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Abstract: Building roofing produced with asbestos-containing materials is a significant concern due
to its detrimental health hazard implications. Efficiently locating asbestos roofing is essential to
proactively mitigate and manage potential health risks from this legacy building material. Several
studies utilised remote sensing imagery and machine learning-based image classification methods for
mapping roofs with asbestos-containing materials. However, there has not yet been a critical review
of classification methods conducted in order to provide coherent guidance on the use of different
remote sensing images and classification processes. This paper critically reviews the latest works
on mapping asbestos roofs to identify the challenges and discuss possible solutions for improving
the mapping process. A peer review of studies addressing asbestos roof mapping published from
2012 to 2022 was conducted to synthesise and evaluate the input imagery types and classification
methods. Then, the significant challenges in the mapping process were identified, and possible
solutions were suggested to address the identified challenges. The results showed that hyperspectral
imagery classification with traditional pixel-based classifiers caused large omission errors. Classifying
very-high-resolution multispectral imagery by adopting object-based methods improved the accuracy
results of ACM roof identification; however, non-optimal segmentation parameters, inadequate
training data in supervised methods, and analyst subjectivity in rule-based classifications were
reported as significant challenges. While only one study investigated convolutional neural networks
for asbestos roof mapping, other applications of remote sensing demonstrated promising results
using deep-learning-based models. This paper suggests further studies on utilising Mask R-CNN
segmentation and 3D-CNN classification in the conventional approaches and developing end-to-end
deep semantic classification models to map roofs with asbestos-containing materials.

Keywords: ACM roof mapping; remote sensing imagery; image classification; machine learning

1. Introduction

Asbestos exposure remains a significant cause of death and health problems [1]. Pre-
venting asbestos-related diseases such as asbestosis, mesothelioma, and lung cancer [2–4]
is difficult because inadvertent exposure to unknown asbestos contaminations in build-
ings and the environment is unavoidable [5]. Moreover, asbestos-related diseases have a
long latency and continuous disease progression after exposure, which may not be diag-
nosed early [6]. The release of airborne asbestos fibres can be caused by human activities
that produce dust [7] (e.g., the maintenance, repair, and demolition of buildings with
asbestos-containing materials (ACMs) and the unsafe disposal of waste) and degradation
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via environmental causes, such as acid rain [8]. Asbestos contamination, particularly
in buildings, can remain in a wide area and cause infection to occupants and the sur-
rounding neighbourhoods [9]. This highlights the significance of identifying ACMs in
constructed buildings.

Despite the harmful effect of ACMs on human health and the environment, there are
still many buildings with ACM roofs [10–12]. Due to their physical and chemical properties,
such as poor heat conduction and tensile strength, ACMs were largely used in various
contexts between the 1970s and 1990s; mainly residential and industrial roof coverings [13].
For example, in the United States, 62% of asbestos usage is in roofing compounds [14],
and in Poland, 90% of ACMs are evaluated to be roof coverings [12]. While the use and
production of ACMs has been banned in an increasing number of countries, the presence
and impacts of existing ACM roofs must be identified and evaluated.

Mapping an accurate and up-to-date distribution of ACM roofs could lead to a decrease
in the asbestos pollution of detected ACMs through the safe disposal of waste and an
increase in occupants′ awareness of asbestos presence in their buildings [11]. Moreover, the
accurate mapping of ACM roofs leads to efficient monitoring and management of changes
in ACM roofs, supporting decision-making strategies and policies [10]. Estimating the
quantity and concentration of ACM roofs is challenging and involves high uncertainty
because of issues such as inspection barriers and inaccurate self-declarations [13]. Attempts
have been made in this regard through various methods, such as the estimation of ACMs
based on field inventory indicators of a particular area [15]; however, these methods are
unreliable due to the high degree of uncertainty [13], and because they are expensive, time
consuming, and labour intensive [12].

Remote sensing imagery (RSI) has proven to be efficient input data for detecting
and mapping ACM roofs [16–18]. Optical remote sensing systems provide data on the
Earth′s surface acquired from electromagnetic sensors in remote platforms (e.g., aircraft
and satellites) [19]. Remote sensors capture different numbers of spectral bands, resulting
in various imagery types. In the reviewed studies of ACM roof mapping, two RSI types are
often utilised as the input data: (1) hyperspectral imagery (HSI) [13,20–24], which provides
hundreds of narrow bands [25]; and (2) multispectral imagery (MSI) [10–12,26–32], which
provides a few numbers of wider bands (e.g., blue, green, red, and near-infrared bands)
and often has very high spatial resolution [33].

Providing rich spectral information has made HSI reliable input data to classify ACM
roofs based on their spectral characteristics. While the use of HSI has shown success in
achieving acceptable ACM roof classification accuracy, some challenges have made HSI
unsuitable for wide-scale mapping of ACM roofs [12]. Due to the low resolution of early
HSI, small ACM roofs could not be detected, causing a large omission error (OE) [13,20–23].
Moreover, using the optimal number of bands was a significant challenge due to the
high dimensionality of HSI [23,24]. Non-optimal selection of bands could cause issues
such as reducing classification accuracy (i.e., the curse of dimensionality) [34], inter-class
confusion [35], and noisy maps [36] (see Section 5).

On the other hand, when extracting urban features such as ACM roofs, spatial image
resolution is often more beneficial than spectral resolution [37]. In the past, multispectral
images from satellite sensors mostly had lower spatial resolution than HSI from aerial sen-
sors; however, MSI currently provides very high resolutions, is usually cheaper, and covers
larger areas. The earlier medium-resolution images from satellites such as LANDSAT 7
were not fine enough to identify small roofs, thus decreasing the classification accuracy.
With improvement in the resolution of satellite images, several researchers have stud-
ied very high-resolution (VHR) multispectral methods, such as WorldView-3 (WV-3) [11].
Given that some roofs are composed of different materials, different roofs exhibited similar
spectral responses due to more details in VHR images [10,27,30,31]. With the finer reso-
lution of VHR images, the variability among different roofs increases, causing confusion
among roof classes and a salt-and-pepper result [10].
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Given the problems with input data, several studies have focused on classification
methods and techniques to improve the process of ACM roof mapping. In the reviewed
studies of ACM roof mapping, three approaches were adopted: (1) pixel-based image
analysis (PBIA), (2) object-based image analysis (OBIA), and (3) a deep-learning-based ap-
proach (DL). In PBIA methods, individual pixels are the analysis units, which are classified
based on spectral values without considering the spatial and contextual information [38].
On the other hand, in OBIA methods, pixels are grouped in segments (also known as
objects), and the objects produced are analysed based on spectral, spatial, and contextual
information [39]. As a more sophisticated approach to image processing, DL methods are
capable of automatic extraction of features directly from images by adding hidden layers to
the conventional machine learning classifiers [40].

While the appropriate adoption of the classification methods could address the prob-
lems with input images, several challenges remained in the classification process (see
Section 5). For example, the OBIA methods showed good performance in handling the
high dimensionality problems in PBIA methods; however, adopting non-optimised seg-
mentation parameters caused mixed objects and low classification accuracy. Moreover,
inadequate training data in supervised methods [41,42] and analysts’ subjectivity in rule-
based classifications [43–46] were major challenges in the ACM roof mapping studies.
Several attempts have been made to address the noted challenges. Using multisource
images [30,32], segmentation optimisation techniques [47], and advanced non-parametric
classifiers [48] have shown good enhancement in the reviewed studies. Moreover, further
research on methods such as DL-based semantic segmentation adopted in other remote
sensing applications [49] could improve the ACM roof mapping process. An in-depth
exploration of the state-of-the-art studies of ACM roof mapping assists in better under-
standing the challenges in the mapping process and highlighting the possible strategies
to address them. To date, no previous research has comprehensively reviewed studies on
mapping ACM roofs.

This paper reviews the state-of-the-art studies of ACM roof mapping and synthesises
the challenges and opportunities for enhancing the mapping performance. The research
studies the current matters associated with input imagery and classification methods in
order to identify the priorities in future research. In particular, this review study sum-
marises, synthesises, and evaluates the ACM roof mapping studies in terms of (1) input
imagery type, sensor attributes, image resolutions, and non-technical factors such as cost
and availability of the data; (2) image classification process, classification accuracies, clas-
sifiers performances, segmentation methods, training data in supervised methods, and
computational requirements. Due to the adoption of different RSI and image classification
methods, it was difficult to compare and evaluate the ACM studies using quantitative
analysis methods. Moreover, the study areas consist of different characteristics, such as
topography, geometry, and condition of roofs, which was not comparable. In regards to
study selection for this review, almost all research prior to 2012 was limited to small study
areas, often urban blocks with flat topography; additionally, wide-scale mapping over
different sites such as rural places was conducted in a few areas [20–22]. Moreover, the
low resolution of earlier RSI resulted in a rough classification of roofing materials [50], and
previous works were not consistent when reporting achieved accuracies [12]. Hence, this
paper focused on peer-reviewed journal articles from 2012 to 2022.

The ACM roof mapping procedure of the reviewed studies includes three main steps
(see Figure 1): preprocessing, feature engineering, and image classification. The prepro-
cessing stage consists of subtasks to prepare input data for the subsequent steps. At this
stage, the input data may be corrected, denoised, synchronised, or fused with other RSI to
develop an appropriate version of the original data. In the next stage, the features (i.e., the
sets of RSI information) are determined by subtasks such as feature selection, extraction,
and transformation. This step provides relevant information for the classification process
by reducing the dimensionality of the RSI data. The last stage is image classification, where
pixels are labelled to roof classes (e.g., ACM roof). The mathematical classification model is
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developed based on training data in supervised methods or analysts’ knowledge in expert
system methods [49].
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The review paper is structured to cover all stages of the ACM roof mapping procedure
in the targeted studies. Firstly, the various types of RSI used in the literature, including HSI,
MSI, and the fusion of RSI, are explained, and the preprocessing methods are discussed in
detail. Secondly, the feature engineering and classification methods are explained based
on their classifying approaches, including pixel based, object based, and deep learning
classification techniques. Based on the conventional procedure of ACM roof mapping, the
challenges affecting the accuracy results of the studies are extracted and synthesised in
tabular structures. Then, the challenges are studied in other applications of RSI and image
classification to identify possible solutions for enhancing the ACM roof mapping process
and accuracy results.

2. Materials and Methods

Ref. [51] defined the characteristics of state-of-the-art review by comparing the HSI
type of review with the other common review types using the Search, Appraisal, Syn-
thesis, and Analysis (SALSA) analytical framework. For this review, no formal qual-
ity assessment and predefined method (e.g., systematic review) were considered to col-
lect and analyse the sources [51]. Due to the non-numerical nature of the input data,
a qualitative research design approach was adopted to structure the paper. The identi-
fied challenges [10,11,13,16,20–23,26–28,30,31] are narratively synthesised and presented
in Section 5.

As shown in Figure 2, the study was designed in three stages: (1) data acquisition,
(2) data synthesis, and (3) solution development. In the first stage, the search was conducted
within Scopus, ScienceDirect, and Google Scholar; then, the target studies were selected
based on criteria noted in Section 2.1. In the second stage, selected sources were summarised
and grouped based on the input RSI (i.e., HSI, MSI, and multisource data) and the image
classification approach (i.e., PBIA, OBIA, and DL). In the third stage, the studies were
critically reviewed to identify challenges affecting the ACM roof mapping process and
classification accuracy results. Finally, the synthesised challenges were studied in reviewed
sources and other applications of RSI (e.g., object detection in urban areas) to develop
possible strategies to address the ACM roof identification challenges.
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2.1. Data Acquisition

The targeted sources for reviewing mainly originate from two categories of RSI ap-
plications: (1) ACM roof identification, or (2) roof classification with at least one ACM
roof class. Data for the review were initially gathered from related research satisfying
the following three criteria: (1) studied the identification of ACM roofs or studied roof
classification with at least one ACM class, (2) used at least one type of RSI, and (3) used
machine learning methods in the classification process.

Peer-reviewed journal articles and conference papers from 2012 onwards were ex-
tracted from the collected sources in the initial search. ACM roof identification studies
prior to 2012 were often conducted on small study samples and mainly included flat urban
areas [24,52]. Moreover, the input data had a low spatial resolution (e.g., more than 5 m),
causing the problem of mixed pixels in urban studies [36,53,54]. Hence, focusing on the
peer-reviewed research of the past ten years is considered appropriate for studying the
recent findings of ACM roof identification. The searched databases were Scopus, ScienceDi-
rect, Google Scholar, and some high-impact journals such as Remote Sensing of Environment,
the ISPRS Journal of Photogrammetry and Remote Sensing, IEEE Transactions on Geoscience and
Remote Sensing, and the International Journal of Remote Sensing.

2.2. Data Analysis

Accuracy assessment indicates the performance of a classification process by calculat-
ing (1) user accuracy (UA), showing the omission error (OE), where pixels are incorrectly
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classified as a labelled class; (2) producer accuracy (PA), which represents the probability
that a particular pixel of an area on the ground is classified as such, and also allows cal-
culating commission error (CE); and (3) overall accuracy (OA) represents the percentage
of total pixels correctly classified [33]. As shown in Figure 1, the process of ACM roof
identification includes different stages that could be performed by various methods, tech-
niques, and tools. ACM roof mapping studies have used numerous remote sensing data,
feature engineering methods and machine learning classification algorithms [28,29,32]. The
accuracy assessment of ACM classes is thus affected by different attributes of RSI data and
the various factors used in the mapping procedures [55,56]. Hence, it may be inappropriate
to compare the accuracy results in quantitative analysis. In other words, comparing the
percentage-based accuracies of the works might be inconclusive in terms of determining
the most effective methods and techniques of ACM roof mapping. Moreover, other con-
tributing factors, such as the available RSI data, the research cost, and the researchers′

expertise, affect the mapping accuracy results.
Given the unmeasurable factors in the ACM roof mapping process, a qualitative

approach was adopted to review, synthesise, and discuss the conducted works. First, a
summary of each selected ACM roof mapping study is provided; then, all studies are
grouped based on their input imagery data and classification methods. Second, each
study is critically reviewed in terms of RSI attributes, image processing, feature extraction,
classification method, and the accuracy or presence of errors in the mapping results. The
major challenges affecting the mapping process are determined, and sources are compared
to identify the common challenges. Then, the results are narratively synthesised, and
their general themes are evaluated in both the reviewed studies and other closely related
applications of RSI. The conclusive information is discussed to develop strategies associated
with input RSI, image fusion and processing, feature engineering, and the classification
process. Moreover, further avenues of study are recommended by reviewing several
successful applications of image classification in urban studies.

3. Input Data for ACM Roof Classification

Satellite and aerial sensors provide a wide array of remote sensing data (i.e., optical,
LiDAR, and synthetic aperture radar images), differing in spatial, spectral, and radiometric
resolution. RSI provides useful data for classifying different surfaces on the earth. The
first remote sensing studies attempted to map aggregated land-cover classes—for example,
forests and artificial surfaces—and, later, change the detection of land-cover land use [57].
The evolution of remote sensing systems over the past 30–40 years has led several studies
to focus on roof classification, particularly ACM roof mapping.

In studies of ACM roof mapping, various types of hyperspectral data, multispectral
data, and their fusion with auxiliary data have been used as the input data. The first studies
investigated detection of ACM roofs based on spectral features without considering the
pixel sizes of images [20–23]. Due to issues such as mixed pixels caused by the low spatial
resolution of the images acquired from early hyperspectral sensors, these studies did not
generate a consistent accuracy result. However, with advancements in the features of
hyperspectral sensors, a number of studies have demonstrated acceptable classification
accuracy of ACM roofs [58]. Furthermore, other studies have focused on the use of a
combination of bands from multispectral images [10–12,31]. While these studies reported
acceptable accuracy results, issues such as spectral confusion affected the mapping process
of ACM roofs. However, the fusion of different image types, such as the combination of
multispectral and LiDAR images [30,32], significantly improved the accuracy results of
ACM roof mapping. From the different results gained by using various remote sensing
data types, it can be concluded that there is no fit-for-all input data to obtain an acceptable
ACM roof accuracy result.

Different image types are used due to the various features that each RSI type can
provide. Selection of the input data requires prior knowledge of the quality and adequacy
of RSI and corresponding sensors. RSI types have common characteristics despite the
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different resolutions of RSI types. First, they are geolocated, which means that each pixel
of an image corresponds to a spatial coordinate. This facilitates the fusion of multiple
spatial and non-spatial sources with a single pixel or a segment of the image [37]. Second,
remote sensing images are geodetic measurements that provide accurate estimates of
geoparameters. This allows the utilised images to provide geophysical quantities through
detection or classification processes. On the other hand, remote sensing images differ in
their attributes and contents. For instance, while multispectral infrared visible imaging
spectrometer (MIVIS) images are rich in hyperspectral bands, most satellite sensors provide
a limited number of spectral bands but wide area coverage.

Therefore, selecting the required imagery types and their processing architecture is
a trade-off between multiple factors. While the image resolution (i.e., spatial, spectral,
temporal, and radiometric) is a key factor, other factors such as cost and the availability of
data [22] play a role in selecting the required imagery type. Moreover, potential challenges
should be considered when gathering the input data. For example, there are generally
errors in roof classification due to some independent factors affecting the OA of the clas-
sification [23]. These errors may be caused by the diverse colour of ACM roof coverings
exposed to U.V. radiation, decreased homogeneity of the surface due to mixed materials,
or different geometrical shapes resulting in different lighting effects [29]. In this regard,
adopting multisource RSI by combining the input RSI with other auxiliary data could
improve the classification accuracy results. Using LiDAR data acquired from active sensors
has shown the enhanced performance of the conventional classification methods [30,32].
Despite the advantages of RSI’s rich content, “big data” are a challenge, requiring the
process architecture and classification algorithms to be efficient and fast enough to handle
the massive volume of remote sensing data [37]. While this issue could be unavoidable, DL-
based architectures perform better than PIBA and OBIA methods when extracting features
from large datasets [37,49]. Moreover, attempts have been made to design lightweight and
compact classification models, which could significantly assist in handling the challenges
of large volume and complexity of remote sensing data [59,60].

3.1. Hyperspectral Imagery (HSI)

HSI has been widely used in studies of ACM roof mapping. Hyperspectral systems
generally record more than 20 to 1000 bands and are generally acquired by airborne
platforms [25]. Furthermore, hyperspectral systems provide images with both high spatial
and spectral resolutions, making them efficient input data for ACM studies [24]. In fact,
HSI from aerial sensors represents the spectral heterogeneity of roof classes as well as
provides very high spatial resolution [52]. Thus, several studies have focused on the single
use of spectral data to investigate the efficiency of HSI itself or compare the OA gained
by different classifiers [13,20–24]. Table 1 provides a summary of studies associated with
ACM roof classification using airborne HSI.

Table 1. The summary of the conducted studies associated with ACM roof mapping using
airborne HSI.

Imagery Spectral Channels Spatial Resolution Research Purpose

MIVIS 102 channels
from 433 to 1270 nm

4–9 m Mapping ACM roofing [22]

4 m Mapping ACM roofing [20]

3 m Mapping ACM roofing [13,21]

AISA Eagle II 126 channels
from 400 to 1000 nm 1 m Mapping ACM roofing [23]

AISA Classic 20 channels
from 400 to 970 nm 1 m Mapping intra-urban land cover,

including one ACM class [24]

AISA Eagle 128 channels
from 400 to 970 nm 0.68 m Mapping intra-urban land cover,

including one ACM class [24]
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The early HSI used for ACM mapping did not provide adequate spatial resolution
to classify small roofs. While sensors such as MIVIS were rich in hyperspectral data,
they led to significant omission errors (OEs) of ACM roofs with a small surface [12].
Fiumi et al. (2012) [20] used MIVIS images with a spatial resolution of 4 × 4 m, including
102 spectral channels ranging between 0.433 and 12.70 µm. The Spectral Angle Mapper
(SAM) algorithm was adopted to classify HSI using ENVI software. Moreover, the error
caused by the atmosphere layer between the sensor and the earth′s surface was corrected
using the international average relative reflectance radiometric calibration method. While a
high classification accuracy was reported, identified roofs had large areas with an average
roof area of around 1200 m2. As the accuracy will increase when the average roof area
increases [53], the results of this study may not be inconsistent.

Large OE of ACM roofs was reported in the other studies in which the OA was
acceptable. Frassy et al. (2014) [22] worked on the quantitative mapping of roofs with
asbestos cement (AC) covering a large region in Italy. The 102-channel MIVIS data with
different pixel resolutions from 4 m to 9 m were classified using the SAM algorithm.
Concerning AC roof units, while the result revealed a small commission error with less
than 10% misclassification (false positives), the OE was quite large. Approximately 50% of
the ACM roofs were not identified with the MIVIS images (false negatives) and thus were
omitted in the thematic map. As a result, only 43% of the ACM roofs were correctly mapped
considering the roof units, despite the OA of the roofs′ surface being approximately 80%.

To detect ACM roof units, Frassy et al. (2014) [22] suggested that a window of
3 × 3 pixels is a threshold for classifying an individual ACM roof. For example, using
MIVIS images with a 4 m spatial resolution, only roof units with an area of at least 144 m2

(RSLT144) are detected with reasonable confidence. Computing statistics for RSLT144 led to
significant improvements in the classification results of another independent study by [20].
They reported that OA increased from 43% to 75%, and OE decreased from 48% to 19% for
the entire dataset. The study indicated that the spatial resolution of images was the main
source of errors, while the topographic features of the area did not significantly affect the
accuracy of roof classification results.

Another issue with HSI in early studies was that the single use of spectral data was
not practical for discriminating ACM roofs with complex geometry. Other than flat roofs,
numerous forms of ACMs roofs (e.g., vaulted and pitched typologies) have geometry that
reflects complex patterns captured by sensors. With particular attention to the various
forms, Fiumi et al. (2014) [21] utilised MIVIS images with 3 m spatial resolution and
102 spectral channels to investigate the mapping of AC roofs over the Lazio Region in Italy.
The results indicated that while the SAM classifier failed to accurately discriminate ACM
roofs, during an additional process using the minimum bounding algorithm, only 63% of
vaulted ACM roofs and 71% of pitched ones were classified accurately. However, using HSI
of these roof typologies has been less investigated in ACM roof mapping studies despite
the low accuracies resulting from the complex relationship between a light source and a
roof-covering geometry [21].

The mixed spectral reflectance caused by complex geometry shapes was also reported
as a source of error. Szabo et al. (2014) [23] used AISA Eagle II images with the spatial
resolution of 1 m and 126 spectral bands over the 7 km2 area of Debrecen, East Hungary. The
original HSI dataset was denoised using the maximum noise fraction (MNF) transformation,
and a new dataset was created. The original HSI and the MNF-transformed dataset were
classified by the SAM, support vector machine (SVM), and maximum likelihood (ML)
algorithms. While the classification details of ACM roofs were not provided in the study,
SVM performed best for both datasets with an OA of around 80% [23].

With the advancement of hyperspectral sensors, several studies have reported sig-
nificant improvement in the classification accuracy of ACM roofs. Recent aerial sensors
could provide both high spectral and high spatial resolution. Hamedianfar et al. (2014) [24]
worked on two subsets of HSI by combining a data mining (DM) method with object-based
image analysis (OBIA) to classify the urban surface materials of the study areas. One
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of the datasets provided 20 spectral bands with a 1 m spatial resolution, and the other
provided 102 spectral bands with 0.68 m pixel sizes. An OA of 93.42% was achieved by
one of the subsets with a PA and UA of 100% for asbestos roofs. Cilia et al. (2015) [13]
also reported acceptable results of deploying MIVIS images with 102 channels classified by
SAM algorithm. An average UA of 89% and PA of 86% was achieved for the ACM class,
which indicated a reliable result of using HSI in roof mapping studies [11].

However, despite the advantages of using HSI, some limiting factors for accurately
classifying ACM roofs exist. The high dimensionality of hyperspectral data can adversely af-
fect the accuracy of the classification process. Traditional classification algorithms generally
do not perform well due to the massive volume of spectral data [52]. The intrinsic dimen-
sionality of the original data must usually be compressed, and the maximum amount of
information should be preserved for classification. This is due to the traditional algorithms′

limited capabilities to perform in large dimensional spaces. In particular, the selection of
bands, wavelengths, and an optimal resolution of hyperspectral data is a challenging task in
the classification process [28,29]. Moreover, the scene features could cause challenges. The
mixed materials of roof coverings or the near homogeneity of spectral data [32], different
materials in parts of the roofs, and different colours of aged roofs [16] could cause spectral
confusion in the classification of roofs [13]. Given the issues with hyperspectral data, other
studies have investigated different remote sensing paradigms for ACM roof mapping.

3.2. Multispectral Imagery (MSI)

Several studies have indicated the possibility of using MSI for mapping ACM roofs. MSI
commonly comprises remote sensing images with spectral bands of 2 to 13 (i.e., Sentinel-2).
The number of bands is the main difference between MSI and HSI, despite their similar 3D
structure [49]. MSI acquired by space-born sensors provides a broader coverage area [11]
and cheaper cost [10] in comparison with airborne hyperspectral sensors, which have
limited coverage and availability. Furthermore, although HSI usually provides both higher
spatial and higher spectral resolution [11], the use of MSI could address the problems
with HSI, such as high dimensionality and different noises caused by the large number of
bands [27]. Hence, many ACM roof mapping studies have focused on MSI and its fusion
with other remote sensing data. Table 2 provides a summary of studies that adopted MSI
in ACM roof mapping.

Table 2. The summary of the conducted studies associated with ACM roof mapping using multispec-
tral imagery (MSI).

Imagery Imagery
Resolution

Band
Composition Research Purpose

WV-2
Panchromatic: 0.5 m
Multispectral: 1.85 m

Eight bands

Mapping ACM roofing [10]

Mapping roofing materials, including
one ACM class [27,31]

Mapping impervious and pervious
surfaces, including one ACM class [29]

Mapping intra-urban land cover
including three ACM classes [28]

Eight bands
Fusion with LiDAR

Mapping intra-urban land cover,
including one ACM class [30]

WV-3
Panchromatic: 0.31 m
Multispectral: 1.24 m

Eight bands Mapping ACM roofing [11]

Eight bands
Fusion with LiDAR

Mapping roofing materials, including
two ACM classes [32]

Aerial imagery Spatial: 0.25 m RGB and CIR Mapping ACM roofing [12]

IKONOS II Panchromatic: 1 m
Multispectral: 4 m

Four bands
(Blue, Green, Red, and Near-infrared)

Mapping intra-urban land cover
including three ACM classes [26]
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In the reviewed studies of ACM roof mapping, very-high-resolution MSI from space-
borne sensors is mostly used as the input data. Among the MSI categories based on the
spatial resolution (i.e., coarse, medium, and high spatial resolution data) [13], images with
a spatial resolution of more than five meters are usually inappropriate for urban studies
due to the problem of mixed pixels [56]. When the pixel size is bigger than a roof unit, the
pixel of the ACM roof mixes with the pixels of the surrounding roof units or other objects,
causing salt-and-pepper errors [57]. WorldView-2 (WV-2) images with eight multispectral
bands (2 m spatial resolution) and a panchromatic band (0.5 m resolution) are considered to
be appropriate input data for ACM roof mapping [10,27–31]. Moreover, since the launch of
the WorldView-3 (WV-3) satellite in 2014, images with finer resolution (eight bands with a
1.24 m resolution and a 0.3 m-resolution panchromatic band) have been used in the studies
of ACM roof mapping [32].

Multispectral data from aerial imagery have also been used for ACM roof mapping.
While the input data used in the literature stemmed primarily from satellite sensors,
airborne MSI provides higher resolution than satellite images. However, aerial images
may not be available for the areas under study and have limited coverage compared with
images acquired from satellite images. Krówczyńska et al. (2020) [12] used two sets of aerial
images in natural colour (RGB) and colour infrared (CIR) to identify AC roofs in Chęciny,
Poland. As one of the few studies of ACM roof mapping, the work investigated a deep
learning algorithm, namely the convolutional neural network (CNN). The classification
results revealed a PA of 89% and an OA of more than 87% for both datasets. However,
the proposed method may not successfully classify roofs in dense urban areas, although
it yielded acceptable results for rural areas. Furthermore, the trained database could not
be transferable to other study areas, and studying different areas required the creation of
newly trained databases.

Attempts have been made to achieve the autonomous identification of ACM roofs
using MSI. Tommasini et al. (2019) [11] worked on autonomous identification of ACM
roofs over a metropolitan area in Prato (Italy) using a tool in QGIS software. WV-3 images
were used as the input data, and the classification result was reasonably good, with only
some false positives and negatives. Although this study illustrated a proper tool for
automatically identifying asbestos, preprocessing images (i.e., pan sharpening) required a
non-automatic process. The preprocessing of MSI, mostly pan sharpening, is a significant
factor in improving the resolution of images by combining required bands.

3.2.1. Pan Sharpening of Satellite Imagery

For extracting land-cover information (e.g., roofs with ACM coverings), spatial reso-
lution is considered a key factor. Images with finer spatial resolutions are more valuable
than those with a higher spectral resolution [11]. The pan sharpening method is com-
monly applied to improve multispectral bands′ spatial resolution by combining them with
panchromatic (PAN) images. The reason is that the spatial resolution of multispectral
images is lower than panchromatic images of the same scenes acquired by the same satellite
sensor [61,62]. Therefore, while multispectral bands provide the required spectral content
for discriminating roof covers, their fusion with PAN images of the same scenes improves
the spatial resolution of the input dataset, resulting in a more accurate description of roof
textures and shapes [63].

The pan sharpening method has been widely used to improve the classification ac-
curacy of ACM roof classes in studies of roofing material identification. Abriha et al.
(2018) [31] conducted a study on WV-2 to identify roof materials and investigate the po-
tential efficiency of pan sharpening. By adopting pan sharpening with the Gram–Schmidt
method, the panchromatic band (450–800 nm) with a 0.5 m resolution was fused with the
lower resolution multispectral bands with a 2 m geometric resolution. The roof materials
were divided into three and six roof classes (asbestos, brown tile, and red tile); the data
were then divided into shadowed and sunny roof parts and classified by discriminant
function analysis (DFA) and random forest (RF) classifiers. The results revealed that while
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the OA was above 85%, asbestos was classified with more than 95% accuracy and identified
successfully with all classifiers.

On the other hand, the classifier adapted for pan-sharpened images plays a significant
role in increasing the classification accuracy. While the accuracy of classified ACM roofs
increases with pan sharpening, some image processing techniques and classification algo-
rithms work more efficiently with pan-sharpened images [64]. To evaluate the accuracy
results of different classifiers on pan-sharpened WV-2 images, Gibril et al. (2017) [10] em-
ployed both supervised classifiers and a rule set combined with the Taguchi optimisation
technique. The supervised classifiers showed some misclassifications between ACM roofs
and spectrally similar materials, while some classifiers provided acceptable results. On the
other hand, combining the rule-based OBIA method with the Taguchi technique showed a
high overall accuracy of around 90% and 93% for two pan-sharpened WV-2 datasets.

3.2.2. Fusion of MSI with Light Detection and Ranging (LiDAR)

The fusion of MSI with 3D point cloud data from LiDAR sensors has shown significant
enhancement in ACM roof classification results [30,32]. LiDAR provides 3D topographic
information of surveyed areas on the Earth′s surface. These sensors do not provide in-
formation on the lighting colour and intensity of the surface, but the depth measurement
offers information to extract 3D building information and the features of roof shapes. In
fact, LiDAR sensors are insensitive to lighting conditions and are unaffected by shadows or
poor lighting intensity [65]. While 2D planimetric multispectral data could be affected by
factors such as poor contrast, skewed image perspectives, and shadows [66], the fusion of
MSI with LiDAR data could not only provide 3D measurements of ACM roof shapes, but
could also address the lighting condition problems affecting 2D data.

Using multisource images, moreover, could result in assessing the roof surfaces′ details.
Norman et al. [32] utilised the combination of WV-3 with LiDAR data to map detailed
roof surfaces and evaluate the condition of the covering materials. The results reported a
high OA of roof detection and analysed the degradation status of detected roofs. While
the layer stacking method for the combination of WV-3 and LiDAR data resulted in an OA
of 87%, another tested fusion method, namely principal components spectral sharpening,
was not efficient enough, resulting in only 43% OA. Hence, while multisource images
could enhance the mapping performance, the fusion method used in the process could
significantly affect the results.

Furthermore, the algorithms and techniques adopted in the classification phase are
key factors in improving ACM roof mapping accuracy. Hamedianfar et al. (2014) [30]
studied the combination of WV-2 and LiDAR for detailed urban mapping. The study
used different pixel-based classifiers and developed a ruleset to evaluate the results of the
classification methods. The pixel-based classifier provided lower-accuracy results than
rule-based classification methods with the same multisource images of the studied area.
Furthermore, while pixel-based classifiers resulted in mixed pixels and a salt-and-pepper
effect, using fused images significantly improved classification results by decreasing the
spectral variation and spatial heterogeneities of intra-urban classes. This indicates that
while the input data and preprocessing image method are important, the accuracy of the
mapping process also depends on the classification methods and techniques.

4. Classification Methods of ACM Roof Mapping

This section reviews the image processing tasks performed to map ACM roofs. The
targeted studies are categorised based on the adopted image classification approaches and
critically reviewed in terms of deployed classifiers and their accuracy assessment results.

4.1. Pixel-Based Image Analysis (PBIA) Approach

Early studies on mapping ACM roofs adopted the PBIA approach [13,20–23], which
relies on a basic image processing concept developed in the 1970s [38]. Pixel-based methods
analyse spectral information on individual pixels. In traditional PBIA methods, pixels are
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labelled to a predefined class by comparing the similarity of spectral values (i.e., spectral
signature). In particular, RSI is classified by conducting spectral pattern recognition, a
category of image classification that uses the pixel-by-pixel spectral features as the basis
of image processing [39], wherein no spatial patterns and contextual information are
employed in the classification process.

Selecting a suitable classifier is a challenging task in per-pixel spectral-based image
classification [67]. Uncertainty often exists in identifying the appropriate classification
algorithm because multiple factors, such as the type of input data, as well as the size and
quality of training data, should be considered when comparing the available methods [68].
Several ACM roof mapping studies have thus used different algorithms for pixel-based
classification of the images. While several ACM mapping studies have utilised the SAM
classifier [20–22], other studies have obtained the best results from classifiers such as DFA
and RF [13,31]. Moreover, few studies have attempted to classify the same subset of input
data by using different classifiers. For example, Szabo et al. (2014) [23] tested the SAM,
SVM, and ML algorithms for mapping asbestos roofs. According to the results, SVM
had the highest OA (79.9%) and SAM had the lowest OA (59.9%). Li et al. (2010) [69]
claimed that SVM is a suitable classifier for classifying impervious surfaces, while the SAM
algorithm exhibits a better performance when an adequate amount of training data are
available. Therefore, it is difficult to define a fit-for-all algorithm for classifying ACM roofs.
Table 3 summarises the PBIA studies of ACM roof mapping.

Table 3. The summary of PBIA studies for ACM roof mapping.

Authors Classification/
Segmentation Method Classifier Accuracy Result %

Fiumi et al. (2012) [20] PBIA Spectral Angle Mapper (SAM) OA: 88, PA (ACM class): 94.3

Fiumi et al. (2014) [21] PBIA Spectral Angle Mapper (SAM) OA: 65

Frassy et al. (2014) [22] PBIA Spectral Angle Mapper (SAM) OA: 80, PA (ACM class): 43

Szabó et al. (2014) [23] PBIA Spectral Angle Mapper (SAM),
Support Vector Machine (SVM)

SVM OA: 79.9
SAM OA: 59.8

Krowczynska et al. (2020) [12] Pixel-based DL Convolutional Neural Networks
(CNN) OA: 89, PA: 89, UA: 88 (ACM class)

Abriha et al. (2018) [31] PBIA Discriminant Function Analysis
(DFA), Random Forest (RF) OA: 85

Tommasini et al. (2019) [11] PBIA Random Forest (RF) OA: 82

As explained in Section 3.1, the pixel size of the images in early studies was not fine
enough for one to identify roof units in an image [22,23]. As indicated by [70], a 4 m wide
object requires a minimum spatial resolution of 2 × 2 m (i.e., a minimum of four pixels is
required). Consequently, the spatial resolution of the image must be at least half the size of
the smallest roof unit. However, this does not align with the real-world location of roof
units over image pixels [71]. For example, an object with a 4 m length and width is unlikely
to fit perfectly over four pixels with a 2 m spatial resolution [72]. Frassy et al. (2014) [22]
indicated that 3 × 3 image pixels are a threshold for optimal detection of ACM roof units.
Considering this assumption, when the remotely sensed image has a 4 m spatial resolution,
only roofs larger than 144 m2 will be detected with reasonable confidence, as illustrated
in Figure 3.

On the other hand, with the improvement of RSI resolution, the per-pixel spectral-
based method was no longer effective for classifying ACM roofs. Several features on
the Earth′s surface are composed of materials that may show similar spectral responses
when using high-resolution data [72]. By deploying very high-resolution RSI, the spectral
responses of some roofing classes in urban areas showed complex patterns [73]. This affects
the accuracy results of image classification because of the increasing intra-class variability
of classes. The use of the PBIA approach with traditional classifiers led to unreliable
classification results because it works on only spectral information without considering
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the spatial patterns of roofs [74]. Hence, due to the issues such as confusion among
classes, adopting traditional pixel-based classifiers may not be efficient for classifying very
high-resolution images [30].
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4.2. Object-Based Image Analysis (OBIA) Approach

Taking into account the limitations associated with PBIA (refer to Section 4.1), object-
based image analysis (OBIA) has emerged as a more sophisticated approach, classifying
images with a high spatial resolution by analysing both spatial and spectral features
of RSI [75]. In OBIA methods, images are segmented at multiple scales, the analysis
units rather than pixels [76–78]. Segmented pixels (also known as objects) are contiguous
homogenous pixels grouped by similar attributes. In OBIA methods, when objects are
created, segments′ attributes are computed, and a number of rules are developed for
classifying features. These rules assist the classification process using attributes such as
texture, size, and geometry (area and length) [26]. Several ACM roof mapping studies
utilised OBIA methods using different RSI data. Table 4 summarises the studies that have
used OBIA methods.

Table 4. The summary of the OBIA studies for ACM roof mapping.

Authors Imagery Type Segmentation Classification Accuracy Result %

Pinho et al. (2012) [26] IKONOS II Region-based segmentation
(MRS)

Supervised
Decision Tree (DT)

OA: 71.91
PA (ACM class): 38–90

Taherizade et al. (2013) [27] WV-2
Multiscale Edge-based

segmentation
(ENVI Feature Extraction tool)

Supervised
(Maximum
Likelihood)
Rule based
Per pixel

Supervised OA: 46,
Rule-based OA: 82, PA

(ACM class): 80, 95

Hamedianfar et al. (2014) [29] WV-2 Edge-based segmentation
(ENVI Feature Extraction tool)

Supervised
(SVM)

Rule based
Per pixel

Supervised OA: 82.80,
Rule-based OA: 85–87,

PBIA OA: 73–77

Hamedianfar et al. (2014) [30] Fusion of WV-2 with
LiDAR

Edge-based segmentation
(ENVI Feature Extraction tool) Rule based OA: 92.84, PA: 81, UA: 93

(ACM class)

Hamedianfar et al. (2014) [24] AISA Classic Edge-based segmentation
(ENVI Feature Extraction tool)

Supervised
(DT)

OA: 93.42, PA and UA
(ACM class): 100

Hamedianfar et al. (2015) [28] WV-2 Edge-based segmentation
(ENVI Feature Extraction tool) Rule-based OA: 88, PA: 96, UA: 84

(ACM class)

Gibril et al. (2017) [10] WV-2

Optimised Region-based
segmentation

(MRS) by Taguchi
optimisation technique

Supervised
(Bayes, k-NN, SVM,

and RF)
Rule based

Supervised OA: 72–82,
Rule-based OA: 90–93

Norman et al. (2020) [32] Fusion of WV-3 and
LiDAR

Optimised Region-based
segmentation

(MRS) by Taguchi
optimisation technique

Supervised
(SVM, DT) SVM OA: 70, DT: 87
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4.2.1. Image Segmentation in the OBIA Process

Two main steps in OBIA methods are often image segmentation and classification [79,80].
OBIA starts with image segmentation, which critically affects the accuracy of the following
feature engineering and classification steps [81,82]. In the image segmentation process,
images are divided into homogeneous patches [83]. These patches represent the Earth′s
surface features, such as roofs, roads, and grasslands [84]. Studies of ACM roof mapping
have often employed two segmentation techniques: (1) edge based and (2) region based.
While edge-based and region-based techniques theoretically demonstrate the same object
in different representations, edge-based methods could lead to different results than region-
based methods [85,86].

Among the object-based ACM roof classification literature, several studies have imple-
mented an edge-based segmentation approach using a multiscale segmentation algorithm
featured as an ENVI feature extraction tool [24,27–30]. In edge-based techniques, the edges
are first identified and then connected to one another using contouring algorithms [87–90]
with the assumption that the pixel features abruptly change between edges [91]. From
this perspective, edges are defined as boundaries between objects and where changes
occur [92]. A multiscale edge-based segmentation [93] generates objects based on having
similar attributes such as textural, spatial, and spectral index indicators. An example of
multiscale edge-based segmentation of HSI is shown in Figure 4.
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Other object-based ACM roof classification studies have adopted region-based meth-
ods as a suitable way to create roof segments [10,26,32]. In region-based methods, the
determination of segments starts from the inside of the objects and then expands outward
until the value of neighbouring pixels changes [94,95]. Moreover, it is assumed that the
neighbouring pixels within the same region have similar values [43], which is the opposite
of edge-based methods [96]. Multiresolution segmentation (MRS) is a region-growing
algorithm that has been widely used in remote sensing applications [41,80,97]. This algo-
rithm considers a pixel as a seed that grows until it produces meaningful objects based on
predefined local thresholds of scale, shape, and compactness parameters [44,98].

The segmentation scale is a significant aspect of the RSI segmentation process. Large
image objects caused by high-scale values (under-segmentation) and small objects produced
by low-scale values (over-segmentation) make it challenging to generate meaningful objects
effectively [47]. For MRS, the segmentation scale is even more significant, as it determines
the size and shapes of the objects affecting the classification results [99–102]. As mentioned
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above, therefore, it is crucial to identify the appropriate segmentation scale for generating
meaningful objects [103].

Several methods have been used to optimise segmentation scale parameters [104,105].
In ACM roof-mapping studies, integrative image segmentation optimisation [47] and the
robust statistical Taguchi method have optimised MRS parameters [10]. However, a num-
ber of ACM studies have adopted a trial and error approach, in which the segmentation
parameters have been determined based on analysts′ experience, which may not be reli-
able [106]. In another paradigm of segmentation approaches, some studies suggested that
the collaboration of segmentation with classification effectively addresses the challenges of
selecting optimal parameters for segmentation algorithms [41]. In this approach, while the
object parameters may not be optimised, adding a segmentation step in the classification
process addresses issues such as over-segmentation [42,107].

4.2.2. Image Classification in the OBIA Process

By generating the objects and computing their features (i.e., object characteristics),
the classification step is performed in the OBIA methods. In the ACM roof identification
studies, three classification approaches are often adopted to assign a class label to objects:
supervised [10,27,29,32], supervised rule-based [24,26], and expert systems [28,30]. The
first approach is the supervised classification approach, also known as nearest neighbour
classifiers [72], which utilises training data to assign the segmented objects to the classes.
The second approach is a form of rule-based classification, also known as membership
function classifiers (providing fuzzy or crisp membership functions), which utilise a ruleset
to extract the features. The crisp function computes the rules from a training sample,
also known as a supervised ruleset. The third approach uses a ruleset to assign labels to
roofs, which relies on an analyst′s knowledge. Some studies adopted multiple methods to
compare the efficiency of different methods [108].

Supervised Classification

Supervised classification utilises training data to assign segmented objects to roofing
classes, which can be defined by any existing data, such as field surveys, laboratory
measurements, and libraries of RSI with high spatial resolution [109]. The ease of use,
high degree of accuracy [110], and features offered by various software have led a vast
number of studies to adopt the supervised approach in applications such as roofing material
classification. The supervised classification approach is a dominant and widely used trend
in OBIA studies [111]. However, the studies that adopted supervised classifiers reported
several issues in workflow steps [112], such as sample selection [113], feature selection [114],
and accuracy assessment [115].

Reliance on training data in supervised classification causes major problems that make
this method unsuitable for universal use. The size and representativeness of training data
require the consideration of different factors, such as the spatial resolution of input data, the
availability of ground references, and the geophysical situation of study areas [116]. The
sample collection strategies could significantly affect the classification accuracy results [117].
Moreover, gathering sufficient training data could be challenging when the study areas are
complex and heterogeneous. Therefore, poorly defined or insufficient training samples
could significantly affect the accuracy of the classification [118,119]. Furthermore, the
training data make the supervised technique less transferrable to other images [65,120].
The classification of wider-scale and multi-image areas requires configuration or a new set
of training samples due to the different inherent attributes among images [121], while the
collection of the training data could be costly in terms of time and money [122]. This is a
limitation of autonomous ACM roof classification over wide-scale study sites.

Supervised Rule-Based Classification

Generally, rule-based systems in the OBIA image classification methods adopt “If . . .
Then . . . Else” threshold rules to assign classes (e.g., ACM roof) to segmented pixels [123].
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In supervised rule-based classification methods, rules are autonomously developed from
training data to determine the relationships between RSI and the defined classes. In ACM
roof studies, decision trees (DTs) are widely used for autonomous generating rulesets
of roof classification [124]. In this method, training data are divided into homogenous
subsets based on the threshold values of image features. By defining subset variances,
subsequent subsets are generated in a hierarchical structure until they reach the predefined
classification tree levels [125].

A significant advantage of rule-based methods is the transparency of the feature
engineering and classification procedure because the attributes and rulesets are repre-
sented [108,126,127]. Unlike “black-box” supervised methods, the analyst can measure
data on different scales and interpret the ruleset data [128]. Moreover, DTs make no assump-
tions regarding the frequency distributions of image classes, and classification performance
can be improved using boosting techniques [129]. Hence, the supervised rule-based OBIA
may be a more appropriate method than the supervised OBIA due to the transparency of
image processing steps.

Successful applications of DT methods are reported in ACM roof studies. Pinho et al.
(2012) [26] adopted DT to classify urban feature classes using IKONOS images. ACM
roofs were defined in three categories: dark, medium-toned, and light asbestos. The study
found that while light asbestos roofs gained acceptable accuracy with a PA of 90% and
a UA of 94%, dark and medium-toned asbestos roofs had lower classification accuracies.
In this study, while the method′s transferability was not tested in more study areas, DT
significantly improved image classification accuracy, achieving an OA of 71.91% [130].

In another study by Hamedianfar et al. (2014) [24], two sets of AISA imagery and
the C4.5 data mining algorithm were combined with DT to develop a knowledge model
of HSI. The DT method identified relevant attributes with a high classification capability
based on the training images. The DT learning algorithm used in this study offered an
autonomous feature selection capability to develop the classification ruleset. The results of
HSI study demonstrated high accuracy for asbestos roofs, with an OA between 88% and
93% and an asbestos PA of 100% and 84% for the two sets of images, respectively [24]. The
explained method is suitable for autonomously developing the rule sets from training data
with several attributes and image segments, addressing the high dimensionality of HSI.

Fuzzy Rule-Based Classification (Expert System)

The rule set in an expert system is based on the analyst′s knowledge and reasoning to
extract the features [131]. In an expert system, the analyst determines various parameters
such as spectral, spatial, and contextual attributes to create classification rules [10]. In
the fuzzy rule-based methods, fuzzy logic is utilised as an effective tool for generating
ruleset parameters, and based on the knowledge of the analyst, the attributes are selected
and examined to create the classification ruleset. This approach has several advantages
compared to supervised and supervised rule-based OBIA approaches. On the one hand,
the presentation of ruleset data in a logical and flexible structure and, on the other hand, the
modular arrangement of the ruleset allows for classification enhancement via easy updates
and alterations [123].

Studies of intra-urban mapping with ACM classes showed that expert systems often
outperform supervised classifiers [10,28–30,127]. Gibril et al. (2018) [10] utilised two sub-
sets of WV-2 to map AC roofs by using an expert-developed ruleset (see Figure 5) and
different supervised classifiers of SVM, RF, k-NN, and Bays. While the overall accuracy of
the supervised classifiers was acceptable, results showed misclassification of surfaces with
similar spectral responses with ACM roof materials. On the other hand, the ruleset result
revealed a better performance in the classification of ACM roofs compared to supervised
classifiers for the two subsets of WV-2 images. Hamedianfar et al. (2014) [30] developed a
ruleset considering spatial, elevation, and spectral features to map urban areas by combin-
ing WV-2 and LiDAR images. The PBIA classifiers (i.e., SVM and ML) were also used to
compare the accuracy results with the rule-based classification. While the OA of the RF and
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SVM classifiers gained 72.46% and 75.69%, respectively, the rule-based classification gained
an OA of 92.84%. Moreover, asbestos roofs gained a higher PA and UA than the supervised
classifiers. However, the transferability of the proposed ruleset was not investigated in
other images.
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Transferability is a significant advantage of a classification model, which allows ac-
ceptable results to be obtained when reusing the model for other image datasets [132].
The OBIA rulesets are often transferable or reproducible, and can be used to classify other
RSI datasets with different spatial and spectral features [133]. As mentioned before, the
supervised OBIA methods rely on training data that may not be transferable to other
study areas [65], whereas developed rulesets in expert systems can be reapplied to other
areas [134] and temporal images with or without some manual editing [135]. In studies of
ACM roof classification, successful attempts have been made to develop transferable mod-
els using fuzzy rule-based methods. Hamedianfar et al. (2015) [28] tested the transferability
of fuzzy rulesets on the WV-2 images of three different study areas. The classification rules
were developed based on expert knowledge of the spatial features and spectral indexes.
Without any changes in the features′ thresholds, the rulesets performed well for all datasets,
resulting in OAs of more than 86%.

4.3. Deep-Learning-Based (DL-Based) Approach

Deep-learning-based (DL-based) methods and techniques have recently been rapidly
used in several image processing applications [136,137]. By increasing the number of
“depths” or “hidden layers” of machine learning methods, these architectures improve the
performance and accuracy of the computation process [40]. While OBIA was considered
more suitable than PBIA for many years, both approaches had limitations in widespread
applications because of issues such as classification errors and imbalances in classes [37].
Deep learning methods enhance the image classification process through efficient and
automatic feature extraction from a large number of images, and they reduce classifi-
cation errors by adopting complex models in regression [138]. Additionally, DL-based
methods have a better performance than PBIA and OBIA methods when handling the
massive volume of image data, particularly in supervised classifications with large training
datasets [37,49,60]. Hence, several studies have shifted to deep-learning-based methods,
such as the pixel-based semantic segmentation of VHR images [139–143].

Despite the promising results of using deep-learning-based methods, they are not exten-
sively explored in ACM roof mapping studies. To date, the only study that took a deep learn-
ing approach to ACM roofing identification was conducted by Krówczyńska et al. (2020) [12],
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who used convolutional neural networks (CNNs) to identify AC roofs. In this study, the
RGB and CIR compositions of aerial photographs with 25 cm resolution were classified by
a CNN network consisting of two convolutional blocks. ACM roofs were detected with an
OA of around 89% and a PA of 89%. While the result of this study may not be conclusive
for the successful adoption of the proposed model in dense urban areas [12], using the
DL-based method resulted in an acceptable classification accuracy using images with few
spectral bands.

The DL architectures such as fully convolutional networks (FCNs) have shown promis-
ing accuracy results in other image classification applications, such as urban object detection
and LULC classification [144–147]. Moreover, DL-based techniques have been successfully
combined with conventional approaches in image processing [148–150]. DL-based three-
dimensional spectral–spatial classification methods such as 3D-CNN (see Figure 6) have
shown good performance in handling the high dimensionality of HSI [151]. Mask R-CNN
has been widely used for object instance segmentation, which simultaneously generates
high-quality segmentation masks and identifies objects in images [45]. Furthermore, the
end-to-end deep learning architectures are a new paradigm wherein features are learnt
automatically instead of being engineered [49]. Over the last few years, the end-to-end
use of deep learning models has been prevalent within the remote sensing community.
Despite the challenges arising from model development complexities and computational
requirements, the end-to-end DL-based approach is a future avenue in ACM roof mapping.
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5. Discussion

This section represents a summary of the reviewed studies (Section 5.1), discusses
the synthesised challenges, and highlights possible solutions identified in both ACM roof
mapping studies and other remote sensing applications (Section 5.2).

5.1. Summary of the Reviewed Studies

Figure 7 illustrates a tree diagram of the studies categorised according to their RSI,
classifiers, and date order. The RSI, classier, and OA of each study are shown with colour
codes for a comparison of their features. This study reviewed sixteen peer-reviewed
journal articles investigating ACM roof mapping in a ten-year timeframe from 2012 to 2022.
Furthermore, the studies are grouped based on the input RSI and classification methods.
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In terms of RSI, six papers [13,20–24] used HSI as the input data, whereas ten stud-
ies worked on MSI [10–12,26–29,31], in which two works combined RSI with LiDAR
data [30,32] (see Table 5). The early HSI studies adopted the PBIA approach and often
used SAM and SVM algorithms as the classifiers. Relying on the spectral information in
traditional PBIA methods caused many issues, such as large OE and salt-and-pepper error.
Hence, many recent studies adopted the OBIA approach, which takes the contextual factors
into account for more accurate classification results. Supervised, supervised rule-based, and
fuzzy rule-based methods were investigated for feature engineering and the classification
process of ACM roof mapping. Only one paper [12] investigated the potential capabilities
of deep-learning-based methods for ACM roof classification. While these studies mostly
reported acceptable classification results, several challenges affected the mapping process
or classification accuracy results. The following section discusses the major challenges
synthesised from the reviewed works and highlights solutions adopted in other studies
across different applications.
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Table 5. The summary of the reviewed studies of ACM roof mapping.

Authors Imagery Type Sensor Classification
Approach Classifier Highest Accuracy

Result %

Fiumi et al., 2012 [20] HSI MIVIS PBIA SAM OA: 88
PA: 94

Fiumi et al., 2014 [21] HSI MIVIS PBIA SAM OA: 65

Frassy et al., 2014 [22] HSI MIVIS PBIA SAM OA 80
PA: 43

Szabó et al., 2014 [23] HSI MIVIS PBIA SVM OA: 79.9

Cilia et al., 2015 [13] HSI AISA Eagle II PBIA SAM UA: 86
PA: 89

Hamedianfar et al., 2014 [24] HSI AISA Classic
AISA Eagle OBIA DT OA: 93

De Pinho et al., 2012 [26] MSI IKONOS II OBIA DT OA: 71.91
Taherzade et al., 2013 [27] MSI WV-2 OBIA DT OA: 82

Hamedianfar et al., 2014 [29] MSI WV-2 OBIA Rule based OA: 87
Hamedianfar et al., 2014 [30] Fusion of MSI and LiDAR WV-2 OBIA Rule based OA: 92.84
Hamedianfar et al., 2015 [28] MSI WV-2 OBIA Rule based OA: 88

Gibril et al., 2017 [10] MSI WV-2 OBIA Rule based OA: 93
Abriha et al., 2018 [31] MSI WV-2 PBIA RF OA: 85

Tommasini et al., 2019 [11] MSI WV-3 PBIA RF OA: 82
Norman et al., [32] Fusion of MSI and LiDAR WV-3 OBIA DT OA: 87

Krowczynska et al., 2020 [12] MSI Aerial imagery DL CNN
OA: 89
PA: 89
UA: 88

5.2. Major Challenges and Opportunities

Table 6 demonstrates the synthesis of major challenges in the reviewed ACM roof
mapping studies and highlights the opportunities to enhance the procedure. The challenges
and their associated opportunities are further discussed in the corresponding paragraphs.
As explained in Section 2.2, adopting a systematic assessment approach to compare the
accuracy results was inappropriate. The reviewed ACM roof mapping studies worked on
different study areas, which have different characteristics. Apart from that, the mapping
processes often differ in the details, such as image preprocessing, feature extraction, and
segmentation optimisation techniques. A valid comparison of the mapping processes assists
in identifying the optimal approaches and opportunities. Future works are suggested to
focus on a particular challenge and its corresponding opportunities by adopting the same
study area and minimising the variation in research conditions and mapping workflow.
This synthesis aims to provide guidance on the general performance of the reviewed
methods, assisting the researchers in identifying best practices and improving areas in
future research.

Table 6. The synthesis of major challenges and opportunities in ACM roof mapping studies.

Item Challenge Area Effect Opportunity

1
The low spatial resolution of early

HSI classified by traditional
PBIA [13,20–23]

HSI Omission Error [13,20] DL-based semantic classification
(e.g., 3D-CNN and FCN) [141,142,145]

2 High dimensionality [23,24] HSI
Curse of dimensionality [34]

Inter-class confusions [35]
Noisy map [36]

Dimensionality reduction techniques
(e.g., SFS and PCA) and OBIA classification

[23,152,153]

3
Complex patterns of surface
materials in VHR MSI and

traditional PBIA [10,11,26–32]
MSI

Within-class spectral variability
Between-class spectral similarity

Salt-and-pepper error [37,154]

The fusion of MSI with LiDAR and OBIA
classification [30,32]

4
Non-optimised segmentation

parameters (over- or
under-segmentation) [28,30]

OBIA Low classification accuracy, mixed
objects [155]

Taguchi optimisation technique
[32,47,130,155], and DL-based image
segmentation methods such as Mask

R-CNN [45], Fusion of segmentation with
classification [41,42,107,115]
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Table 6. Cont.

Item Challenge Area Effect Opportunity

5
Inadequate training data

(size and
representativeness) [111,112]

Supervised

Low classification accuracy,
limitation in transferability and

autonomous ACM roof
classification areas [117,118]

Adopting a training samples size
30 times greater than the number of

RSI spectral bands [118] using
advanced non-parametric classifiers

(e.g., RF and SVM) [46]
Using expert systems [10,32]

6 Analyst’s subjectivity
[101,105,153,156]

Expert
systems

Biased or error-prone results
[101,105,153,156]

Adopting automatic induction
(i.e., data mining) methods [24,65,120]

DL-based end-to-end semantic
classification [49]

1. The low spatial resolution of early HSI was a significant challenge causing large
OEs [13,20–23]. As explained in Section 4.1, a window of 3× 3 image pixels is required
to detect a roof unit with reasonable confidence [72]; consequently, for HSI with a 4 m
spatial resolution, traditional pixel-based classifiers often were able to detect roof units
with an area of larger than 144 m2 [22]. While large OEs were reported in early studies
of ACM roof mapping using HSI, two studies [13,20] indicated high OAs. This was
due to the large areas of the classified roof units, because the classification accuracy
increases when roof units have large areas. In the study by Cilia et al. (2014) [13],
roofs with an area smaller than 36 m2 were excluded from accuracy assessment, which
resulted in high OA. Hence, the results of the above studies may not be consistent due
to the high OEs of asbestos classes. Due to the advancement in remote sensors, low
spatial resolution is not a challenge with current hyperspectral images, as they often
provide both high spectral and spatial resolutions. Additionally, for low-resolution
HSI, DL-based semantic classification could enhance the accuracy results by assigning
class membership to subpixels instead of a single label [141,142,145].

2. High dimensionality remained a challenge in ACM roof mapping studies, despite en-
hancement in the spatial resolution of recent HSI [23,24]. Using the non-optimal num-
ber of bands and features could adversely affect the classification accuracy (i.e., the
curse of dimensionality) [34]. Furthermore, the high dimensionality of the data
increases image processing time and causes inter-class confusion [35]. High dimen-
sional space causes noisy maps due to the atypical or mixed pixels in pixel-based
methods [36]. Dimensionality reduction techniques such as principal component
analysis (PCA), and sequential forward selection (SFS) could significantly enhance the
classification accuracy via optimal selection of features [152]. In the study by Szabo
et al. (2014) [23], the PA of asbestos increased from 23% to 86.9% by reducing the
dimensionality of another dataset. Several studies suggested OBIA methods could
have a better performance in handling high dimensionality of HSI in comparison
with PBIA classification methods [152,153]. Moreover, Hamedianfar et al. (2014) [24]
indicated that integrating a data mining (DT) algorithm with OBIA classification
could significantly improve attribute selection and classification accuracy.

3. On the other hand, while very-high-resolution MSIs have been suitable input data,
the pixel-based classification methods could not handle the detailed data of MSI with
fine resolution [72]. The Earth′s surface is a mixture of various natural and artificial
materials, so the finer resolution of MSI represents more details, resulting in complex
spectral responses, particularly in heterogeneous urban areas [30]. Using spectral in-
formation in PBIA methods increases intra-class variability, confusion among classes,
and salt-and-pepper errors when classifying very-high-resolution MSI [37,154]. Apart
from that, other challenges may arise from interconnection among image resolutions,
bands, and the cost of acquiring very high-resolution data in which using new tech-
nologies such as drones could reduce the survey costs [29]. As mentioned above, OBIA
methods have been an appropriate alternative for classifying very high-resolution
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MSI [10,11,26–32]. However, misclassification errors were reported [27,29,32] as an-
other challenge that was often connected to variability in the roof condition and
geometry. In this regard, [30,32] showed that the fusion of MSI with LiDAR could
not only significantly enhance the classification accuracy, but also could be capable of
evaluating the ACM roof conditions.

4. Generating the optimised segmentation parameters plays a significant role in achiev-
ing acceptable accuracy results in OBIA classifications. Both over-segmentation and
under-segmentation [157] can result in too many small objects or large objects cor-
responding to mixed classes. A trial-and-error approach was adopted in ACM roof
mapping studies [29] to identify the optimal parameters of objects; however, this seg-
mentation process is subjective, which may cause poor results [155]. Apart from that,
ENVI tools were utilised [28,30] for the segmentation of images, while no method was
adopted to evaluate the segmentation quality. Several techniques for segmentation
optimisation are proven to enhance the results, reduce the processing time, and min-
imise trial efforts [48,158]. A Taguchi optimisation technique, which has been widely
used in OBIA studies, showed acceptable results [32,47,130,155]. In other remote
sensing applications, DL-based image segmentation methods such as Mask R-CNN
have shown good performance [45]. Moreover, it is suggested that the collaboration of
segmentation with classification [115] could identify more accurate objects by adding
a segmentation step in the classification process [41,42,107].

5. The reliance on training data was the main barrier to transferability and widespread
use of supervised classification methods [111,112]. The size, representativeness, cost,
and sample collection strategies could significantly affect the classification accu-
racy [117]. When training samples are gathered from field surveys, the availability
of ground references and the geophysical situation of study areas raise more chal-
lenges, particularly in complex and heterogeneous urban areas [110,118]. Moreover,
because of the differences in inherent attributes among study areas [40], it is usually
required to develop a new dataset for transferring the model to other areas, which is a
limitation of autonomous ACM roof classification over wide-scale study sites. While
defining training data requires several factors to consider, Mather et al. (2011) [118]
suggested that the sample size should preferably be 30 times greater than the number
of RSI spectral bands used in classification. Furthermore, adopting advanced non-
parametric classifiers such as RF and SVM could have an acceptable performance
when a small number of training data are available [46]. Supervised classifications
were often outperformed by rule-based methods in the reviewed studies of ACM roof
mapping [10,32]. Hence, fuzzy rule-based (expert systems) could be an alternative
when adequate training data are not available.

6. Analysts’ subjectivity in expert systems could cause biased and error-prone results
because the rules are defined based on the analyst′s knowledge and reasoning on
feature classes [101,105,153,156]. Consequently, when rulesets are developed by dif-
ferent operators, different results may be achieved. In the ACM roof mapping studies,
while [10,28–30] reported acceptable accuracy results of rule-based classification, a
systematic evaluation of the subjectivity [101] is missing. In this regard, adopting
automatic induction (i.e., data mining) methods could be a suitable solution to reduce
the effects of the analyst′s subjectivity [24,65,120]. Moreover, within the end-to-end
deep learning structure, feature extraction is replaced by feature learning as a part
of the classifier training phase. In this case, instead of defining the inner steps of
the feature engineering phase, the end-to-end architecture generalises the model
generation involving feature learning as part of it [49]. Hence, DL-based end-to-end
architectures have been suggested as a practical approach to replace conventional
rule-based OBIA classifications.
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6. Conclusions and Future Direction

This paper reviewed the state-of-the-art of ACM roof mapping using remote sensing
imagery and machine-learning-based classification. This paper synthesised the critical
challenges of the ACM mapping process in two main contexts: (1) RSI and image pre-
processing, and (2) classification methods and techniques. Further, other applications of
machine learning and remote sensing were used to inform any priorities for future research.
Literature model results were provided in this paper as example results for each modelling
approach. Due to the variety of approaches and analysis of results, a comparison of results
was not provided. Therefore, this review does not conclude with an optimal method, but
rather provides an overview of best practices from the existing literature.

Six major challenges were identified in the reviewed studies: (1) the low spatial resolu-
tion of early HSI classified by traditional PBIA in early studies; (2) the high dimensionality
of HSI, which often causes inter-class confusions; (3) complex patterns of surface materials
in VHR MSI classified by traditional PBIA; (4) non-optimised segmentation parameters
causing low classification accuracy and mixed objects in OBIA approach; (5) inadequate
training data in supervised methods; and (6) analysts’ subjectivity causing biased or error-
prone classification results in fuzzy rule-based OBIA (expert system). By identifying these
challenges and integrating them in this review paper, we aim to assist in the research and
development of ACM roof mapping models.

Among the reviewed studies of ACM roof mapping, adopting OBIA classifications on
MSI often showed more accurate results than the PBIA methods. The fusion of MSI with
LiDAR resolved skewed image perspectives and complex geometry of roofs. Segmentation
optimisation techniques such as a Taguchi optimisation technique resulted in improved
accuracies in OBIA classification. While utilisation of DL-based classification methods is in
its infancy in ACM roof mapping studies, the review of other remote sensing applications
has shown several opportunities to enhance the performance of ACM roof mapping. Two
future research directions for ACM roof mapping are to explore: (1) deploying DL-based
end-to-end semantic classification on aerial imagery; and (2) integrating conventional
classification approaches in ACM roof mapping with DL-based architectures such as Mask
R-CNN and 3D-CNN.
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