
Citation: Yao, Z.; Zhang, Y.; Xiao, P.;

Zhang, L.; Wang, B.; Yang, J. Soil

Erosion Process Simulation and

Factor Analysis of Jihe Basin.

Sustainability 2022, 14, 8114.

https://doi.org/10.3390/su14138114

Academic Editors: Rongqin Zhao,

Kai Fang, Xiaowei Chuai, Heli Lu

and Jan Hopmans

Received: 18 May 2022

Accepted: 28 June 2022

Published: 2 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Soil Erosion Process Simulation and Factor Analysis of
Jihe Basin
Zhihong Yao 1,*, Yu Zhang 1 , Peiqing Xiao 2,*, Lu Zhang 1, Bo Wang 1 and Jianchen Yang 1

1 College of Surveying and Geo-Informatics, North China University of Water Resources and Electric Power,
Zhengzhou 450046, China; yuzhang22333@163.com (Y.Z.); zhanglu@ncwu.edu.cn (L.Z.);
yanan956138961@163.com (B.W.); yangjianchen_henan@163.com (J.Y.)

2 Key Laboratory of Soil and Water Conservation on the Loess Plateau of Ministry of Water Resources, Yellow
River Institute of Hydraulic Research, Zhengzhou 450003, China

* Correspondence: yaozhihong@ncwu.edu.cn (Z.Y.); peiqingxiao@163.com (P.X.)

Abstract: Soil erosion is a notable contributor to carbon emissions. Distributed erosion model can be
used to study erosion distribution in different land cover, identify the main influential factors, and
hence guide soil and water conservation. In this study, Regional Soil Erosion model (RSEM) was
used to simulate the soil erosion processes of Jihe Basin in 2015, and the Multiscale Geographically
Weighted Regression (MGWR) implementation was applied to compare the erosion regression of
Geographically Weighted Regression (GWR) and MGWR as well as study the impact of influential
factors on sediment modulus in hillslopes. The results are as follows: (1) MGWR results indicated
slope was the dominant factors affecting soil erosion at the catchment scales, where the average
coefficients of slope, forest coverage, and grass coverage descended in the value of 0.90, −0.11, and
−0.19, and the influences of factors operate over scales; (2) MGWR with the adoptive bandwidths
performed well in the goodness of fit, t-test of variables, scales that variables operate, and interactive
interpretation of soil erosion; (3) the coupling effects and scales of vegetation and topography factors
are an important approach to study soil erosion at a larger scale.

Keywords: soil erosion; erosion model; land cover; MGWR; carbon emission

1. Introduction

Soil is the third largest global carbon stock except for ocean and lithosphere, and an
important contributor to greenhouse-gas emissions in the terrestrial ecosystem [1,2]. Soil
erosion is a widespread and notable environmental problem threatening the terrestrial
ecosystems [3], relevant to non-point pollution [4], land degradation [5], carbon cycle, etc.
Considerable quantities of topsoil are transferred by soil erosion, greatly affecting carbon
redistribution and global biochemistry [6]. The Loess Plateau is one of the most intensely
eroded areas in the world, and its dry climate and rare vegetation are the primary factors
of the extremely fragile eco-environment [7]. Serious soil erosion not only aggravates the
deterioration of the local ecology, but also is the cause of considerable carbon flowing into
the global eco-environment [8]. With the effective implementation of the Grain-for-green
project, the eco-environment of the Loess Plateau has changed significantly that the average
annual amount of sediment entering the Loess Plateau has been drastically reduced from
1.6 billion ton to 0.3 billion ton [9], regulating regional climate, fixing carbon, sustaining
water balance, and increasing biodiversity [10,11]. Previous studies indicated vegetation
restoration on a large scale has been the key reason for the reduction of sand transport in
major river basins, especially the Yellow River basin in the past 30 years [12–14]. However,
the capacity vegetation restoration reduces soil erosion and carbon emission is unclear and
hence quantifying the volume of erosion reduction at the watershed scale is urgent [15].

Soil erosion by water is a multifactorial coupled influence process, affected by precipi-
tation [16], topography [17], soil [18], and vegetation [19]. The relationship between single
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factor and erosion of sediment production has been well established. Vegetation cover
and topography play an important role in the soil erosion and sediment transportation
by modifying characteristics of runoff and erosion dynamic; for example, canopy of tree
and vegetation can intercept rainfall and reduce the kinetic energy of rainfall, thus slowing
down surface erosion by splashing; the root layer of vegetation can improve the physical
and chemical properties of the soil, enhance its infiltration and erosion resistance, and
ultimately prevent soil from erosion; the vegetation surface cover part, especially the dead-
fall layer, can directly absorb and retain rainfall, and increase soil infiltration and reduce
surface runoff by reducing runoff flow rate and extending sink time [20–22]. Topography is
the vehicle through which erosion of sand production occurs and develops. Under certain
rainfall conditions, slope is the main topographic indicator that determines erosion and
sand production. However, the response mechanism of erosion and sediment yield under
the coupling effect of multiple factors is unclear [20]. Particularly, the function of vegetation
and topography in watershed-scale is still weak.

Soil erosion model is an effective tool for predicting soil erosion, guiding the configu-
ration of soil and water conservation measures, and optimizing the use of soil and water
resources, which have long been of great interest to scholars in the world [23]. Numerous
models have their typical characteristics in terms of scenarios, description of the erosion
process and accuracy, such as RUSLE (Revised Universal Soil Loss Equation), WEEP (Water
Erosion Prediction Project), PESERA (Pan-European Soil Erosion Risk Assessment), SWAT
(Soil Water Assessment Tool), LISEM model (LImburg Soil Erosion Model), EUROSEM
(European Soil Erosion Model), etc. Previous studies showed that the erosion model has
been used to quantitatively simulate and assess regional soil loss [24]. RUSLE is the most
popular model capable of predicting the average annual soil loss because of its convenience
in application and compatibility with GIS [25]. WEEP is a process-based model used to
predict runoff and soil erosion and can be applied to slopes and small catchments due
to single rainfall-event simulation [26,27]. PESERA assesses the state of soil erosion risk
on a European scale and can be used to assess sensitivity to altered conditions, especially
in the prediction of post-fire erosion loss [28,29]. Generally, soil erosion models can be
divided into statistical models and theoretical models. Statistical models have advantages
in effective assessment of soil loss, but they lack detailed descriptions of erosion processes
and poorly explain the influencing factors on erosion [30]. Physical models, especially dis-
tributed physical genesis models, are more suitable for fine-grained assessment of erosion
processes and sand transport processes, whereas the data required for modeling are diffi-
cult to obtain which makes it difficult to determine and apply model parameters in varied
areas [31]. Considering the regional availability of erosion model and data availability of
input parameter, this study applied a distributed physical genesis models with flexible
input termed Regional soil erosion model (RSEM) to simulate the soil erosion process of
Jihe Basin. Based on the principles of hydrology and erosion, RSEM quantitatively de-
scribes the process of soil erosion in a watershed from the perspective of precipitation and
sediment generation and transportation, including precipitation, vegetation interception,
soil infiltration, storage in micro depressions, surface runoff, sediment detachment and
deposition, and sediment accumulation and transmission [32].

Regression analysis describes how one or more independent variables contribute to
the dependent variable, which could demonstrate the relationship in numeric variables.
Non-independent spatial data will lead to the inapplicability of many classical statistical
methods that are independently and identically distributed [33]. Obviously, soil erosion at
the watershed scale is spatially heterogeneous. Ordinary Least Squares (OLS) is a common
mathematical regression analysis method, which minimizes the residual sum of squares
to the analysis of the relationship in different variables. While the spatial distribution of
variables is heterogeneous and non-stationarity, OLS is difficult quantify the correlation of
spatial variable. Geographically weighted regression (GWR) has been one of the wide-used
local spatial statistical analysis, calibrating locally weighted regression analysis models
where parameter estimations vary with its location, providing intuitive, practical spatial
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relationship heterogeneity, and multiphase analysis tool [34]. GWR typically provides
increased model fit and reduced residual spatial autocorrelation compared to a traditional
global regression [35]. To capture the process of spatial heterogeneity by allowing effects
to vary over space, GWR uses nearby data to calibrate an ensemble of local linear models
and provides a surface of location-specific parameter estimates for each relationship in the
model that is allowed to vary spatially with a fixed bandwidth parameter [36]. The issue
of scale is one of the important research elements of geographic information science [37].
While calibrating the GWR model with a single bandwidth and kernel function, it is
inevitable to lead to the spatial variation of all parameter estimates showing the same scale
characteristics. Though the multivariate spatial data relationships correspond to different
scales of variation, GWR reflects the ‘best average’ scale of spatial relationships for all and
ignores these differences and reflects the spatial relationships at the differences. To fix the
scale issue, Fortheringham proposed the Multiscale Geographically Weighted Regression
(MGWR) representing the spatial heterogeneity of multivariate estimation with adoptive
bandwidths in 2017 [38]. Then Yu complemented the inferential statistics so that MGWR is
widely applied in varied research [39]. Few studies use MGWR to analyze multiple factors
related to erosion.

Jihe basin, the first-class tributary of the Wei River in the Loess Plateau, has consid-
erable reduction of sediment transport volume in the past forty years, from 10.4 billion
Kg in 1968 to 0.18 billion Kg in 2008 [40]. After years of efforts of soil and water conserva-
tion projects, the ecosystem and soil erosion in Jihe basin have accumulated a wealth of
observation data needed to further study. However, previous studies mostly focused on
the statistical analysis how land cover contributes to sediment reduction at the sub-basin
level of Jihe basin [41–43].

This study applied RSEM to simulate the soil erosion process of Jihe Basin in 2015
and MGWR software, developed by Oshan, to explore the spatial impact on erosion of
topography and vegetation from the perspective of the hillslopes scale. The purpose of this
study was to: (1) simulate the process of runoff generation, soil erosion and sediment yield
in Jihe Basin; (2) apply MGWR to demonstrate the influential factors to spatial distribution
of erosion; (3) explore how vegetation and topography factors impact on erosion at the
watershed scale.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, Jihe basin is the first-class tributary of the Wei River that locates
in the southeast of the Loess plateau and belongs to the third sub-region of Loess hills.
Originating in Gangu County, Jihe basin flows eastward through Qinzhou District and
joins the Wei River in Maiji District, which covers about 1800 Km2 at 105◦8′ E–106◦8′ E in
longitude and 34◦21′ N to 34◦39′ N in latitude. The topographic features of the basin are
mainly loess hills, laterite hills, erosion landforms of earth and stone hills and river valley
terraces [41]. According to the Harmonized World Soil Database constructed by Food
and Agriculture Organization of the United Nations, soil type in Jihe basin varies greatly,
in which 37.92% is cinnamon soil, 23.36% is loessial soil, 16.00% is brown soil, 15.59% is
alluvial soils, 5.48% is skeleton soil, and 1.84% is mountain meadow soil. The watershed is
a warm temperate semi-humid and semi-arid transition zone.

According to Tianshui hydrological observatory data collected in Hydrological Data
of Yellow River Basin of Annual Hydrological Report, its average annual precipitation
is about 566.8 mm from 1976 to 2015, and the minimum precipitation is 368 mm in 1996
and the maximum is 860 mm in 2003. With an unevenly distributed precipitation, it
concentrates on summer that over 60% of precipitation occurs in the way of fast and strong
rainstorm from June to September [40]. The rainfall events in summer of 2015 were used
to study soil erosion of Jihe Basin. Figure 2 showed the curve of precipitation, runoff, and
sediment yield in 2015, in which there were two important rainfall events worth to further
analyze. According to observation data of hydrological yearbook, the precipitation volume
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of two rainfall occurred in April and June was 211.5 mm and accounted for 53.97% in 2015,
followed by 2.39 × 107 m3 of runoff and 3.46 × 107 Kg of sediment which accounted for
67.88% and 95.61%, respectively. In Figure 2, the curve lines showed a simultaneous trend
of precipitation, runoff, and sediment yield, and indicated sediment by soil erosion was
mainly generated by intensive rainfall and runoff. Therefore, two heavy rainfalls in April
and June were applied in model to simulate soil erosion.
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2.2. RSEM Model Simulation
2.2.1. The Framework of RSEM

The Regional soil erosion model (RSEM) quantitatively simulates the surface material
transport processes by describing the soil erosion process at the catchment scale as rainfall
and runoff generation, soil erosion, runoff, and sediment transportation. As shown in
Figure 3, the processes of soil erosion in this model are divided into three parts at the
hydrological unit scale, including runoff generation by rainfall, sediment yield by runoff,
and accumulation and transmission of runoff and sediment. The sub-processes of inter-
ception [44,45] (Equations (1) and (2)), infiltration [46] (Equation (3)), storage in micro
depressions [47] (Equation (4)), transport capacity [48] (Equation (5)), detachment and de-
position [49] (Equation (6)) are listed as follows. Two key equations (Equations (5) and (6))
that determine the calculation of detachment volumes could also be found in LISEM model
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(LImburg Soil Erosion Model) [50] and EUROSEM (European Soil Erosion Model) [51]. A
more detailed mechanism and implementation process are described in the paper [32,52].

Sv = cp × Smax ×
[

1− e−η Pcum

Smax

]
(1)

where Sv is the cumulative interception (mm), Pcum is the cumulative rainfall (mm), η
is a correction factor for vegetation density and determines the rate with which Smax is
reached, cp is the fraction of vegetation cover and Smax is the canopy storage capacity (mm)
estimated from the LAI (m2/m2), calculated in Equation (2).

Smax = 0.935 + 0.498× LAI − 0.00575× LAI2 (2)
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Infiltration can be calculated with Equation (3).

ft = kt−β (3)

where ft is infiltration rate (mm/min); fc is infiltration rate at steady state (mm/min); t is
time since the start of the infiltration (min); k and β is coefficients relating to soil character
and original condition.

MDS = 0.243× RR + 0.010RR2 + 0.012× RR× S (4)
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where MDS is maximum depression storage (cm); RR is random roughness (cm); S is slope
gradient (%).

Tcj = 2650× c×
(
vj × sinS× 100− 0.4

)d (5)

where Tcj is transport capacity (kg·m−3); vj is flow velocity (m/s); s is slope (%); c and d
are experimental coefficients depending on the median texture (D50) of the material.

D f = Ywvs(Tc − C)dx (6)

where D f is detachment volume of runoff (kg/s); Y is effective coefficient of runoff detach-
ment; ω and dx are the image resolution (m); vs is sediment particle deposition rate(m/s);
Tcj is transport capacity (kg·m−3) and C is the sediment concentration(kg·m−3).

According to the principle of water-sand balance and the support of GIS, the algo-
rithms on accumulation and transmission of runoff and sediment was designed under the
principles of accumulation and GIS spatial analysis [52], which can calculate the runoff and
sediment yield on outlet of basin.

2.2.2. Input and Output of RSEM

Input of RSEM includes precipitation, DEM (Digital Elevation Model), and land
cover. Daily precipitation in 2015 was provided by Tianshui hydrological observatory. The
precipitation data including precipitation volumes and rainfall duration in April and June
was used to simulate the rainfall processes, which were indicators of rainfall erosivity. Since
the sediment volumes yielded by the precipitation rainfalls in April and June contributed
to 95.61% of sediment volumes of 2015, this study mainly focuses on sediment yield by
soil erosion, and hence other time series were ignored because of low sediment yield. The
DEM dataset of STRM (Shuttle Radar Topography Mission)) and Landsat image in this
study was collected and derived from Geospatial Data Cloud (http://www.gscloud.cn/,
accessed on 15 July 2015). Slope were calculated from DEM. The LUCC of catchment was
interpreted into five categories from Landsat image, combined artificial interpretation with
random-forest algorithm. Both the former with a resolution of 25 m and the latter with
a resolution of 30 were resampled to the resolution of 75 m with the nearest neighbor
method. LAI calculated from Landsat image was to calculate the cumulative vegetation
retention [53]. Combined the Kostiakov infiltration model with the measured data from
field infiltration process experiment, the coefficient of Kostiakov model was interpolated to
a region surface to calculate infiltration.

The output of model is presented as raster image which could be used to further
analyze and verify model. The key simulation results include, sediment transport capac-
ity, sediment transport volume on outlet of basin, soil detachment by runoff, sediment
modulus, etc.

2.2.3. Validation of Simulation Results

The validation of simulation results of RSEM were verified by the measured data of
Tianshui hydrological observatory, including volumes of sediment transport collected in
Hydrological Data of Yellow River Basin of Annual Hydrological Report. The volumes
of sediment transport were calculated from a daily average rate of suspended sediment
transport (Kg/s) during the corresponding period. Since the catchment area that Tianshui
hydrological observatory covers is about 1019 Km2 in hydrological yearbook of Jihe basin
while the study area that is similar in soil characteristics and topography covers about
1800 km2 [54], the measured volumes of sediment were adjusted to multiply the factor
(1.8), so that the simulation results could be verified by the measured date. The simulated
sediment volumes of basin outlet in April and June were validated in the comparison with
the adjusted measured sediment volumes.

http://www.gscloud.cn/
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2.3. Data Analysis

Since the calculation of runoff and sediment volumes include the processed of ac-
cumulation and transmission in units, each unit are the sum of the retained volume of
the last iteration, runoff by precipitation/detachment by the runoff, inflow, and outflow
of runoff/sediment by the accumulation function of Arcgis. Therefore, each unit is not
isolated during the calculation and not merely determined by equations above. It is mean-
ingful and scientific to render analysis about the correlation between sediment modulus
and influential factors at the hillslope scale.

The soil erosion simulation results by the rainstorm in April of 2015 were used to
participate in the further study since it was the largest soil erosion event in 2015. OLS,
GWR, and MGWR regression model were used to participate in regression among sedi-
ment modulus, vegetation, and topography. Sediment modulus was used to describe soil
erodibility of hillslopes which means the amount of erosion per unit area during a rainfall
event. Forest coverage and grass coverage was used to be an indicator of vegetation factor
and average slope was to be an indicator of topography. After the simulation of soil erosion,
the values of sediment modulus stored in the pixel of raster image were calculated at each
hillslope extracted by the hydrological function of Arcgis. Vegetation coverage and average
slope participated in regression analysis at the hillslopes were calculated by Python.

MGWR implementation, developed by Oshan, is a multiscale analysis tool of spatial
heterogeneity, providing novel functionality for inference and exploratory analysis of
local spatial processes, new diagnostics unique to multi-scale local models, and drastic
improvements to efficiency in estimation routines, including OLS, GWR, and MGWR
regression models [36].

By borrowing data nearby to distance-weight at each location, GWR calibrates a
separate regression model allowing the parameters to vary spatially. The GWR model
formulation can be specified as Equation (7):

yi =
m

∑
j=0

βi(ui, vi)xij + εi (7)

where xij is the jth predictor variable, β j
(
ui, vj

)
is the jth coefficient, εi is the error term,

and yi is the response variable.
MGWR eliminates the restriction that all relationships vary at the same spatial scale so

that the conditional relationships between the response variable and the different predictor
variables are allowed to vary at different spatial scales [55]. The MGWR model formulation
can be described as Equation (8):

yi =
m

∑
j=0

βbwj(ui, vj)xij + εi (8)

where bwj in βbwj indicates the bandwidth used for calibration of the jth conditional
relationship.

Two key issues in both GWR and MGWR model calibration are kernel function and
optimized bandwidth selection. Kernel function and bandwidth selection are used to
calculate the weights matrix of both GWR and MGWR models. In this study, adaptive
bis-square kernel was selected as spatial kernel and Corrected Akaike information criterion
(AICc) was selected as the optimization criterion to select the optimized bandwidth. AICc
penalizes smaller bandwidths that result in more complex models that consume more
degrees of freedom and is defined as Equation (9). AICc weights the complexity of the
estimated model and the goodness of model to fit the data and the lower AICc means better
fitness. When AICc values change more than 3, one model is significantly different from
the other [36]. The dependent and independent variables were standardized so that they
are centered at zero and based on the same range of variation which makes calculation
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quicker, the and parameter estimation can be easily reversed so that the regression equation
demonstrates the origin of quantitative relationships.

AICc = 2n ln(
RSS

n
) + n ln(2π) + n

{
n + tr(S)

n− 2− tr(S)

}
(9)

where n is the number of observations, S is the influence or hat matrix, and RSS is the
residual sum of squares.

According to the first law of geography, the basic guidelines GWR used to the weights
matrix is that the greater the distance, the higher the weight value assigned [56]. Three
most widely used kernel functions are provided in MGWR implementation, which are
the Gaussian, exponential, and bi-square kernel. The bi-square kernel makes observations
beyond the bandwidth non-influential while the other two kernels make all observations
to retain non-zero weight. The difference between fixed and adoptive kernel function is
whether the bandwidth parameter is fixed or not. Adaptive kernel has advantages when
handling irregularly shaped study areas, non-uniform spatial distributions of observations,
and edge effects.

After regression model calibration, several statistics can be used to evaluate the fit
of the model. There are global statistics such as residual sum of squares, the adjusted R2

or AICc to assess goodness of fit globally, and the map of local R2 to assess the fit of the
model at each location by providing an indication of how well the model fits over the study
area. Traditional inferential tools are available, and hence the t-test could be carried out
on individual parameter estimation at each location. Effective number of parameters are
the measure of model complexity and represent the equivalent number of independent
parameters estimated in a local model, which equal the sum of the covariate-specific
effective number of parameters [39].

3. Results
3.1. Vegetatio and Topography in Jihe Basin

Slope image, land cover image, and hillslope image were loaded as numpy array by
Rasterio python package and summed in the form of average slope and land cover in each
hillslope by Numpy python package. Next, slope and vegetation (include forest and grass)
in hillslopes were divided into several grades and aggregated by areas, shown in Table 1 in
detail. The hillslopes with the average slope of 15–20◦ accounted for the largest proportion
in catchment, and the second is the hillslopes with slope of 20–25◦. The steep hillslopes
over 15◦ was dominant landform because of its areas of 1455.38 Km2 and percentage of
81.18%. Similarly, the hillslopes with the vegetation coverage of 70–100% accounted for the
largest proportion which was 759.54 Km2 and 42.36% in Jihe Basin, which indicated there
was fine vegetation cover in Jihe Basin. Indeed, hillslopes with high vegetation coverage
over 50% were concentrated in steep slope over 15◦, which is 1308.09 Km2 and about 73%
of the total areas in Jihe Basin and meant there were spatial correlation among them and
could be further verified.

Table 1. The areas (Km2) in different slope (◦) and vegetation coverage (%) of hillslopes.

Vegetation Coverage (%)

0–10 10–20 20–30 30–40 40–50 50–0 60–70 70–100 Sum

Average
Slope (◦)

0–10 20.08 14.97 12.16 15.62 6.67 5.25 1.31 0.73 76.77
10–15 1.55 2.64 12.36 21.28 71.10 71.60 65.17 15.00 260.70
15–20 0.11 1.13 4.27 26.46 72.68 159.62 211.78 164.94 640.97
20–25 0.00 0.50 0.75 6.15 28.56 44.51 109.32 293.57 483.34
25–30 0.00 0.00 0.64 1.31 3.70 5.79 29.88 195.18 236.49
30–70 0.00 0.00 0.00 0.00 0.24 0.44 3.76 90.14 94.58
sum 21.75 19.24 30.18 70.81 182.94 287.20 421.21 759.54
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3.2. Model Simulation Results

Simulation results of sediment was aggregated in Table 2, which showed the volumes
of simulated sediment were in the same magnitude compared to the adjusted sediment.
Although precipitation in April was lower than that in June, the volumes of sediment in
April were higher than that in June, which could be explained by rainfall erosivity. Rainfall
erosivity is related to rainfall intensity, including duration of rainfall and precipitation
volumes [57]. According to calculation equation of rainfall erosivity [57], higher rainfall
erosivity in April may account for the higher sediment volumes, shown in the sharp
precipitation curve of Figure 2.

Table 2. Simulation results of sediment volume.

Month
Average

Precipitation
(mm)

Measured
Sediment

Volume (Kg)

Adjusted
Sediment

Volume (Kg)

Simulated
Sediment

Volume (Kg)

4 85.5 2.74 × 107 4.93 × 107 7.30 × 107

6 126 7.19 × 106 1.29 × 107 4.63 × 107

Sediment modulus of simulation result in April were aggregated in hillslopes of var-
ied vegetation coverage and slope degree in Table 3. Since there was null of the areas
in Table 1, there was same null data in Table 3. The average of sediment modulus in-
creased significantly with the increase of average slope in hillslopes in which the min was
24,587 Kg/Km2·a and the max was 53,297 Kg/Km2·a. It showed the similar increase with
the increase of vegetation coverage in hillslopes. Besides, Table 3 indicated that the sedi-
ment modulus varied indistinctively under certain slope degrees and different vegetation
coverage and varied significantly under certain vegetation coverage and different slope
degrees. This controversial increase with vegetation coverage would be explained later.

Table 3. Sediment modulus in hillslopes of different vegetation coverage and slope degree
(Kg/Km2·a).

Vegetation Coverage (%)

0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–100 Average

Slope
(◦)

0–10 22,857 23,534 26,225 22,731 28,200 29,948 28,590 28,151 24,587
10–15 37,924 35,260 33,845 36,427 35,219 35,263 34,637 35,495 35,150
15–20 37,176 38,301 37,665 39,983 39,238 39,183 39,083 39,274 39,158
20–25 0 45,565 48,618 45,217 43,691 44,191 44,016 43,626 43,838
25–30 0 0 48,456 49,551 48,364 49,712 49,732 49,139 49,331
30–70 0 0 49,644 50,006 53,942 53,305 0 0 53,297

Average 24,007 26,580 31,993 35,740 38,167 39,042 40,531 45,071 41,301

3.3. Regression Model Results

Vegetation and topography factors of hillslopes extracted from simulation results was
applied in MGWR implementation to study the spatial relationship of sediment modulus
at the catchment scale, shown in Tables 4–6.

Table 4. Comparison of OLS, GWR and MGWR results.

OLS GWR MGWR

R2 0.87 0.94 0.93
Adjust R2 0.87 0.93 0.92

AICc 2158.01 1119.36 1160.55
Residual sum of squares 351.24 171.95 204.79

Effective number of parameters 394.69 223.20
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Table 5. t-test of variables in OLS, GWR and MGWR.

t-Test OLS GWR MGWR

Forest Coverage 0.00 non-significant significant
Grass Coverage 0.51 non-significant significant
Average Slope 0.00 partial significant significant

Table 6. Parameter estimation of OLS, GWR and MGWR.

Variable OLS
GWR MGWR

Bandwidth Mean Std Min Max Bandwidth Mean Std Min Max

Forest Coverage −0.05 61 −0.28 0.50 −3.10 1.13 2436 −0.19 0.01 −0.20 −0.18
Grass Coverage 0.01 61 −0.16 0.27 −1.82 0.72 885 −0.11 0.03 −0.16 −0.04
Average Slope 0.97 61 0.89 0.25 0.12 1.86 119 0.90 0.19 0.47 1.41

Intercept 0.00 61 0.08 0.41 −2.26 1.54 43 0.10 0.18 −0.28 0.62

Compared with fitting performance, and the t-test of variables in Tables 4 and 5,
MGWR performed well in three liner models. The fit of goodness descended in the order of
GWR, MGWR, and OLS, with adjust-R2 being 0.93, 0.92, and 0.87 respectively. The results
of AICc presented a similar order and values of AICc changed more than 3, which indicated
there were significant differences in three models. The result of residual sum of squares
was opposite order, with the highest value being OLS and the lowest value being GWR.
The effective number of parameters were 349.69 for GWR and 223.20 for MGWR, which
indicated that MGWR had less complexity and less independent parameters estimated in a
local mode compared to GWR. On the other hand, the t-test of variables in three models
revealed a complicated result, shown in Table 5. In the OLS model, the t-test of forest
coverage and average slope were significant while grass coverage was non-significant,
where p = 0.05. In GWR and MGWR model, the t-test of variables in each hillslope was
independent, and hence it would be partially significant and partially non-significant. In
the GWR model, forest and grass coverage were non-significant while the average was
partially non-significant, where p = 0.05. In MGWR model, both three variables were
significant, where p = 0.05. Therefore, the t-test results of OLS and GWR revealed there
were non-significant across variables because of non-independent spatial data that are not
independently and identically distributed [33]. Based on the comprehensive indicators of
fitness above, MGWR performed best and was used to analyze the response of sediment to
vegetation and topography factor.

3.4. Response of Sediment to Vegetation and Topography Factor

Based on the results of t-test, the results of MGWR were applied to further study
the relationship between sediment modulus and influential factors. Table 6 showed the
results of the estimate of variables and bandwidths selection in GWR and MGWR where
the variables were standardized.

The separate optimized bandwidths from MGWR provide intuitive interpretation on
the scale at which different processes operate [36]. The fixed bandwidth of GWR was 61
which meant there were 61 nearest neighbors involved in the calibration of the estimate.
Likewise, the flexible bandwidths of MGWR descended in the order of forest coverage,
grass coverage, average slope, and intercept, with the values being 2436, 885, 119, and
43, respectively. The lower the bandwidth is, the more frequently variables change. The
optimal bandwidths revealed the influence of forest coverage was effectively stationary
over space, and the influence of average slope was highly heterogenetic except for intercept.
The bandwidth of MGWR was in the same order with effective number of parameters, too.
The variation of bandwidths was connected in the spatial non-stationarity distribution; for
example, the forest was concentrated in the west and south of Jihe basin, with variation
being smooth while the slope changed sharply with the bandwidth being lower, shown
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in Figure 4. Contrary to global estimate of variables of OLS, GWR, and MGWR model
provided individual estimate of variables in each hillslope, aggregated in Table 6.
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Generally, forest and grass coverage had negative impacts on sediment modulus while
average slope had positive impacts, shown in Table 6 of GWR and MGWR. MGWR results
indicated the impact of variables on erosion was consistent with the descending order
of parameter estimate, where the average coefficient of slope, grass coverage, and forest
coverage were 0.90, −0.11, and −0.19 respectively. The coefficient revealed slope was the
dominant factor, and the forest had more potentiality to weaken erosion than grass at the
watershed scale.

Additionally, the parameter estimates in each hillslope were shown in Figure 4. The
parameter estimates of variables varied in hillslopes at the catchment, which indicated the
coupling impacts on sediment modulus. As shown in Figure 4a,b, average slope of hillslope
in L1 and L3 were high, while the coefficient was low, which meant the impact of steep
slope on erosion was weakened. Figure 4d,f showed there were higher coefficient of grass
coverage in L1 and higher coefficient of forest coverage in L3; it could be concluded that
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the high vegetation coverage in L1 and L3 weakened the erosion caused by steep hillslope.
This could be confirmed in L2 that gentle hillslope with low vegetation coverage had the
higher coefficient of average.

4. Discussion

The regression of MGWR at the catchment scales indicated the slope was the dominant
factor affecting soil erosion at the catchment scales and forest cover has the power the
power to reduce sediment more than grass (Table 6). The influence of factors operates in
scales, where the influence of average slope was highly heterogenetic, and the influence of
forest coverage was effectively stationary over space, revealed by bandwidth and effective
number of parameters, shown in Table 6 and Figure 4. Besides, the erodible capability
of steep slope was effectively weakened by high vegetation coverage. The result is also
reached by the finding in Yimeng mountainous that slope-factor is the most factors affecting
the distribution of soil erosion at a large-scale region and exhibited a decreasing trend with
the vegetation reconstruction of Grain for Green Program [14]. Vegetation and topography
factors have coupled effects on erosion operating at different scales [20], as evidenced by
the bandwidths and regression coefficients of MGWR (Table 6).

The clustered and heterogeneous spatial distribution of influential factors has been
a noteworthy issue of studying soil erosion at the catchment scales. Table 3 indicated the
controversial distribution of sediment in hillslope of different vegetation cover and slope
degree, where sediment modulus increases with the increase of vegetation coverage while
it is well-known that sediment modulus increases with the increase of slope. The simulation
results of soil erosion were revealed by the negative correlation of both forest and grass
coverage, and the positive correlation of average slope in MGWR. Figure 4 (L1,L3) and
Table 1 demonstrated a vital reason accounting for the controversial distribution, where
hillslopes with high vegetation coverage were consistent with that with high slope in the
spatial distribution and sediment modulus of different vegetation coverage under certain
slope was similar. Therefore, the spatial correlation between slope and vegetation coverage
accounted for the confused result of Table 3.

MGWR, a novel geographic analysis method, has substantial improvements compared
to OLS and GWR [58,59]: (1) the flexible bandwidth yields a more realistic and useful
spatial process model exhibiting the coupling impacts; (2) the specific bandwidth of each
variable might be used as an indicator of the spatial scale of action of each spatial process.
Limited to the availability of data and knowledge, three influential factors were used to
study soil erosion at the catchment scales and more topography and vegetation factors
could be considered, such as slope length and carbon emission.

The simulation results of RSEM provided detailed erosion distribution at both hill-
slopes scale and pixel scale, which most erosion models cannot provide. The validation of
existing models is mostly based on export values of the outlet of basin, but less on spatial
distribution of simulation results [31]. The volume of simulated sediment transport was
consistent with the measured data in Table 2. Besides, the spatial pattern of soil erosion was
agreement with other studies [60,61], which verified the soil erosion patten of RESM. This
model simulation results would help understand the spatial distribution characteristics of
erosion, prompt the reasons behind the occurrence of erosion, and evaluate the impact of
these distributions at a large scale.

However, there are limitations to this model, as more factors about erosion should
be taken into consideration, and the applicability of the model in other areas of the Loess
Plateau needs to be improved. The simulation results were closed to the measured sediment,
which were slightly larger than the real data because the RSEM have not taken several
erosion reduction processes into simulation, such as check dam, etc. [32]. Both landscape
engineering, terracing, the construction of check dams and reservoirs, and large-scale
vegetation restoration projects were the primary factors driving reduction of sediment
load [62]. The erosion reduction effects of check dams and others were not added into
RSEM model, which made the simulation results unclear to some extent.



Sustainability 2022, 14, 8114 13 of 15

5. Conclusions

This study simulated soil erosion and sediment yield in Jihe Basin by the RSEM model
in which measured hydrological data was calibrated, and used OLS, GWR, and MGWR
to demonstrate the spatial distribution characteristics of erosion and its influential factors.
The main goal of the current study was to determine the spatial heterogeneous relationship
between soil erosion and influential factors. With the application of RSEM model, soil
erosion, and sediment generation at the hillslope and watershed scale were simulated and
displayed in the raster surface, providing a visible insight into the spatial distribution of
erodibility of influential factors.

Simulated soil erosion of distributed physical genesis models provided detailed de-
scription and simulated data sources at the large scale, so that further study would be
broader on soil erosion at the large-scale watershed. When confronting erosion distribution
with spatial autocorrelation, spatial heterogeneity, and spatial stratified heterogeneity at a
large scale, geographical analysis methods would perform better than traditional statistical
methods. MGWR results promoted the goodness of fit and interpretability of variables
that indicated how vegetation and topography factors operated in individual scale. More-
over, statistical analysis of MGWR would be helpful in the improvement of water and soil
conservation management and region soil erosion model. For example, the steep slope
area (i.e., L2 in Figure 4) should not be disturbed and maintain high vegetation coverage
so that soil erosion is weakened; vegetation restoration project has an additional spatial
reference according to the variation of reduction sediment effect of forest and grass in
MGWR. Although our research presented a case study of Jihe basin, it would be valuable
when combining with the measured data or simulated data in Loess Plateau with MGWR
to study soil erosion at the watershed scale.
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