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Abstract: Soil temperature is a fundamental parameter in water resources and irrigation engineering.
A cost-effective model that can accurately forecast soil temperature is urgently needed. Recently,
many studies have applied artificial intelligence (AI) at both surface and underground levels for
soil temperature predictions. In the present study, attempts are made to deliver a comprehensive
and detailed assessment of the performance of a wide range of AI approaches in soil temperature
prediction. In this regard, thirteen approaches, from classic regressions to well-established methods of
random forest and gradient boosting to more advanced AI techniques, such as multi-layer perceptron
and deep learning, are taken into account. Meanwhile, great varieties of land and atmospheric
variables are applied as model inputs. A sensitivity analysis was conducted on input climate variables
to determine the importance of each variable in predicting soil temperature. This examination reduced
the number of input variables from 8 to 7, which decreased the simulation load. Additionally, this
showed that air temperature and solar radiation play the most important roles in soil temperature
prediction, while precipitation can be neglected in forecast AI models. The comparison of soil
temperature predicted by different AI models showed that deep learning demonstrated the best
performance with R-squared of 0.980 and NRMSE of 2.237%, followed by multi-layer perceptron with
R-squared of 0.980 and NRMSE of 2.266%. In addition, the performance of developed AI models was
evaluated in extremely hot events since heat warnings are essential to protect lives and properties.
The assessment showed that deep learning and multi-layer perceptron methods still have the best
prediction. However, their R-squared decreased to 0.862 and 0.859, and NRMSE increased to 6.519%
and 6.601%, respectively.

Keywords: artificial intelligence; climate prediction; deep learning; extreme heat events; multi-layer
perceptron; neural network; regression; soil temperature

1. Introduction

Soil temperature is a pivotal parameter in geo-environmental and geotechnical en-
gineering. Soil temperature prediction is significant for atmospheric models, numerical
hydrological and land-surface hydrological processes, as well as land–atmosphere inter-
actions [1,2]. In addition, in some other fields, such as water resources and hydrologic
engineering, soil temperature is an important factor [3]. Soil temperature is a catalyst for
many biological processes. It influences the soil moisture content, aeration and availability
of plant nutrients, which are necessary for plant growth. It is essential to measure or esti-
mate this parameter with a reasonable precision. Therefore, an accurate and cost-effective
model that can accurately predict soil temperature is urgently needed [4–6].
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There are two common ways of obtaining soil temperature: direct measurement and
indirect prediction using numerical models [7]. Since soil temperature is a stochastic pa-
rameter and similar to other climatic parameters, researchers use the following approaches
to calculate it: statistical models and machine learning methods [8].

Statistical models use historical time series to estimate soil temperature predictions.
The commonly used method for time series forecasting is stochastic modeling, such as the
auto-regressive moving average (ARMA) and auto-regressive integrated moving average
(ARIMA) [9]. These statistical methods assume that changes in the statistical properties
of soil temperature data series in the future would be similar to those in the past. This
means that large amounts of data are required for long-term predictions. Bonakdari et al.
(2019) and Zeynoddin et al. (2020) proposed a linear stochastic method to model daily soil
temperature with sufficient knowledge of the time series structure [6,9].

Recently, the use of artificial intelligence (AI)-based techniques for predicting real-
world problems has rapidly increased. Many studies applied AI models at both surface and
under-ground levels for soil temperature predictions. George (2001) made use of a multi-
layer neural network for a weekly mean soil temperature prediction during 1 year [10].
Monthly soil temperature was modeled using a 3-layer artificial neural network (ANN)
constructed by Bilgili (2010) [11]. He used meteorological variables of atmospheric temper-
ature, atmospheric pressure, relative humidity, wind speed, rainfall, global solar radiation
and sunshine duration to make predictions at five depths below ground level and com-
pared them with linear and nonlinear regression results. Ozturk et al. (2011) developed
feed-forward artificial neural network models to estimate monthly mean soil temperature
at five depths from 5 to 100 cm under the ground using meteorological data such as so-
lar radiation, monthly sunshine duration and monthly mean air temperature [12]. Zare
Abyaneh et al. (2016) used ANNs and a co-active neuro-fuzzy inference system for the
estimation of daily soil temperatures at six depths from 5 to 100 cm underground using
only mean air temperature data from a 14-year period as input data [13]. An adaptive
neuro-fuzzy inference system (ANFIS), multiple linear regression (MLR) and ANN models
were developed by Citakoglu (2017) to predict soil temperature data in monthly units at five
depths from 5 to 100 cm below the soil surface using monthly air temperatures and monthly
precipitation for at least 20 years [14]. Himika et al. (2018) made use of various existing
regression and machine learning models to propose an ensemble approach to predict land
temperature [15]. The chosen models were decision tree, variable ridge regression and
conditional inference tree. Delbari et al. (2019) evaluated the performance of a support
vector regression (SVR)-based model in estimating daily soil temperature at 10, 30 and 100
cm depth at different climate conditions [16]. Climatic data used as inputs for the models
were air temperature, solar radiation, relative humidity, dew point, and the atmospheric
pressure. They compared the obtained results with classical MLR and found that SVR
performed better in estimating soil temperature at deeper layers. A study by Alizamir
et al. (2020) compared four machine learning techniques, extreme learning machine (ELM),
artificial neural networks (ANN), classification and regression trees and a group method of
data handling in estimating monthly soil temperatures [3]. They used monthly climatic
data of air temperature, relative humidity, solar radiation, and windspeed at four different
depths of 5 to 100 cm as model inputs. ELM was found to generally perform better than the
others in estimating monthly soil temperatures. Li et al. (2020) presented a novel scheme
for forecasting the hourly soil temperature at five different soil depths [17]. They developed
an integrated deep bidirectional long short-term memory network (BiLSTM) and fed their
model with air temperature, wind speed, solar radiation, relative humidity, vapor pressure
and dew point. Six benchmark algorithms were chosen to prove the relative advantages of
the proposed method, namely, three deep learning methods: LSTM, BiLSTM and deep neu-
ral network (DNN), and three traditional machine learning methods: random forest (RF),
SVR, and linear regression. The proposed model of Penghui et al. (2020) is a hybridization
of an adaptive neuro-fuzzy inference system with optimization methods using a mutation
salp swarm algorithm and grasshopper optimization algorithm (ANFIS-mSG) [18]. The pre-



Sustainability 2022, 14, 8065 3 of 25

diction of daily soil temperatures was conducted based on maximum, mean and minimum
air temperature. The results are compared with seven models, including classical ANFIS, a
hybridized ANFIS model with grasshopper optimization algorithm (GOA), salp swarm
algorithm (SSA), grey wolf optimizer (GWO), particle swarm optimization (PSO), genetic
algorithm (GA), and dragonfly algorithm (DA). Shamshirband et al. (2020) modeled air
temperature, relative humidity, sunshine hours and wind speed using a multilayer per-
ceptron (MLP) algorithm and SVM in hybrid form with the firefly optimization algorithm
(FFA) to estimate soil temperature at 5, 10 and 20 cm depths [19]. In a study by Seifi et al.
(2021), hourly soil temperatures at 5, 10, and 30 cm depths were predicted by applying
ANFIS, SVM, MLP and a radial basis function neural network with optimization algo-
rithms of SSA, PSO, FFA and sunflower optimization (SFO) [4]. They used air temperature,
relative humidity, wind speed and solar radiation as input information and found that
wind speed did not have a high coherence with soil temperature. A generalized likelihood
uncertainty estimation approach was implemented to quantify model uncertainty and
concluded that ANFIS-SFO produced the most accurate performance. Hao et al. (2021)
proposed a model called a convolutional neural network based on ensemble empirical
mode decomposition (EEMD-CNN) to predict soil temperatures at three depths between
5 and 30 cm [1]. They used the statistical properties of the maximum, mean, minimum
and variance air temperatures as the meteorological input information. The results were
compared using four models: persistence forecast (PF), backpropagation neural network,
LSTM and EEMD-LSTM. In a similar study, a convolutional 3D deep learning model with
ensemble empirical mode decomposition (EEMD) was proposed by Yu et al. (2021) to
predict soil temperatures over 1, 3 and 5 days at a depth of 7 cm underground [2].

Extreme events and their related irregular data are observed in many climate time-
series. So, the development of efficient methods to understand and accurately predict
such representative features remains a big challenge. O’Gorman and Dwyer (2018) applied
the RF method to simulate extreme precipitation events [20]. Hu and Ayyub (2019) used
machine learning to propose an alternative method for extreme precipitation modeling [21].
A deep learning strategy is proposed by Qi and Majda (2020) to predict the extreme events
that appear in turbulent dynamical systems [22]. Huang et al. (2021) employed a stacking
model and the XGBoost model to study the trend analysis between extreme land surface
temperatures and the amount of solar radiation [23]. Araújo et al. (2022) propose an
approach based on networks to forecast extreme rainfall [24]. In addition, Bochenek and
Ustrnul (2022) reviewed 500 publications from 2018 to 2021 concerning machine learning
methods, finding that the phrase “extreme events” was recorded a few times in the field of
climate and numerical weather predictions, mostly used in terms of extreme precipitation
and streamflow [25]. So, the ability of different AI strategies in the prediction of extreme
events should be investigated.

The above literature review shows that there are some gaps in the knowledge of AI ap-
plications in the prediction of soil temperature. First, there is an absence of a comprehensive
and detailed assessment of the performance of different artificial intelligence approaches,
from linear regression to complicated advanced techniques in soil temperature estimation.
Second, the most important atmospheric variables to be used as input data for AI models
must be determined. Previous studies usually used limited atmospheric variables, while
in the current investigation, a wide range of variables were employed. Although several
researchers developed codes equipped with some AI models, they focused on limited
meteorological parameters, mostly air temperature. There are many other climate data
that affect soil temperature, directly or indirectly. Therefore, the impact of other land and
atmospheric variables needs to be further studied. Furthermore, research should evaluate
and demonstrate the AI models’ skill in successfully tackling extreme events.

The main purpose of this study is to evaluate the performance of a wide range of AI
approaches to soil temperature prediction using various land and atmospheric variables. In
this article, 13 methods, from classic regressions, well-established methods of random forest
and gradient boosting to advanced AI techniques, such as ANFIS, ANN and deep learning,
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are taken into account. Meanwhile, a broad selection of variables from a comprehensive
reanalysis of ERA5 datasets were chosen as input parameters for the developed prediction
model to consider different aspects of the problem.

The rest of the paper is organized as follows: Section 2 describes the study area and
involved parameters, introduces the applied AI approaches and reviews the methodology
of study. The evaluation metrics are also presented in this section. The subsequent section
defines datasets and input information, presents the results and compares them with the
actual data. A discussion on the performance of the different AI methods using error
metrics, confidence bands and a sensitivity analysis of the outcomes of input parameters is
given in Section 4. Additionally, the behavior of developed AI models in extreme events
is investigated in the same section. The last section presents the concluding remarks and
future study suggestions.

2. Materials and Methods
2.1. Study Area and Dataset

The climate data used in the present study were obtained from ERA5. They were down-
loaded from the freely accessible website of Climate Data (https://cds.climate.copernicus.
eu/, accessed on 1 July 2021). ERA5 is the fifth-generation atmospheric reanalysis of the
global climate covering the period from 1950 to present. ERA5 is produced by the Coper-
nicus Climate Change Service (C3S) at ECMWF. It provides hourly estimates of a large
number of atmospheric, land and oceanic climate variables in a gridded-base format with a
regular latitude–longitude grid. The data coverage is global with a horizontal resolution of
0.25◦ × 0.25◦ and resolves the atmosphere using 137 levels from the surface up to a height
of 80 km. ERA5 includes information about uncertainties for all variables at reduced spatial
and temporal resolutions. ERA5 combines vast amounts of historical observations into
global estimates using advanced modeling and data assimilation systems.

The study area is Ottawa, the capital city of Canada (45.4◦ N, 75.7◦ W), located in the
southeast of the country, in the province of Ontario. Figure 1a shows the geographical
location of the considered site used in this study [26]. Ottawa has a semi-continental climate
with four distinct seasons. It has a warm, humid summer and a very cold and harsh winter.

Six stations represent the city of Ottawa, which are specified with red circles in
Figure 1b. The stations cover an area of approximately 30 × 40 km. The coordinates
of the stations are shown in Table 1.

Table 1. Coordinates of considered stations in city of Ottawa.

Station No. Latitude Longitude Station No. Latitude Longitude

#1 45.25◦ N 75.50◦ W #4 45.50◦ N 75.50◦ W
#2 45.25◦ N 75.75◦ W #5 45.50◦ N 75.75◦ W
#3 45.25◦ N 76.00◦ W #6 45.50◦ N 76.00◦ W

The used variables were the hourly weather conditions, including air temperature at
2 m above the surface (Kelvin), total precipitation (m), surface pressure (Pa), evaporation (m
of water), instantaneous wind gusts at 10 m above the surface (m/s), dewpoint temperature
2 m above the surface (Kelvin), surface net solar radiation (J/m2) and surface net thermal
radiation (J/m2). The valid data were collected from 1 June to 31 August 2020, a total of
92 days [27]. The data from these variables in the six mentioned stations are considered as
model inputs. Then, approximately 106,000 pieces of climatic information were gathered as
the AI model’s input. The output of each AI model predicted hourly soil temperature in
Kelvin at the layer between 0 to 7 cm underground.

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
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2.2. Descriptions of Artificial Intelligence Algorithms

A wide range of AI approaches are applied in the developed numerical model, as
described below.

There are two ways to assign hyperparameters in the models: Some of the hyper-
parameters are obtained by sensitivity analysis. In this technique, different values for
hyperparameters are assumed to be in the acceptable range. Then, the model is executed,
and its behavior is monitored. Finally, the value with the best outcome is chosen for that
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hyperparameter. In the other method, hyperparameters are set to a typical value according
to the previously studied cases or other considerations.

Most of the hyperparameters in the current study were assigned after a sensitivity
analysis, while some activation functions or kernel functions were set to recommend typical
functions according to the present studied case, which is regression.

2.2.1. Linear Regression, Ridge, Lasso and Elastic Net

Four different linear models were applied in the developed code, including: Linear
regression, ridge, lasso and elastic net. Linear regression is the most basic form of a
linear model for minimizing the residual sum of squares. So, the objective function is as
follows [11,14,17,28]:

∑(y− Xw)2 (1)

where y is the actual value, X is the input value and w is weight.
Ridge is a linear model that imposes a penalty on the sum of squared value of the

weights, resulting in a group of weights that are more evenly distributed. The objective
function called L2 regularization:

∑(y− Xw)2 + α ∑ w2 (2)

where α is a non-negative hyperparameter that controls the magnitude of the penalty. In
the present study, α was set to 0.1 by a sensitivity analysis of the ridge model.

For lasso, a modification of linear regression is applied, in which the model is penalized
for the sum of absolute values of the weights, which is known as L1 regularization:

1
2m ∑(y− Xw)2 + α ∑ |w| (3)

In the present study, α was set to 0.001 by sensitivity analysis for lasso model.
Elastic net (Enet) is a combination of the two last models such that both regularizations

related to ridge and lasso models are exerted on the linear regression. Parameter ρ defines
the ratio of penalties. If ρ is zero, the penalty would be L2 regularization; if ρ is one, the
penalty would be L1 regularization:

1
2m ∑(y− Xw)2 + α ∗ ρ ∑ |w|+

α

2
(1− ρ) ∗∑ w2 (4)

In the present study, ρ was set to 0.5, so it was a combination of ridge and lasso models.
Additionally, α was set to 0.0001, obtained by a sensitivity analysis for Enet model.

To reach the desired hyperparameters, different values in the acceptable range are
usually tried, and the one that leads to the best result with minimum error is chosen.
However, the intermediate process is not explained in the manuscript to avoid prolonging
the text, and only the selected value for hyperparameter was provided. For example, in
the Enet method, different values of α and related error indicators are presented in Table 2.
At the beginning, it can be seen that the error metrics improved, but with the decreasing α
from 0.0001, the error indicators did not dramatically change. So, this value was selected
for hyperparameter α in this method.

Table 2. Results of sensitivity analysis of hyperparameter α in Enet model.

Hyperparameter α 1E-2 5E-3 1E-3 5E-4 2E-4 1E-4 1E-5 1E-10
NRMSE 0.04807 0.04693 0.04628 0.04623 0.04620 0.04619 0.04618 0.04618

R2 93.95% 94.23% 94.39% 94.40% 94.41% 94.41% 94.41% 94.41%
NRMSE

difference - −2.43% −1.40% −0.11% −0.06% −0.02% −0.02% 0.00%

R2

difference
- 0.30% 0.17% 0.01% 0.01% 0.00% 0.00% 0.00%
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The change rate is calculated in the last two rows of the table. It shows NRMSE
decreases fast with greater α values, but it becomes almost constant when α is selected
as 0.0001 and less. The same trend can be seen for R-squared. While α values are high,
R-squared increases and reaches a point that remains unchanged for α equals 0.0001. This
analysis confirms that 0.0001 is a good choice for the α hyperparameter in the Enet model
since larger values lead to high error results and do not show an acceptable accuracy.
Additionally, lower values do not significantly improve model results.

2.2.2. Nearest Neighbors Method

In the nearest neighbors method, learning is based on the fixed number of nearest
neighbors for each query point or on the neighbors within a fixed radius of the query point.
It can be uniformly weighted or made proportional to distance.

The present study implemented learning for k-nearest neighbors’ points (KNN). Pa-
rameter k was set to 3 after calibration. Additionally, a uniform weight function was used
in the prediction, which means each point in the local neighborhood uniformly contributed
to the classification of a query point. The distance function used for the tree was Euclidean
distance, which is the ordinary distance between two points on a plane.

2.2.3. Decision Tree, Random Forest, Gradient Boosting and Extreme Gradient Boosting

There is another learning method called decision trees. This method’s goal is to
create a model that predicts the value of a target variable by learning simple decision rules
inferred from data features. In other words, a tree can be seen as a piecewise constant
approximation.

Ensemble learning method is a technique that combines predictions from multiple
machine learning algorithms in order to make a more accurate prediction than a single
model. Some ensemble models are developed based on decision trees such as random
forest and gradient boosting.

Random forest is a meta estimator that fits a number of decision trees on various
subsets of the dataset. A RF operates by constructing several decision trees during training
time and outputting the mean of the classes as the prediction for all the trees. Several trees
run in parallel with no interactions amongst them in this method [7]. In the present study,
the number of decision trees in the random forest model was set to 1000 after sensitivity
analysis. The criterion function to measure the quality of a split in RF was squared error
since other functions such as absolute error are significantly time-consuming. No maximum
depth was assigned for the tree, so nodes could expand until all leaves became pure.

Gradient boosting repeatedly fits a decision tree on the differentiable loss functions.
This method builds one decision tree at a time, where each new tree helps to correct errors
made by the previously trained tree. Gradient boosting is fairly robust against over-fitting,
so a large number of boosting stages usually results in a better performance. In the present
study, the number of boosting stages to perform was set to 1000 after sensitivity analysis.
More repetition did not significantly improve the results.

Extreme gradient boosting (XG boost) builds a model by a set of trees, reduces the
errors, and builds a new model in subsequent iterations. Unlike the gradient boosting
method, XG boost implements some regularization; therefore, it helps to reduce overfitting.
Additionally, it is much faster compared to gradient boosting [29,30].

There are some hyperparameters that should be tuned for the XG boost model: (i) num-
ber of used decision trees, which would often be better if have more, (ii) tree depth, which
controls how specialized each tree is to the training dataset, (iii) learning rate, which con-
trols the amount of contribution of each decision tree model on the ensemble prediction. In
the present study, the number of decision trees, tree depth and learning rate were set to 100,
6 and 0.3, respectively.
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2.2.4. Support Vector Machine

The basic idea of support vector machines is to map the original data into a feature
space with a high dimensionality through a non-linear mapping function and construct an
optimal hyperplane in the new space. In case of regression, a hyperplane is constructed that
lies close to as many points as possible. It means the optimal hyperplane it seeks is not to
maximize the separation distance between two or more kinds of sample points such as SVM,
but to minimize the total deviation between sample points and the hyperplane [31–34].

When solving nonlinear problems, SVR applies the kernel function to map the nonlin-
ear regression problem to the space of higher latitude, so that an optimal hyperparameter
to be constructed that lies close to as many points as possible.

The radial basis function kernel is widely used for SVM models and recommended in
regression problems [32] and was applied in this study:

K
(
Xi, Xj

)
= exp

(
−γ ∑

(
Xi − Xj

)2
)

(5)

where Xi, Xj are two points, and the hyperparameter γ passes the reciprocal of the number
of features, which was set to 8 in the present study.

2.2.5. Stacking Method

Another group of methods is called stacking or stacked generalization. Stacking is
an ensemble machine learning algorithm that learns how to best combine the predictions
from multiple high-performance machine learning models. In this paradigm, the outputs
of some aforementioned individual estimators are gathered and an additional regressor is
used to compute the final prediction. Stacking often ends up with a model that is better
than any individual intermediate model [35].

In the present study, different combinations of estimators are tried, and eventually,
three methods—random forest, SVM and ridge—computed the best outcome.

In the first step, the stacking method uses some predictors, which consist of a list
of machine learning methods stacked together in parallel on the input data. Herein, the
random forest and SVM methods were applied as predictors. At the second step of stacking
method, a final predictor is employed that uses the predictions of the first estimators as
inputs. The final predictor is a machine learning regressor, which was chosen to be the
ridge method in the current study.

2.2.6. Multi-Layer Perceptron

Multi-layer perceptron (MLP), a class of feedforward ANN, is a non-linear function
approximator in layers using back propagation with no activation function in the output
layer. It used the rectified linear unit (Relu) function as the activation function in the hidden
layers [7,8,36–39]:

g(z) = max(0, z) (6)

Although there are some different types of activation functions used in neural net-
works, Relu is the most common function for hidden layers because it is both simple
to implement and effective at overcoming the limitations of other previously popular
activation functions.

MLP uses different loss functions depending on the problem type. For the case of
prediction, MLP uses the square error loss function; written as:

1
2 ∑(y− Xw)2 +

α

2 ∑ w2 (7)

Starting from initial random weights, MLP minimizes the loss function by repeatedly
updating these weights. After computing the loss, a backward pass propagates it from
the output layer to the previous layers, providing each weight parameter with an update
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value meant to decrease the loss. The algorithm stops when it reaches a pre-set maximum
number of iterations, or when the improvement in loss is below a certain, small number.

In the current study, 700 hidden layers were used in the MLP model after sensitivity
analysis. The sensitivity analysis showed that using 500 and 1000 hidden layers led to
NRMSE of 0.04050 and 0.03655, respectively. Whereas, considering 700 hidden layers,
NRMSE was 0.03635, which showed an improvement in error metrics.

The activation function for the hidden layers was Relu, which passes the maximum of
the variable and zero. The solver for weight optimization was Adam, which is a stochastic
gradient-based optimizer. Maximum number of iterations was 5000, which determines the
number of epochs, meaning how many times each data point is used.

2.2.7. Deep Learning

Briefly, deep learning is a machine learning technique that employs a deep neural
network. The word “deep” refers to the depth of layers in a neural network. A deep neural
network is a multi-layer neural network that contains two or more hidden layers. However,
it is not just the addition of hidden layers or the addition of nodes in the hidden layer.
There is no point in adding hidden layers if they cannot be trained, and the neural network
with deeper layers may not be appropriately trained [17,37]. Although deep learning
shows outstanding achievements, it does not actually have any critical technologies to
present. The innovation of deep learning is a result of many minor technical improvements.
Technically, the backpropagation algorithm experiences three primary difficulties in the
training process of the deep neural network, and deep learning could overcome those
problems [40]:

- Vanishing gradient: This is a problem when the hidden layers are not adequately
trained. Deep learning is assisted by some numerical method that better achieves the
optimum value and is beneficial for the training of the deep neural network.

- Overfitting: Deep neural networks are vulnerable to overfitting because the model
becomes more complicated as it includes more hidden layers, and hence more weight.
Deep learning solves this problem by training only some of the randomly selected
nodes rather than the entire network. It also uses regularization.

- Computational load: Deep learning relieved significant training time due to heavy
calculations by employing GPU and some other algorithms.

In the deep learning method, the number of epochs is the number of times that the
entire training dataset is shown to the network during training. In the current study, this
hyperparameter was set to 100. The optimization algorithm used to train the network was
Adam, which is widely used in deep learning [37]. The activation function that controlled
the non-linearity of individual neurons was Relu, which is widely recommended [17].
There are two hidden layers in the present model. The number of neurons in the hidden
layers that control the representational capacity of the network were set to 300, after tuning.

2.2.8. Adaptive Neuro-Fuzzy Inference System

Adaptive Neuro-Fuzzy Inference System (ANFIS) models combine fuzzy systems and
the learning ability of neural networks. ANFIS is considered an ANN model that conducts
the preprocessing step by converting numeric values into fuzzy values [5,32,41–43].

The toolbox feature of the ANFIS forms a fuzzy inference system whose membership
structure or parameters can be calibrated either using a backpropagation method alone or
combining with the least-squares-type method. To create an inference system, five different
layers, namely the fuzzy layer, product layer, normalized layer, de-fuzzy layer, and the total
output layer, are used. Each layer consists of different adaptive nodes that exert changeable
and fixed factors on input values.

The ANFIS rules are presented in the following form:

y = px1 + qx2 + r (8)
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where x1, x2 are input variables from corresponding fuzzy sets, y is the output, and p, q, r
are constant parameters.

2.3. Methodological Overview

The collected data were randomly split into two parts. The first part, including 65% of
the data, was used for the training phase, while the remaining 35% of the data were are
used as the testing set.

In the splitting part of the AI models, the dataset was divided to randomly train and
test subsets. This means that data were shuffled first, then 65% of shuffled data were used
for training phase, and the remaining data were set aside as testing data. The considered
AI approach was fitted to the train subset, and the accuracy of training step was calculated
based on several error measures, as described in Equations (9)–(14). In the next step, the
fitted AI model was applied to the test subset for prediction purpose. Again, the accuracy
of the testing step was calculated.

Different explanations can be made for the applied AI models considering the accuracy
of training and testing steps. If the model performs much better on the training set than
on the test set, then we are likely to be overfitting. Underfitting refers to a model that can
neither model the training data nor the testing data. The sweet spot between underfitting
and overfitting, which shows the good performance of a machine learning algorithm on
both the training and testing data, is a good fit [5,37].

The accuracy results of the training and testing stages of each applied AI model are
presented in Table 3. The values show good performance for all models on both training
and testing data, which proves the dataset is not prone to overfitting.

Table 3. Checking overfitting and cross validation.

Accuracy Score Linear Lasso Ridge Enet KNN RF Gradient
Boosting

XG
Boost SVM Stacking MLP Deep

Learning ANFIS

Training R2 0.96 0.96 0.96 0.96 0.96 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.96
Testing R2 0.94 0.94 0.94 0.94 0.91 0.94 0.95 0.94 0.97 0.96 0.96 0.97 0.94

Mean K-fold CV 0.95 0.95 0.95 0.95 0.89 0.95 0.96 0.95 0.97 0.96 0.96 0.96 0.95
Sdev K-fold CV 0.01 0.01 0.01 0.01 0.03 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01

Moreover, to ensure that splitting does not affect the model performance, cross-
validation (CV) metrics are employed in the developed codes. In this function, splitting the
data was carried out k consecutive times (here a process of 5 times was typically chosen)
with different splits each time. The model was fitted and scores were computed for each
iteration. The mean and standard deviations of scores are presented in Table 3 for every
AI model. The fact that, for all models, the mean is near 1.0 and the standard deviation is
negligible shows that random splitting was successful in the cross-validation evaluation
and did not lead to overfitting in the considered case.

In fact, the temperature time series are non-stationary since their statistical properties
change over time. In the present study, the soil temperature prediction was primarily
considered in the hot season. The mean and standard deviations of the all the data are
296 and 4, respectively. Then, the time series were split into four partitions, and each
group’s mean and standard deviation were calculated. It was found that the statistical
parameters of each division do not have noticeable differences from each other. This shows
the non-stationary factor of soil temperature time series used in the present study cannot
be considered a major issue.

The air temperature, precipitation, surface pressure, evaporation, instantaneous wind
speed, dewpoint temperature, solar radiation and thermal radiation are the atmospheric
variables used as the inputs of the benchmark algorithm, and the soil temperature at a
depth of 0–7 cm underground is the output of the model.

With the aim of making model training less sensitive to the scale of parameters and
allowing our models to converge to better weights and, in turn, lead to a more accurate
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model, the data were normalized in a way that removed the mean and scaled each variable
to unit variance. Scaling occurred independently on each parameter by computing the
relevant statistics on the samples in the training set. Mean and standard deviations were
then stored to be used on later data using denormalization. The same procedure was
employed for testing data before prediction.

The overall flow of the simulation is illustrated in Figure 2.
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The applied programming language in this study was Python version 3.9 (Python:
Open-source, designed by Guido van Rossum in 1991). Python is a high-level, object-
oriented, general-purpose, interactive language that is widely used for data analysis and
machine learning. Additionally, Spyder version 5.1.5 (Spyder: Open-source, original
author is Pierre Raybaut in 2009) was employed, which is a scientific Python development
environment. The processor of the used device was 11th Gen Intel Core i5 @ 2.40 GHz, and
installed RAM was 8.00 GB.

To facilitate the assessment of the model performance, the outputs of applied AI
models need to be compared. Several error indicators are employed to measure the quality
of modeling, including maximum residual error (MaxE), mean absolute error (MAE),
mean square error (MSE), root mean square error (RMSE), normalized root mean square
error (NRMSE) and coefficient of determination (R-squared). The evaluation metrics are
defined as:

MaxE = Max(yobs − ycalc) optimal value: 0 (9)

MAE =
∑|yobs − ycalc|

n
optimal value: 0 (10)
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MSE =
∑(yobs − ycalc)

2

n
optimal value: 0 (11)

RMSE =

√
∑(yobs − ycalc)

2

n
optimal value: 0 (12)

NRMSE =
RMSE

[Max(yobs)−Min(vobs)]
optimal value: 0 (13)

R2 = 1− ∑(yobs − ycalc)
2

∑(yobs − ycalc)
2 optimal value: 1 (14)

where yobs is the observed value, ycalc is the predicted value by the AI mode, ycalc is the
mean of calculated values and n. is the number of data points.

3. Results

Before applying the models to all stations representing Ottawa, one station (station #2
in Table 1) was selected, and AI models were applied. The location of the station was central–
southern Ottawa, with coordinates of 45.25◦ N and 75.75◦ W, which are shown in Figure 1c.
As mentioned earlier, eight hourly climate parameters were used as input variables. The
data were gathered from 1 to 31 July 2020, a total of 31 days, and approximately 6000 pieces
of climatic information were found.

According to what was stated, AI models were applied for two sets of data. The first
dataset is for a confined database with a limited quantity of information based on station #2
(shown in Figure 1c) and is named as the limited dataset in the current study. The second
dataset is an extensive collection of data based on the information of six stations (shown in
Figure 1b) and is named as the big dataset in the present study.

After applying each developed AI model on these two datasets, evaluation of the
model’s performance was carried out separately; then, a comprehensive assessment was
finally performed.

The primary step of modeling was splitting the data into two groups. Although the
data were randomly split for training and testing purposes, the training and testing data
were maintained for all models. So, all AI models were trained and tested with the same
set of data. After the model training procedure, the model was fed with testing data as
inputs, and prediction results were obtained. The predicted outcomes and real values were
simultaneously reshaped into a 1-dimensional series, and the performances of the models
were evaluated using the error metrics.

The developed model was executed each time, employing 1 of the 13 abovementioned
AI techniques, once on the limited database and once on the big dataset. Hence, 26 sets of
predicted data were obtained.

The residuals of soil temperature, the difference between the actual and the predicted
values obtained from each AI model were calculated and are illustrated in Figure 3 as
box plots. It makes sense that the closer the residual distribution to zero, the better the
model prediction.

A box plot is a graphical method for demonstrating the locality and spread of numeri-
cal data. This diagram is a standardized way of displaying the five significant summary
numbers of the minimum (Q0.), first quartile (Q1.), median (Q2.), third quartile (Q3) and
maximum (Q4). Additionally, interquartile range (IQR), the distance between upper and
lower quartile (Q3 −Q1), can be seen from this plot.

Additionally, the graph provides some indication of the symmetry and skewness of
the data and shows outliers. Outliers are extreme values that lie at an abnormal distance
from other values. Less outliers means that not many points significantly deviate from the
rest of the data.
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Consequently, investigating the box plots presented in Figure 3 provides helpful
information that can be used as an evaluation tool to assess the performances of different
AI models in both limited and big datasets.

The closer the median to zero and the smaller the interquartile range, the better the
model performance since this indicates that the residuals are mainly distributed around
zero. Additionally, fewer outliers are desirable for residuals of an AI model prediction.

Figure 3a demonstrates the box plot of residuals computed by different AI models
on the limited dataset. It can be seen from Figure 3a that deep learning residuals have the
smallest interquartile range; their median is almost zero, and the absolute value of their
maximum and minimum are lower than other models. Therefore, this method has the
best performance for predicting soil temperature. Following the deep learning method,
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the MLP and stacking methods have the least IQR, lowest Q4, highest Q0 and their Q2 is
very close to zero. So, the performance of these two methods is evaluated as effective. On
the other hand, the KNN method has the highest IQR, highest Q4, lowest Q0 and its Q2 is
clearly less than zero. Thus, this method did not show an acceptable performance in soil
temperature prediction.

Figure 3b demonstrates the box plot of residuals computed by different AI models on
the big dataset. It can be seen from Figure 3b that the median of all models is very close
to zero. The interquartile ranges of deep learning, MLP and stacking methods are less
than the others. Deep learning has the lowest maximum and highest minimum among
these three methods. Therefore, deep learning followed by MLP and stacking methods also
showed the best performance for big dataset.

Figure 4 is a scatter plot of the predicted soil temperatures computed by applying all
different AI methods on ERA5 data, and demonstrates a good fit between the observed
values and the models’ predictions. The predicted soil temperatures show a very close
match to the identity line in Figure 4a,b. It was determined that all AI models were able to
provide reliable soil temperature results for both the limited dataset and big dataset.
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The information presented in Figure 4 shows that the size of data in AI models plays
a significant role in the correctness of results, and more data lead to more robust and
promising results. The correlation between actual and predicted data was 97% for the big
dataset, whereas the R-squared value for the limited dataset was found to be 94.5%.

Performance of Developed AI Models

Previous literature reviews show that different researchers employed different AI
approaches and developed their models to predict soil temperature. However, among the
well-established and advanced AI models, the question of which model is best for making
a reasonably precise prediction in a timely manner remains unanswered.

In the current study, thirteen AI models—linear regression, lasso, ridge, Enet, KNN,
random forest, gradient boosting, XG boost, support vector machine, stacking, multi-layer
perceptron, deep learning and adaptive neuro-fuzzy inference system—were employed
to predict soil temperature. The mentioned models were applied to two sets of data with
different quantities of information to assess the performance of the various AI models.
Meanwhile, the effect of dataset size on the behavior of AI models was evaluated.

To measure the quality of different AI models, the statistical indicators of Equations (9)–(14)
were applied, and the results of the error analysis are presented in Table 4 for both limited
and big datasets.
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Table 4. Error analysis of predicted soil temperature values using different AI models.

Size of
Dataset AI Models MaxE

(K)
MAE
(K)

MSE
(K2)

RMSE
(K)

NRMSE
(-)

R2

(-)

Limited Dataset

Linear 2.31 0.63 0.65 0.81 4.6% 0.94
Lasso 2.31 0.63 0.65 0.81 4.6% 0.94
Ridge 2.31 0.63 0.65 0.81 4.6% 0.94
Enet 2.31 0.63 0.65 0.81 4.6% 0.94
KNN 3.21 0.81 1.09 1.04 6.0% 0.91

RF 3.23 0.65 0.75 0.86 4.9% 0.94
Gradient Boosting 3.08 0.58 0.62 0.79 4.5% 0.95

XG Boost 2.84 0.61 0.66 0.81 4.7% 0.94
SVM 2.42 0.64 0.65 0.81 4.6% 0.94

Stacking 2.22 0.51 0.45 0.67 3.9% 0.96
MLP 2.12 0.5 0.44 0.67 3.8% 0.96

Deep Learning 2.04 0.46 0.39 0.62 3.6% 0.97
ANFIS 2.2 0.62 0.65 0.81 4.6% 0.94

Big Dataset

Linear 3.89 0.74 0.95 0.97 3.3% 0.96
Lasso 3.90 0.74 0.95 0.98 3.3% 0.96
Ridge 3.89 0.74 0.95 0.97 3.3% 0.96
Enet 3.89 0.74 0.95 0.97 3.3% 0.96
KNN 6.06 0.60 0.69 0.83 2.8% 0.97

RF 3.79 0.53 0.50 0.71 2.4% 0.98
Gradient Boosting 3.53 0.53 0.48 0.69 2.3% 0.98

XG Boost 3.14 0.52 0.46 0.68 2.3% 0.98
SVM 4.79 0.53 0.51 0.71 2.4% 0.98

Stacking 4.28 0.49 0.43 0.66 2.2% 0.98
MLP 4.32 0.51 0.45 0.67 2.3% 0.98

Deep Learning 3.44 0.51 0.44 0.66 2.2% 0.98
ANFIS 8.99 0.74 0.97 0.98 3.3% 0.96

As seen in Table 4, R-squared values are very near 1.00 for both limited and big
datasets, which shows a strong correlation between the results predicted by different AI
models and soil temperature data. The average calculated R-squared for limited and big
datasets equals 0.94 and 0.97, respectively. This outcome is confirmed by the scatter plots
illustrated in Figure 4 and offers an overall acceptable performance for all AI methods.

Table 4 indicates that, while employing one AI model using two sets of input data,
the AI model works better while increasing the quantity of information, leading to a more
robust match between the predicted results and soil temperatures. This conclusion is valid
for all applied AI models, as shown in Table 4.

An examination of the error values presented in Table 4 shows that the average NRMSE
for the limited dataset was 4.5%, while this value equals 2.7% for the big dataset. This
proves that using more data significantly improves error measures, and regardless of which
AI method is applied, employing more data leads to better results.

Moreover, as shown in Table 4, four models of linear regression, lasso, ridge and Enet,
which have linear bases, showed the same error values for all evaluation metrics in both
datasets, demonstrating that they had very similar performances.

As previously mentioned in the methodology section, the last three methods have
linear bases and are refined versions of classic linear regression due to the addition of
regularization terms. Relatively poor MAE, MSE and NRMSE obtained by the linear
regression results demonstrated that this method cannot precisely predict soil temperature.
At the same time, the same values of MAE, MSE and NRMSE obtained by lasso, ridge and
Enet models showed that linear regression modifications were still not appropriate tools
for predicting soil temperatures.

The KNN method had the lowest performance among the investigated AI models for
the limited database with the greatest MAE, RMSE and NRMSE. Although this method
did not show results with the highest error for the big database, it had one of the lowest
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performances among all the considered AI models, with the greatest maximum error and
a high RMSE. This finding returns to the logic behind the KNN method, which does not
work in the present study. In this method, a number of nearest neighbors are involved in
the model, which does not apply for this prediction since it was more temporal than spatial.

A closer look at the error values presented in Table 4 shows that three AI methods:
stacking, MLP and deep learning had a better performance than other models. On the
limited dataset, the average MAE for these three AI models is less than 0.5 K, while other
AI models had MAE of more than 0.65 K. The situation is the same for the big database. The
average MAE for these three AI models is approximately 0.5 K, while other AI models had
MAE values of approximately 0.65 K. The other error indicator, RMSE, showed a similar
trend. On both datasets, the average RMSE for these three AI models was approximately
0.65 K, while other AI models had a RMSE of approximately 0.85 K.

Although deep learning was the best model, the stacking method, which is an en-
semble of a few unadvanced models, showed a good performance and predicted the soil
temperature with acceptable precision. This performance was better for the big dataset.

It is worth mentioning that the computation cost should be noted as an essential
parameter in picking the best method. The execution time for the limited dataset was
negligible, but it was significant for the big pieces of information. The average computation
time for the deep learning model was 17.5 s, while these values were 10.5 s and 20.5 s for
the MLP and stacking models, respectively. The stacking model suffers from insufficient
execution speed, despite showing adequate error metrics.

In the statistical analysis, two concepts of the confidence region and prediction bands
are often used. The confidence band represents the uncertainty in an estimate of the
regression on the data. The prediction band is the region that contains approximately 95%
of the points. If another pair of the actual value-calculated value is taken, there is a 95%
chance it falls within the prediction band.

The 95% confidence region and 95% prediction band for these three models—stacking,
MLP and deep learning—on both limited and big datasets are depicted in Figure 5. The
confidence bands in Figure 5 support the previously mentioned claim regarding the strength
of these AI models.
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4. Discussion
4.1. Importance of Different Input Variables

As previously described, this study aims to fill one main gap in the literature: deter-
mining the most important atmospheric variables to be used as input data for AI models.
The literature reviews on soil temperature prediction papers published in the last 10 years
show that mostly air temperature was used as the only input parameter in the models.

Although apart from air temperature, other different parameters are involved in the
models of published papers, the participation percentage was not that high. In papers
published in the last 10 years, the rough participation rate of climate variables as input
parameters in soil temperature prediction models is as follows [5,7,8,17,29,35–39,41]: Solar
radiation and humidity are involved in 40% of studies; wind and pressure are considered
in 25% of papers; and less than 15% of studies explored rainfall, sunshine and dewpoint.
Additionally, 30% of the models used monthly parameters and 55% considered parameters
on a daily basis.

This information shows that, considering eight climate parameters, including air
temperature, precipitation, pressure, evaporation, wind, dewpoint, solar radiation, and
thermal radiation, on an hourly basis was not typical in previous investigations. The
strategy of this study was to consider as many related parameters as possible, finding the
most relevant ones by sensitivity analysis. Following this argument, irrelevant parameters
should be disregarded in future studies.

A sensitivity analysis was conducted to determine the importance level and relevance
rate of atmospheric parameters used as inputs for the AI models. In this regard, the three
selected AI models of stacking, MLP and deep learning, which had better performances,
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were executed several times. For each run, one of the input parameters was omitted. Then,
the code was implemented with the remaining seven variables out of eight preliminary
inputs of air temperature, precipitation, surface pressure, evaporation, wind, dewpoint
temperature, solar radiation and thermal radiation. The results for the error indicators of
the AI model with the remaining seven input parameters are presented in Table 5.

Table 5. Sensitivity analysis of input variables for AI models.

AI Model Omitted Variable MaxE MAE MSE RMSE NRMSE R2 Importance

Stacking,
Limited data

precipitation 2.22 0.50 0.44 0.66 3.8% 0.96 8
pressure 2.39 0.56 0.51 0.72 4.1% 0.96

evaporation 2.29 0.56 0.56 0.75 4.3% 0.95
wind 2.16 0.53 0.48 0.69 3.9% 0.96

dewpoint 2.22 0.52 0.48 0.69 4.0% 0.96
solar radiation 2.43 0.60 0.61 0.78 4.5% 0.95 2

thermal radiation 2.12 0.52 0.46 0.68 3.9% 0.96
air temperature 7.31 1.39 3.24 1.80 10.3% 0.72 1

MLP, Limited
data

precipitation 1.98 0.49 0.42 0.65 3.7% 0.96 8
pressure 2.17 0.53 0.46 0.68 3.9% 0.96

evaporation 2.32 0.54 0.52 0.72 4.1% 0.95
wind 2.12 0.53 0.47 0.69 3.9% 0.96

dewpoint 1.93 0.50 0.45 0.67 3.8% 0.96
solar radiation 2.21 0.58 0.59 0.77 4.4% 0.95 2

thermal radiation 2.19 0.52 0.46 0.68 3.9% 0.96
air temperature 5.92 1.20 2.50 1.58 9.0% 0.79 1

Deep Learning,
Limited data

precipitation 2.09 0.50 0.43 0.66 3.8% 0.96 7
pressure 2.18 0.52 0.45 0.67 3.9% 0.96

evaporation 2.16 0.52 0.49 0.70 4.0% 0.96
wind 2.01 0.53 0.50 0.70 4.0% 0.96

dewpoint 2.27 0.49 0.45 0.67 3.9% 0.96
solar radiation 2.51 0.59 0.61 0.78 4.5% 0.95 2

thermal radiation 2.29 0.49 0.42 0.65 3.7% 0.96 8
air temperature 5.69 1.33 2.93 1.71 9.8% 0.75 1

Stacking, Big
data

precipitation 4.16 0.49 0.43 0.66 2.2% 0.98 8
pressure 4.21 0.52 0.47 0.68 2.3% 0.98

evaporation 3.76 0.54 0.54 0.73 2.5% 0.98
wind 3.80 0.54 0.53 0.73 2.4% 0.98

dewpoint 3.99 0.53 0.51 0.71 2.4% 0.98
solar radiation 4.23 0.59 0.64 0.80 2.7% 0.97 2

thermal radiation 4.26 0.52 0.49 0.70 2.4% 0.98
air temperature 10.24 1.19 2.78 1.67 5.6% 0.88 1

MLP, Big data

precipitation 3.82 0.53 0.49 0.70 2.3% 0.98 8
pressure 4.27 0.53 0.49 0.70 2.4% 0.98

evaporation 4.10 0.60 0.64 0.80 2.7% 0.97
wind 3.88 0.58 0.59 0.77 2.6% 0.97

dewpoint 3.82 0.59 0.62 0.79 2.6% 0.97
solar radiation 4.34 0.65 0.74 0.86 2.9% 0.97 2

thermal radiation 4.13 0.56 0.55 0.74 2.5% 0.98
air temperature 10.50 1.32 3.19 1.78 6.0% 0.86 1

Deep Learning,
Big data

precipitation 3.94 0.52 0.46 0.68 2.3% 0.98 8
pressure 4.33 0.52 0.46 0.68 2.3% 0.98

evaporation 3.74 0.57 0.58 0.76 2.6% 0.97
wind 3.71 0.58 0.58 0.76 2.6% 0.97

dewpoint 3.58 0.57 0.54 0.73 2.5% 0.98
solar radiation 4.43 0.61 0.65 0.81 2.7% 0.97 2

thermal radiation 3.84 0.52 0.48 0.69 2.3% 0.98
air temperature 10.03 1.28 2.96 1.72 5.8% 0.87 1
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Table 5 shows that omitting air temperature from the input variables of the AI model
leads to a low correlation coefficient and high NRMSE. It can be concluded that air temper-
ature is a very relevant variable that is highly important for soil temperature prediction.

The same trend occurred for all three AI models and both limited and big datasets
applied in the sensitivity analysis.

The soil layer whose temperature is investigated in the present study is a near-surface
layer with a depth of 7 cm underground. The air temperature data used in the present
study are air temperature at 2 m above the ground surface. Naturally, this soil layer directly
touches the air near the ground surface. So, it is logical that the soil temperature is mainly
affected by the air temperature.

When comparing the obtained errors with the original error values and considering all
eight input parameters, as presented in Table 4, solar radiation is the most critical variable
in soil temperature prediction after air temperature. The next most important variable
is evaporation.

Additionally, sensitivity analysis displays that precipitation has a negligible effect on
results. So, the precipitation does not play an important role in soil temperature forecast and
can be omitted from the prediction models without decreasing precision. The mentioned
importance level is the same for all three AI models and in both datasets. The level of
importance and relevance of each variable is introduced in the last column.

Another investigation on the effects of individual input parameters on soil temperature
prediction was carried out. The correlation of soil temperature computed by the MLP model
vs. actual data is calculated in Table 6. Additionally, the scatter plots of predicted results
and actual data are demonstrated in Figure 6. The fit lines in Figure 6 scatter plots represent
the effect of each individual input climate parameters in soil temperature prediction.

The R-squared presented in Table 6 shows that air temperature and precipitation
have the highest and smallest correlation, respectively. This finding confirms that air
temperature is the most relevant variable in soil temperature prediction and precipita-
tion can be removed from the input set without significant changes in the accuracy of
the results.

Table 6. Effects of individual input parameters on soil temperature prediction.

Input Variable R2

all 8 parameters 96.7%
precipitation 1.07%

pressure 10.9%
evaporation 34.5%

wind 24.1%
dewpoint 19.9%

solar radiation 28.5%
thermal radiation 13.3%
air temperature 91.7%

4.2. Performance of Developed AI Models in Extreme Heat Events

Since hot warnings are important forecasts used to protect lives and properties, it
is essential to ensure the developed prediction models work properly in extremely hot
conditions as well. So, the performance of developed AI models in soil temperature
prediction has been evaluated in extreme heat events. The model results were investigated
to assess whether the models that worked appropriately in ordinary conditions can precisely
forecast soil variables in hot weather.

Several studies used several thresholds (from 90% to 99% of the normal distribu-
tion) to distinguish extreme events from ordinary ones. Some researchers employed a
threshold value based on their knowledge from the region that this value can cause severe
consequences. There is no unique definition for extreme threshold in the literature [24].
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Figure 6. Scatter plots of individual input parameters on soil temperature prediction versus actual
data (a) with all inputs (b) only precipitation (c) only pressure (d) only evaporation (e) only wind
(f) only dewpoint (g) only solar radiation (h) only thermal radiation (i) only air temperature.

Herein, to find the extreme heat events, the soil temperature data was sorted in
descending order, for both limited and big datasets separately. The upper decile of data
would be labelled as extreme events in the considered case. As mentioned in Section 3, the
datasets belong to the summer months of 2020. Thus, the upper decile of data is 10 percent
of higher temperatures and are the extreme temperatures that soil has experienced during
the considered period. Doing that, there would be 74 and 1325 extreme events in limited
and big datasets, respectively.

The developed AI models were applied to the upper decile for both limited and big
datasets, and soil temperatures in extreme heat events were predicted. The calculated error
indicators are presented in Table 7.



Sustainability 2022, 14, 8065 21 of 25

Table 7. Error analysis of predicted soil temperature in extremely hot events using different AI models.

Size of
Dataset AI Models MaxE

(K)
MAE
(K)

MSE
(K2)

RMSE
(K)

NRMSE
(-)

R2

(-)

Limited Dataset

Linear 2.50 0.70 0.75 0.87 13.2% 0.67
Lasso 2.50 0.70 0.75 0.87 13.2% 0.67
Ridge 2.50 0.70 0.75 0.87 13.2% 0.67
Enet 2.50 0.70 0.75 0.87 13.2% 0.67
KNN 1.90 0.71 0.75 0.86 13.2% 0.67

RF 2.31 0.62 0.63 0.79 12.1% 0.72
Gradient Boosting 2.44 0.65 0.70 0.84 12.8% 0.69

XG Boost 1.79 0.68 0.74 0.86 13.1% 0.68
SVM 1.86 0.55 0.52 0.72 11.0% 0.77

Stacking 2.10 0.56 0.52 0.72 11.0% 0.77
MLP 2.12 0.52 0.45 0.67 10.2% 0.80

Deep Learning 2.06 0.51 0.44 0.66 10.1% 0.81

Big Dataset

Linear 3.42 0.67 0.73 0.86 8.7% 0.76
Lasso 3.42 0.67 0.73 0.86 8.7% 0.76
Ridge 3.42 0.67 0.73 0.86 8.7% 0.76
Enet 3.42 0.67 0.73 0.86 8.7% 0.76
KNN 3.34 0.56 0.55 0.74 7.5% 0.82

RF 4.12 0.55 0.52 0.72 7.3% 0.83
Gradient Boosting 4.37 0.56 0.53 0.73 7.4% 0.82

XG Boost 4.23 0.54 0.51 0.72 7.3% 0.83
SVM 3.57 0.52 0.47 0.69 7.0% 0.84

Stacking 3.96 0.52 0.48 0.69 7.0% 0.84
MLP 3.01 0.50 0.42 0.65 6.6% 0.86

Deep Learning 3.01 0.49 0.41 0.64 6.5% 0.86

It can be seen from Table 7 that from classic regressions to well-established methods to
advanced approaches, error indicators have improved. This indicates that predicted results
would improve significantly using more advanced AI models like SVM, stacking, MLP and
deep learning. Among all employed AI approaches, deep learning and MLP showed the
best performance since they had the highest R-squared and the lowest NRMSE. The same
pattern can be recognized for the big dataset, in which the two methods of deep learning
and MLP presented the finest error indexes. This finding confirms that deep learning
followed by MLP methods is not only the best approach for predicting soil temperature
in ordinary climate conditions, but also shows robust tools to forecast soil temperature in
extremely hot weather.

To better understand the ability of developed AI models for extremely hot weather
predictions and compare these outcomes with ordinary climate conditions, soil temperature
prediction results for both circumstances are presented in Figure 7. Figure 7b illustrates the
NRMSE and R-squared calculated in extreme heat, while Figure 7a demonstrates the same
parameters for ordinary conditions. These two graphs reveal that prediction in extreme
conditions leads to lower correlation coefficients and higher error for all AI models and
both datasets. Figure 7c displays a closer look at NRMSE changes for extreme events and
ordinary conditions. It can be seen that, although the error indicator of ordinary conditions
is less than for extreme events, advanced models such as deep learning and MLP predict
the soil temperature in extremely hot weather with appropriate precision. Similarly, the
R-squared value presented in Figure 7d for extreme events and ordinary conditions indicate
that the soil temperature predictions in extremely hot weather could reach an acceptable
value through advanced models such as deep learning and MLP. However, the R-squared
values are lower than those related to ordinary conditions.
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4.3. Importance of Different Input Variables in Extreme Heat Events

Similar to the experiments in ordinary weather conditions, a sensitivity analysis was
conducted on AI prediction models applied to extreme heat data to realize the importance
level of each climate variable that was involved. This analysis was based on omitting one
input parameter and investigating the model performance in the absence of that parameter.
The calculated results are presented in Table 8.

The error metrics in Table 8 show that the prediction of hot weather confirmed the
earlier findings on the importance of air temperature and solar radiation as levels one and
two in soil temperature prediction in extreme heat events. Additionally, Table 8 indicates
that precipitation has only a slight relevance in soil temperature prediction in extremely
hot conditions.
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Table 8. Sensitivity analysis of input variables in extremely hot events.

AI Model Omitted Variable MaxE MAE MSE RMSE NRMSE R2 Importance

MLP, Limited Data,
extremely hot events

precipitation 2.20 0.53 0.46 0.68 10.4% 0.80 7
pressure 2.22 0.52 0.48 0.69 10.5% 0.79

evaporation 2.11 0.51 0.42 0.64 9.8% 0.82 8
wind 2.38 0.53 0.46 0.68 10.4% 0.80

dewpoint 2.09 0.53 0.48 0.69 10.6% 0.79
solar radiation 2.13 0.56 0.53 0.73 11.1% 0.77 2

thermal radiation 2.05 0.55 0.50 0.71 10.8% 0.78
air temperature 3.71 0.99 1.55 1.24 19.0% 0.32 1

MLP, Big Data,
extremely hot events

precipitation 3.61 0.54 0.48 0.69 7.0% 0.84 8
pressure 3.24 0.54 0.49 0.70 7.1% 0.84

evaporation 3.72 0.54 0.50 0.71 7.2% 0.83
wind 3.72 0.53 0.50 0.70 7.1% 0.83

dewpoint 3.36 0.57 0.55 0.74 7.5% 0.82
solar radiation 3.33 0.57 0.56 0.75 7.6% 0.81 2

thermal radiation 3.08 0.53 0.47 0.69 7.0% 0.84
air temperature 7.41 1.08 1.91 1.38 14.0% 0.36 1

5. Conclusions

A precise and cost-effective model for soil temperature forecasting, which has the
advantages of artificial intelligence techniques, is developed in the present research. There-
fore, 13 AI models—linear regression, ridge, lasso, Enet, KNN, RF, gradient boosting, XG
boosting, stacking method, SVM, MLP, deep learning and ANFIS—were employed to
generate a comprehensive and detailed assessment of the performance of different AI
approaches in soil temperature estimation. In this regard, eight hourly land and atmo-
spheric variables of air temperature, precipitation, surface pressure, evaporation, wind
gust, dewpoint temperature, solar radiation and thermal radiation were employed, and
predictions were made using two limited and big datasets. The results show that AI is
a promising approach in climate parameter forecast, and developed AI models show a
reliable ability in soil temperature prediction. Additionally, applying AI models to more
information led to better results, even when using the same method.

The key findings of this study are summarized as follows:

• Among all 13 AI models applied in the current study, deep learning, followed by the
MLP method, showed the best performance in predicting soil temperature with the
highest correlation coefficient and lowest error metrics.

• Although deep learning was the best model, the stacking method showed a good
performance with an acceptable precision in soil temperature prediction.

• A sensitivity analysis shows that air temperature and solar radiation play the most
important roles in soil temperature prediction, while precipitation can be neglected in
forecast AI models.

• The evaluation of developed AI models in hot weather confirmed the most successful
performance of deep learning and MLP methods in extreme heat events compared to
other employed models.

• The results of extreme heat events show a moderate decrease in performance compared
to the models’ outcomes for the ordinary weather conditions. This reduction is more
meaningful for classic regression rather than advanced AI models.

• A sensitivity analysis of involved variables for predictions in hot weather confirmed
the earlier findings of the importance level of air temperature, solar radiation and
precipitation in soil temperature prediction in extreme hot events.



Sustainability 2022, 14, 8065 24 of 25

Author Contributions: Conceptualization, J.H.C., A.M., H.S. and P.P.; methodology, H.I.; software,
H.I.; validation, H.I. and P.P.; formal analysis, H.I. and P.P.; investigation, H.I.; resources, H.I.; data
curation, H.I.; writing—original draft preparation, H.I. and A.M.; writing—review and editing J.H.C.,
P.P., H.S. and A.M.; visualization, H.I.; supervision, A.M. and J.H.C.; project administration, A.M.,
J.H.C. and H.S.; funding acquisition, A.M., H.S. and J.H.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by National Research Council Canada through the Artificial
Intelligence for Logistics Supercluster Support Program, grant number AI4L-120.

Data Availability Statement: Parts of the data used in this manuscript are available through the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hao, H.; Yu, F.; Li, Q. Soil Temperature Prediction Using Convolutional Neural Network Based on Ensemble Empirical Mode

Decomposition. IEEE Access 2021, 9, 4084–4096. [CrossRef]
2. Yu, F.; Hao, H.; Li, Q. An Ensemble 3D Convolutional Neural Network for Spatiotemporal Soil Temperature Forecasting.

Sustainability 2021, 13, 9174. [CrossRef]
3. Alizamir, M.; Kisi, O.; Ahmed, A.N.; Mert, C.; Fai, C.M.; Kim, S.; Kim, N.W.; El-Shafie, A. Advanced machine learning model for

better prediction accuracy of soil temperature at different depths. PLoS ONE 2020, 15, e0231055. [CrossRef]
4. Seifi, A.; Ehteram, M.; Nayebloei, F.; Soroush, F.; Gharabaghi, B.; Haghighi, A.T. GLUE uncertainty analysis of hybrid models for

predicting hourly soil temperature and application wavelet coherence analysis for correlation with meteorological variables. Soft
Comput. 2021, 25, 10723–10748. [CrossRef]

5. Abimbola, O.P.; Meyer, G.E.; Mittelstet, A.R.; Rudnick, D.R.; Franz, T.E. Knowledge-guided machine learning for improving daily
soil temperature prediction across the United States. Vadose Zone J. 2021, 20, e20151. [CrossRef]

6. Zeynoddin, M.; Ebtehaj, I.; Bonakdari, H. Development of a linear based stochastic model for daily soil temperature prediction:
One step forward to sustainable agriculture. Comput. Electron. Agric. 2020, 176, 105636. [CrossRef]

7. Feng, Y.; Cui, N.; Hao, W.; Gao, L.; Gong, D. Estimation of soil temperature from meteorological data using different machine
learning models. Geoderma 2019, 338, 67–77. [CrossRef]

8. Mehdizadeh, S.; Fathian, F.; Safari, M.J.S.; Khosravi, A. Developing novel hybrid models for estimation of daily soil temperature
at various depths. Soil Tillage Res. 2020, 197, 104513. [CrossRef]

9. Bonakdari, H.; Moeeni, H.; Ebtehaj, I.; Zeynoddin, M.; Mahoammadian, A.; Gharabaghi, B. New insights into soil temperature
time series modeling: Linear or nonlinear? Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 135, 1157–1177. [CrossRef]

10. George, R.K. Prediction of soil temperature by using artificial neural networks algorithms. Nonlinear Anal. Theory Methods Appl.
2001, 47, 1737–1748. [CrossRef]

11. Bilgili, M. Prediction of soil temperature using regression and artificial neural network models. Arch. Meteorol. Geophys. Bioclimatol.
Ser. B 2010, 110, 59–70. [CrossRef]

12. Ozturk, M.; Salman, O.; Koc, M. Artificial neural network model for estimating the soil temperature. Can. J. Soil Sci.
2011, 91, 551–562. [CrossRef]

13. Abyaneh, H.Z.; Varkeshi, M.B.; Golmohammadi, G.; Mohammadi, K. Soil temperature estimation using an artificial neural
network and co-active neuro-fuzzy inference system in two different climates. Arab. J. Geosci. 2016, 9, 377. [CrossRef]

14. Citakoglu, H. Comparison of artificial intelligence techniques for prediction of soil temperatures in Turkey. Arch. Meteorol.
Geophys. Bioclimatol. Ser. B 2017, 130, 545–556. [CrossRef]

15. Himika Kaur, S.; Randhawa, S. Global Land Temperature Prediction by Machine Learning Combo Approach. In Proceedings of the
9th International Conference on Computing, Communication and Networking Technologies, Bengaluru, India, 10–12 July 2018;
pp. 1–8.

16. Delbari, M.; Sharifazari, S.; Mohammadi, E. Modeling daily soil temperature over diverse climate conditions in Iran—A
comparison of multiple linear regression and support vector regression techniques. Arch. Meteorol. Geophys. Bioclimatol. Ser. B
2019, 135, 991–1001. [CrossRef]

17. Li, C.; Zhang, Y.; Ren, X. Modeling Hourly Soil Temperature Using Deep BiLSTM Neural Network. Algorithms 2020, 13, 173.
[CrossRef]

18. Penghui, L.; Ewees, A.A.; Beyaztas, B.H.; Qi, C.; Salih, S.Q.; Al-Ansari, N.; Bhagat, S.K.; Yaseen, Z.M.; Singh, V.P. Metaheuristic
Optimization Algorithms Hybridized With Artificial Intelligence Model for Soil Temperature Prediction: Novel Model. IEEE
Access 2020, 8, 51884–51904. [CrossRef]

19. Shamshirband, S.; Esmaeilbeiki, F.; Zarehaghi, D.; Neyshabouri, M.; Samadianfard, S.; Ghorbani, M.A.; Mosavi, A.; Nabipour,
N.; Chau, K.-W. Comparative analysis of hybrid models of firefly optimization algorithm with support vector machines and
multilayer perceptron for predicting soil temperature at different depths. Eng. Appl. Comput. Fluid Mech. 2020, 14, 939–953.
[CrossRef]

http://doi.org/10.1109/ACCESS.2020.3048028
http://doi.org/10.3390/su13169174
http://doi.org/10.1371/journal.pone.0231055
http://doi.org/10.1007/s00500-021-06009-4
http://doi.org/10.1002/vzj2.20151
http://doi.org/10.1016/j.compag.2020.105636
http://doi.org/10.1016/j.geoderma.2018.11.044
http://doi.org/10.1016/j.still.2019.104513
http://doi.org/10.1007/s00704-018-2436-2
http://doi.org/10.1016/S0362-546X(01)00306-6
http://doi.org/10.1007/s00703-010-0104-x
http://doi.org/10.4141/cjss10073
http://doi.org/10.1007/s12517-016-2388-8
http://doi.org/10.1007/s00704-016-1914-7
http://doi.org/10.1007/s00704-018-2370-3
http://doi.org/10.3390/a13070173
http://doi.org/10.1109/ACCESS.2020.2979822
http://doi.org/10.1080/19942060.2020.1788644


Sustainability 2022, 14, 8065 25 of 25

20. O’Gorman, P.A.; Dwyer, J.G. Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate,
Climate Change, and Extreme Events. J. Adv. Model. Earth Syst. 2018, 10, 2548–2563. [CrossRef]

21. Hu, H.; Ayyub, B.M. Machine Learning for Projecting Extreme Precipitation Intensity for Short Durations in a Changing Climate.
Geosciences 2019, 9, 209. [CrossRef]

22. Qi, D.; Majda, A.J. Using machine learning to predict extreme events in complex systems. Proc. Natl. Acad. Sci. USA
2020, 117, 52–59. [CrossRef]

23. Huang, L.; Kang, J.; Wan, M.; Fang, L.; Zhang, C.; Zeng, Z. Solar Radiation Prediction Using Different Machine Learning
Algorithms and Implications for Extreme Climate Events. Front. Earth Sci. 2021, 9, 596860. [CrossRef]

24. Araújo, A.D.S.; Silva, A.R.; Zárate, L.E. Extreme precipitation prediction based on neural network model—A case study for
southeastern Brazil. J. Hydrol. 2022, 606, 127454. [CrossRef]

25. Bochenek, B.; Ustrnul, Z. Machine Learning in Weather Prediction and Climate Analyses—Applications and Perspectives.
Atmosphere 2022, 13, 180. [CrossRef]

26. Google Maps. Available online: https://www.google.ca/maps/@45.3759264,-75.7182361,11.33z (accessed on 1 July 2021).
27. Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al.

ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
2018. Available online: https://doi.org/10.24381/cds.adbb2d47 (accessed on 1 July 2021).

28. Tabari, H.; Sabziparvar, A.-A.; Ahmadi, M. Comparison of artificial neural network and multivariate linear regression methods
for estimation of daily soil temperature in an arid region. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2011, 110, 135–142. [CrossRef]
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