precipitation ranges, strong winds, and low humidity.
Water vapor is mainly transported by westerly winds [32]. The annual mean value of
precipitation is about 200 mm in the northern part of the TMS, and is lower (approximately
50–100 mm) in the southern part of TMS [33]. The annual maximum precipitation, of
200–300 mm, occurs in the western area of the TMS (the Yili River Valley). In contrast, only
10–30 mm falls in the eastern area (the Turpan-Hami basin), and this value is the minimum
precipitation falling in the TMS. The TMS are mostly covered by grassland, in addition to
having barren and sparsely vegetated areas, arable land, and forest [34].

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 14 
 

variations, complex water-generation mechanisms, multiple runoff compositions, and 
fragile water systems. Ecosystem WUE is very sensitive to small changes in hydrological 
elements caused by climate change and human activity.  

Therefore, MODIS products were applied to investigate the spatiotemporal varia-
tions in the relationship between meteorological factors and the temperature vegetation 
dryness index (TVDI), and the changes in WUE under different vegetation cover types, in 
the terrestrial ecosystems of the TMS during 2000–2020. The specific objectives of the pre-
sent work were to: (1) investigate the temporal and spatial variations in annual NPP, ET, 
WUE and drought in the TMS in the past two decades and the trends in the annual values; 
(2) clarify the spatial distribution characteristic in WUE under different land-use types; (3) 
and investigate the relationship between WUE and meteorological factors (temperature, 
precipitation, sunshine duration), drought, NDVI, NPP, ET, and WUE during the past two 
decades. 

2. Materials and Methods 
2.1. Study Area 

The Tianshan Mountains (TMS) are in Xinjiang, north-western China (34.34°–55.43° 
N, 75°–96.37° E) (Figure 1). The study area has a typical temperate continental climate 
characterized by wide temperature and precipitation ranges, strong winds, and low hu-
midity. Water vapor is mainly transported by westerly winds [32]. The annual mean value 
of precipitation is about 200 mm in the northern part of the TMS, and is lower (approxi-
mately 50–100 mm) in the southern part of TMS [33]. The annual maximum precipitation, 
of 200–300 mm, occurs in the western area of the TMS (the Yili River Valley). In contrast, 
only 10–30 mm falls in the eastern area (the Turpan-Hami basin), and this value is the 
minimum precipitation falling in the TMS. The TMS are mostly covered by grassland, in 
addition to having barren and sparsely vegetated areas, arable land, and forest [34]. 

 
Figure 1. Map showing location of the TMS in China; rates of change in air temperature (a) and 
precipitation (b) during 2000–2020. 

2.2. Data 
We downloaded the land surface temperature (MOD11A2) and surface albedo 

((MOD09A1) and NDVI (MOD13A2) data products from the NASA website (available at 
https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 1 April 2021). In this work, 
temperature, precipitation, relative humidity, and sunshine duration in the TMS during 
2000–2020 were obtained from the China Meteorological Information Center (available at 
http://data.cma.cn, accessed on 20 May 2021). Data regarding land-use type and vegeta-

Figure 1. Map showing location of the TMS in China; rates of change in air temperature (a) and
precipitation (b) during 2000–2020.

2.2. Data

We downloaded the land surface temperature (MOD11A2) and surface albedo (MOD09A1)
and NDVI (MOD13A2) data products from the NASA website (available at https://
ladsweb.modaps.eosdis.nasa.gov/search/, accessed on 1 April 2021). In this work, tem-
perature, precipitation, relative humidity, and sunshine duration in the TMS during
2000–2020 were obtained from the China Meteorological Information Center (available
at http://data.cma.cn, accessed on 20 May 2021). Data regarding land-use type and
vegetation type having a 1 km resolution in the TMS were obtained from the Research
and Environment Science and Data Center of Chinese Academy of Sciences (available at
http://www.resdc.cn/, accessed on 15 June 2021).

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://data.cma.cn
http://www.resdc.cn/
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2.3. Method
2.3.1. NPP Calculation

The CASA model was used to calculate annual NPP, and temperature, precipitation,
solar radiation, NDVI, and land cover were selected as variables. NPP was estimated as
the product of absorbed photosynthetically active radiation (APAR). We defined an annual
value for NPP, having the unit of grams of carbon per square meter, as follows:

NPP(n, m) = APAR(n, m)× ε(n, m) (1)

where m is area and n is time; NPP (m, n) is net primary productivity fixed by vegetation
photosynthesis (gC·m−2); APAR (m, n) is photosynthetically active radiation over area m
during time t(gC·m−2); ε (m, n) is obtained light-use efficiency over area m during time n (g
C MJ−1). APAR (m, n) and ε (m, n) are given by Equations (2) and (3):

APAR(n, m) = SOL(n, m)× FPAR(n, m)× 0.5 (2)

where SOL (m, n) is total solar radiation (gC·MJ−1), and FPAR (m, n) is photosynthetically
active radiation derived from NDVI [35].

ε(n, m = Tε1(n, m)× Tε2(n, m)× Wεl(n, m)× εmax (3)

where Tε1 (m, n) and Tε2 (m, n) are temperature stresses; Wε1 (m, n) is water stress, which
represents the reduction in light-use efficiency and εmax (gC·MJ−1) is the maximum light-use
efficiency under ideal conditions.

2.3.2. ET Calculation

A Surface Energy Balance System (SEBS) has been proposed for calculation of ET
based on Earth observation satellite data and weather information at proper scales [36].
The surface energy balance is usually given as follows:

Rn = G0 + H + λE (4)

where Rn is the net radiation (W/m2), G0 is the soil heat flux (W/m2), H is the turbulent
sensible heat flux (W/m2), λE is the turbulent latent heat flux (W/m2,, λ is the latent heat
of vaporization (λ = 2.49 × 106 J/kg), and E is the actual evapotranspiration [kg/(m2·s)]).

The formula to estimate the net radiation is shown as follows:

Rn = (1 − α)Rswd + Rlwd − εσT4
0 (5)

where α is the albedo, Rswd is the downward solar radiation, Rlwd is the downward longwave
radiation, ε is the emissivity of the surface, σ is the Stefan–Bolzmann constant (5.67 × 10−8

W·m−2·K−4), and T0 is the surface temperature (K).
The formula to evaluate soil heat flux is parameterized as:

G0 = Rn[Γc + (1 − fc)(Γs − Γc)] (6)

where the ratio of soil heat flux to net radiation Γc = 0.315 for a full-vegetation canopy [37]
and Γs = 0.05 for bare soil [38]. An interpolation was conducted between these limiting
cases by applying the fractional canopy coverage, fc. fc can be calculated by the following
equation:

fc =

(
NDVI − NDVImin

NDVImax − NDVImin

)2

where NDVImax and NDVImin represent total vegetation coverage (fc = 1) and bare land
(fc = 0).

ET = 8.64 × 107 × Λ Rn

λρw
(7)
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where ET is the actual evaporation on a daily basis (mm d−1), λ is the latent heat of
vaporization (λ = 2.49 × 106 J/kg), ρw is the density of water (1.000 kg m−3), and Λ is the
evaporative fraction [36].

2.3.3. WUE Calculation

WUE is defined as the ratio of NPP to ET, i.e., the amount of carbon assimilated per
unit of water loss by ET:

WUE = NPP/ET

where WUE is the water-use efficiency (gC·kg−1 H2O), and NPP (gC·m−2) and ET (mm)
are the annual NPP and ET in a specific grid cell, respectively.

TVDI has been widely applied in drought monitoring, and its advantages have been
verified by a series of studies. For details on the TVDI calculation, see Sandholt et al.
2002 [39].

3. Results and Discussion
3.1. Characteristics of Temporal Variation in NPP, ET, WUE, and TVDI

Based on Figure 2, the annual values of NPP, ET, WUE, and TVDI during 2000–2020
were obtained for temporal analysis. Annual NPP presented a significant increase in the
TMS, with a slope of 1.2 gC·m−2 per year (Figure 2a). NPP reached a maximum value of
84.9 gC·m−2 in 2016. Annual ET also exhibited an increasing trend in the study region
during 2000–2020, with a slope of 1.6 mm per year (Figure 2b). NPP displayed a significantly
increasing trend, which was in line with the results of previous research that observed
improvements in vegetation across Central Asia [39,40]. These variations have affected
ecosystems through various processes, and the increasing temperature and humidification
of the climate have led to improvements in vegetation growth [40]. The highest and lowest
values of ET appeared in the year 2016 (285.8 mm) and 2008 (208.5 mm), respectively. After
2016, ET showed a decreasing and fluctuating trend. The trend increases obtained for NPP
and ET in the TMS are obviously greater than those in Central Asia, which can be highly
correlated with the vegetation cover [31]. Moreover, the increase in runoff over the TMS
has increased the available water, which can improve both NPP and ET to some extent.

Annual WUE and its trend during the past 20 years (2000–2020) are shown in Figure 2c.
The extreme low value of WUE was 0.66 gC·kg−1·H2O in 2005 and the extreme high value
was 0.78 gC·kg−1·H2O in 2011. WUE was at a higher level from 2000 to 2011 than during
2012 to 2020. WUE started to decrease in 2011, after the maximum value was reached.
Overall, the regional annual series for WUE displayed an unremarkable decreasing trend.
The decrease in WUE can be explained by the faster rate of increase in ET than that in NPP.
In addition, the large areas covered by cotton, and the changes in cotton planting areas and
irrigation patterns, may be the dominant reasons for the decrease in WUE [31]. The results
for TVDI show that the TMS experienced a decreasing trend in drought events in terms of
frequency and intensity. The study area was categorized as arid during 2000–2010, with
the average TVDI value (0.62) being between 0.6 and 0.8, and the changed to slight aridity
during 2011–2020, when the TVDI value was between 0.4 and 0.6.
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3.2. Characteristics of Temporal Variation in WUE and TVDI under Different Land-Use Types

As shown in Figure 3a, there are obvious differences in WUE under different land-use
types caused by NPP and ET. However, the interannual variation in WUE showed a small
fluctuation, and the dynamic process of WUE in each land-use type had a good consistency.
For different land cover types during 2000–2020, the values of WUE descended in the order
of wooded land (1.25 gC·kg−1·H2O) > shrub land (1.03 gC·kg−1·H2O) > open woodland
(0.94 gC·kg−1·H2O) > grassland (0.88 gC·kg−1·H2O) > dryland (0.77 gC·kg−1·H2O) > other
woodland (0.47 gC·kg−1·H2O). The difference in WUE among the different vegetation
types is remarkable, and is consistent with previous research [22,31]. The main reason
for this result is that, under the same water supply conditions, forest land can produce
more biomass and store more organic substances [41]. Previous research also demonstrated
that the WUE of evergreen plants was significantly lower than that of deciduous plants,
and the WUE of arbor, shrub, herb, and liana was also different. Liana had the highest
WUE, and there was little difference between the values of arbor and shrub [42]. The
estimated TVDI in this work can be divided into three groups (Figure 3b), namely, the
higher-value group (other woodland and dryland), the middle-value group (shrub land,
open woodland, grassland), and the low-value group (wooded land). The TVDI under
different land-use types presented small changes during 2000–2012, and then exhibited
a slightly decreasing trend for all land-use types in the TMS. The obtained higher TVDI
values for other woodland and dryland may be caused by the higher temperature because
TVDI is more sensitive to the land surface temperature, and land surface temperature
contains more drought information than NDVI [43]. By comparison, it has been reported
that the main influential factor for the TVDI in northern and north-western regions was
sunshine duration [44]. However, the response of TVDI to climate factors in different
regions may differ, and needs to be further investigated and analyzed.
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3.3. Spatial Distribution Characteristics of NPP, ET, WUE, and TVDI

The spatial patterns of the annual mean and slope of NPP, ET, WUE, and TVDI
during 2000–2020 are depicted in Figure 4. The spatial patterns in the average value of ET
showed a decreasing trend with decreasing latitude (southward) and the highest value
(620 mm) appeared in the Turpan region (Figure 4a). From west to east, the slope of ET
experienced an “increase–decrease–increase–decrease” mode in the TMS, and most of the
rates of increase were in the range of 0.73–7.36 (Figure 4b). The spatial pattern of the
average annual NPP showed that highest NPP generally occurred in the central region of
the study area (Figure 4c). Furthermore, the regions having decreasing trends that were
statistically significant at the 0.01 level for NPP were primarily distributed in the central and
eastern TMS (Figure 4d). In addition, a majority of regions (approximately 86%) exhibited a
generally increasing trend for NPP, with range of 0.54–8.25 gC·m−2·a−1, which is consistent
with a study conducted in the Hexi Corridor in north-western China [45].
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Comparing the map for average annual NPP with that for average annual WUE,
we noticed that the spatial distribution for average annual NPP was consistent with that
of annual WUE (Figure 4c,e). For example, the high values of NPP and WUE appeared
predominantly in the central and northern regions of the TMS. Overall, the number of
regions in which WUE decreased was greater than that in which WUE increased, indicating
that WUE had a decreasing variation in the TMS during 2000–2020. Compared with the
multiyear mean spatial distribution of WUE, the slope indicated a different pattern that
presented no significant changes for all of the areas, and only some areas in the central TMS
showed a remarkably decreasing trend, at a rate of 0.03–0.66 gC·kg−1·H2O·a−1 (Figure 4f).
In addition, most areas (75%) experiencing an increasing trend in WUE were distributed in
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the eastern region of the TMS. As shown in Figure 4g, notably, the majority of pixels having
high TVDI values were distributed in low-altitude areas on the southern slope of the TMS,
which indicates that these areas, especially those at the edge of oases, experienced drought
and severe drought, which may be related to the increasing temperature (Figure 1) and
lower vegetation coverage in these areas [31]. Overall, the percentage of pixels showing an
increase in the TVDI was slightly larger than that showing a decrease in the TVDI in the
TMS (Figure 4h). Interestingly, the region experiencing a significant increase (at the 0.05
significance level) in the TVDI corresponded to the area showing a significant decrease (at
the 0.05 significance level) in WUE, indicating that the TVDI may reduce WUE and increase
ET. This issue is discussed in the following section.

3.4. Response of WUE to Climatic Factors and Drought

Extensive studies have reported that climatic conditions can result in spatial and
temporal changes in WUE. For instance, slight changes in precipitation reduce runoff [46]
and can improve the plant growth environment [47], therefore increasing the NPP, which
has a positive effect on WUE. Thus, the relationship between WUE and climate factors and
drought were investigated at a large regional scale in the TMS. As shown in Figure 5a–c,
temperature and wind speed had a positive influence on WUE in the central and eastern
TMS. Precipitation can also play a positive role in enhancing WUE, especially on the
northern slope of the TMS, which is consistent with a previous study that was carried
out on the Chinese Loess Plateau [48]. The authors also demonstrated that the positive
correlation between WUE and the mean annual precipitation range in the Chinese Loess
Plateau was larger for forest vegetation than for steppe vegetation [48]. The two climatic
factors (wind speed and precipitation) both had a negative influence on WUE in the Ili
region in the western part of the TMS (Figure 5a–c). It is easy to understand that higher
wind speeds decrease NPP and further decrease WUE. The Ili region is located in a river
valley and is mainly covered by grassland, and a previous study revealed that precipitation
is the main factor controlling WUE variation in grassland [5]. Our results are in line with
this finding, and the decrease in precipitation was found to reduce ET, which may lead
to enhancing WUE in the Ili region. This phenomenon occurs because the relationship
between WUE and precipitation is primarily controlled by the carbon process rather than
the hydrological process [5]. As presented in Figure 5d,e, the correlation coefficients of
annual mean WUE with sunshine duration and solar radiation in the TMS showed strong
spatial heterogeneity, and the spatial distribution of these correlation coefficients had good
consistency. Additionally, the areas having a positive correlation were scattered in the
central and western TMS, and the areas having a negative correlation were distributed in
the eastern regions.

At present, the analysis of the effect of drought on water cycles’ terrestrial carbon is a
popular and meaningful research topic. It was reported that drought can cause a significant
increase in WUE in natural ecosystems [49,50], but other researchers demonstrated that se-
vere drought may obviously reduce ecosystem WUE [51,52]. In the present study, although
there was strong spatial heterogeneity of the correlation coefficient (0.68, p < 0.05) between
WUE and the TVDI (Figure 5f), the slopes of WUE and the TVDI presented good consistency
in spatial distribution (Figure 4f,h). Thus, we concluded that drought can enhance the WUE
of natural ecosystems, which agrees with results obtained by Campos et al. [49]. However,
considering that the adopted drought index, spatiotemporal scale, and statistical method
can vary, the conclusion regarding the relationship between WUE and drought may differ.
In future, it will be necessary to analyze the mechanism by which drought influences WUE,
in addition to making field observations. This will improve the comprehension of the WUE
of ecosystems and enhance the scientific basis for water resource management in the TMS.
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4. Conclusions

It is of great importance to analyze the spatiotemporal changes in NPP and WUE to
enable suitable management measures to be applied for water resources and agriculture,
and thus ensure the sustainable provision of essential ecosystem services. In the present
work, NPP in the TMS from 2000 to 2020 was calculated using the CASA model, and ET
was estimated using the SEBS model. This enabled WUE to be easily obtained using the
NPP and ET values. The spatiotemporal variations in the annual values and slopes of NPP,
ET, and WUE were further investigated and discussed. These results provide important
spatially explicit information for decision making and sustainable development in TMS.

Annual NPP in the study area ranged from 147.9 to 189.4 gC·m−2, annual ET ranged
from 212.5 to 285.8 mm, and annual WUE ranged from 0.66 to 0.78 gC·kg−1·H2O in the
TMS during 2000–2020. During the study period, both NPP and ET exhibited an increasing
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trend with some fluctuation, whereas WUE showed the opposite tendency. The annual
NPP and ET values showed a similar spatial pattern, with remarkable changes in some
regions of the TMS from 2000 to 2020. The number of areas where WUE decreased was
larger than that where WUE increased, indicating that WUE experienced a decreasing trend
in the TMS during 2000–2020. Our results demonstrate that the decrease in WUE was
primarily because of the increase in ET. Obvious differences were found for WUE under
different land-use types, caused by NPP and ET. However, the interannual variation in
WUE showed a small fluctuation, and the dynamic process of WUE in each land-use type
showed good consistency. The correlations between WUE, climate factors, and drought
were investigated. For example, temperature and wind speed had positive influences on
WUE in the central and eastern TMS. Precipitation also played a mainly positive role in
enhancing WUE, especially on the northern slope of the TMS. There was strong spatial
heterogeneity of the correlation coefficient (0.68, p < 0.05) between WUE and the TVDI, and
the slopes of WUE and the TVDI presented good consistency in their spatial distribution,
suggesting that drought had a significant impact on ecosystem WUE. Thus, in future, it will
be necessary to analyze the mechanism by which drought influences WUE, in addition to
making field observations. This will improve the understanding of the WUE in ecosystems
and enhance the scientific basis for water resource management in the TMS.
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