
Citation: Hashim, N.M.; Noor, N.M.;

Ul-Saufie, A.Z.; Sandu, A.V.;

Vizureanu, P.; Deák, G.; Kheimi, M.

Forecasting Daytime Ground-Level

Ozone Concentration in Urbanized

Areas of Malaysia Using Predictive

Models. Sustainability 2022, 14, 7936.

https://doi.org/10.3390/su14137936

Academic Editors: Vincenzo Torretta,

Sunil Kumar, Pooja Sharma and

Deblina Dutta

Received: 16 March 2022

Accepted: 23 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Forecasting Daytime Ground-Level Ozone Concentration in
Urbanized Areas of Malaysia Using Predictive Models
NurIzzah M. Hashim 1, Norazian Mohamed Noor 1,2,* , Ahmad Zia Ul-Saufie 3 , Andrei Victor Sandu 4,5,6,* ,
Petrica Vizureanu 4 , György Deák 6 and Marwan Kheimi 7

1 Faculty of Civil Engineering Technology, Universiti Malaysia Perlis, d/a Pejabat Pos Besar,
P.O. Box 77, Kangar 01007, Malaysia; nurizzah_hashim91@yahoo.com

2 Sustainable Environment Research Group (SERG), Centre of Excellence Geopolymer and Green
Technology (CEGeoGTech), Universiti Malaysia Perlis, d/a Pejabat Pos Besar, P.O. Box 77,
Kangar 01007, Malaysia

3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara (UiTM),
Shah Alam 40450, Malaysia; ahmadzia101@uitm.edu.my

4 Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi,
61 D. Mangeron Blvd., 700050 Iasi, Romania; peviz@tuiasi.ro

5 Romanian Inventors Forum, St. P. Movila 3, 700089 Iasi, Romania
6 National Institute for Research and Development in Environmental Protection INCDPM,

Splaiul Independentei 294, 060031 Bucharest, Romania; dkrcontrol@yahoo.com
7 Department of Civil Engineering, Faculty of Engineering—Rabigh Branch, King Abdulaziz University,

Jeddah 21589, Saudi Arabia; mmkheimi@kau.edu.sa
* Correspondence: norazian@unimap.edu.my (N.M.N.); sav@tuiasi.ro (A.V.S.)

Abstract: Ground-level ozone (O3) is one of the most significant forms of air pollution around the
world due to its ability to cause adverse effects on human health and environment. Understanding
the variation and association of O3 level with its precursors and weather parameters is important for
developing precise forecasting models that are needed for mitigation planning and early warning
purposes. In this study, hourly air pollution data (O3, CO, NO2, PM10, NmHC, SO2) and weather
parameters (relative humidity, temperature, UVB, wind speed and wind direction) covering a ten
year period (2003–2012) in the selected urban areas in Malaysia were analyzed. The main aim of
this research was to model O3 level in the band of greatest solar radiation with its precursors and
meteorology parameters using the proposed predictive models. Six predictive models were developed
which are Multiple Linear Regression (MLR), Feed-Forward Neural Network (FFANN), Radial Basis
Function (RBFANN), and the three modified models, namely Principal Component Regression
(PCR), PCA-FFANN, and PCA-RBFANN. The performances of the models were evaluated using
four performance measures, i.e., Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
Index of Agreement (IA), and Coefficient of Determination (R2). Surface O3 level was best described
using linear regression model (MLR) with the smallest calculated error (MAE = 6.06; RMSE = 7.77)
and the highest value of IA and R2 (0.85 and 0.91 respectively). The non-linear models (FFANN
and RBFANN) fitted the observed O3 level well, but were slightly less accurate compared to MLR.
Nonetheless, all the unmodified models (MLR, ANN, and RBF) outperformed the modified-version
models (PCR, PCA-FFANN, and PCA-RBFANN). Verification of the best model (MLR) was done
using air pollutant data in 2018. The MLR model fitted the dataset of 2018 very well in predicting the
daily O3 level in the specified selected areas with the range of R2 values of 0.85 to 0.95. These indicate
that MLR can be used as one of the reliable methods to predict daytime O3 level in Malaysia. Thus, it
can be used as a predictive tool by the authority to forecast high ozone concentration in providing
early warning to the population.
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1. Introduction

Ground-level ozone (O3) is an important component of the atmosphere because it
is a major oxidant and a greenhouse gas [1,2]. At ground-level, O3 is seen in the form
of a secondary atmospheric pollutant created by a number of chemical reactions that are
typically linked to degradation of air quality in the air [3], which leads to adverse effects
on the health of human beings, crop production, material quality, and ecosystems. High
concentration of ground-level ozone can affect human health via short-term and long-term
impacts. Short-term impacts include mortality and breathing morbidity and are likely
to lead to eye irritation and can also influence the airway [4], while lung damage and
inflammatory reactions can be caused over the long term [5].

Ground-level O3 is one of the global air pollution problems. In Malaysia, since 1997,
ground-level O3 has been recognized as one of the significant contaminants of air due to
the growing ozone precursors [6]. Rapid economic development and high emissions of
pollutants in nearby urban and industrialized areas were detected as the main contributors
to the increase in O3 precursors such as NOx, VOCs, and CO. The main sources of O3
precursors were reported to be industrial and vehicle emission [6]. Vehicle emission can
lead to high emission of NO due to higher titration processes between NO and O3. VOCs,
that often found in urban and industrial areas, in the other hand, lead to the formation of
peroxy radical (RO2) that later undergoes photoreaction to produce O3 [7].

Thus, due to its long- and short-term impacts on human health, the variation and rela-
tions of ground-level ozone and its precursors require much investigation [8]. Nowadays,
the number of studies reported on O3 concentration in Asia has increased, particularly
in Malaysia. The monitoring data in several large cities demonstrated that O3 level are
increasing and are not always at acceptable concentration in accordance with the Malaysia
Ambient Air Quality Standard (MAAQS). Thus, it is very important to understand the
behavior of ground-level ozone in order to explain the association of O3 level with its
precursors and weather parameters [9].

Forecasting high ozone concentration events using mathematical tools is very useful
in providing early warning to the population. However, the prediction of ground-level O3
is more complicated due to its origin as a secondary pollutant if compared to modeling
primary pollutants such as particulate matter (PM10) [10]. Thus, statistical approaches
had been widely used by the researchers to study the variation of O3 concentration with
its precursors and weather parameters. Multiple linear regression is one of the most
common techniques used in the prediction of ground level O3 level. The objective is
to model a linear relationship between the explanatory (independent) and the answer
(dependent) variables, thus the relationship of O3 level and other variables (including other
air pollutants, its precursors and meteorology parameters) can be observed [10]. In several
studies conducted by Hassanzadeh et al. [11], Barrero et al. [12], Banja et al. [13], and Allu
et al. [14], the connection between weather parameters and ozone concentration in Portugal,
Spain, Albania, and India has been described respectively. Even though many studies
have been carried out in the world investigating the association between the weather
and the ozone concentration using MLR, in southeast Asia in particular there is still a
shortage of work. While certain studies have been conducted by Azmi et al. [15] and
Awang et al. [16], their study only focused on the trend or variation of ozone concentration
in Klang Valley, Malaysia. However, there are a few studies on O3 level prediction in
Malaysia. Abdullah et al. [17] studied the high night-time O3 concentrations in Kemaman,
Terengganu, while Ghazali et al. [18] related the nitrogen dioxide transformation into the
ozone and predict the ozone concentration using the multiple linear regression techniques.

Besides giving a simple linear relationship of ozone concentration with its precursors
and weather parameters, linear regression may not provide accurate predictions in some
complex situations such as non-linear data and extreme values data. Machine learning
is an effective technique for understanding the inter-dependence of climatic data and
air pollution since it supports exploratory analysis of data without using an empirical
model [19,20]. Further, machine learning addresses the non-linearity problem, enhancing
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the model’s predictive performance [21,22]. Artificial neural networks (ANN), one of the
most common machine learning techniques, can be a useful tool to extract information
from imprecise and non-linear data such as air quality and meteorology. Currently, the
applications of machine learning neural networks have become more popular for predicting
ground-level O3 concentration. A lot of researchers have effectively adopted ANN as a
predictive tool to model O3 concentration [23–26].

Modification of MLR and ANN has been conducted by many researchers to increase
the accuracy of the predicted model. One of the main disturbances that will cause a
reduction in the performance of the model and reduce the efficiency of the model is
multicollinearity [27,28]. To deal with multidimensional issues and overcome feature
redundancy, many researchers suggested various techniques for dimension reduction and
feature extractions. One of the widely employed methods for these purposes is the principal
component analysis (PCA) [29,30]. Basically, modification by substituting the input into
principal components was accomplished. Most of the research had successfully increased
the accuracy of the predictive models for particulate matter or O3 level by modifying the
input of regression models using principal components [9,31–33]. However, there were
also some studies that reported the opposite results, where MLR predicts the air pollutant
concentration better than PCR [1,34]. A modified model of ANN (using PCs as input
to train and validate FFANN model) was implemented to increase the accuracy of the
model. A few studies have applied the modified FFANN model with PCA and successfully
increased the accuracy of the model in predicting PM10 level [31,35] and ground-level O3
concentration [25,36,37].

Recently, despite the superiority of ANN algorithm, other machine learning algorithms
such support vector regression (SVR) and support vector machine (SVM) have become pop-
ular options among researchers due to their architectural simplicity and precision [38,39].
Balogun and Tella [40] applied four machine learning algorithms (Random Forest, Decision
Tree Regression, Linear Regression, and Support Vector Regression) to predict O3 level
limited to the west coast region of peninsular Malaysia. Ayman et al. [41] applied six ma-
chine learning algorithms, namely Linear Regression (LR), Tree Regression (TR), Support
Vector Regression (SVR), Ensemble Regression (ER), Gaussian Process Regression (GPR),
and Artificial Neural Networks models (ANN) to model only an urban area in Malaysia,
i.e., Lembah Kelang. They reported that the proposed models were capable of predicting
the concentrations with higher accuracy level.

Despite these sophisticated methods, there is a lack of comprehensive studies on O3
level prediction that involve most of the urban areas in Malaysia. Hence, thorough study
on suitability of using established linear and non-linear model in predicting O3 level in
Malaysia is much needed to investigate the best method that can be used as a reliable
predictive tool to estimate O3 level. In this research, linear and non-linear models with
their modified models were developed and evaluated using performance indicators. The
best model selected from this study is ready to be used by the authorities as the predictive
strategy of Malaysia and will be very helpful in understanding how these elements interact
with O3 content.

2. Materials and Methods
2.1. Study Area

In this study, five urban areas in Malaysia were selected. Four out of five locations are
located in Malaysia’s peninsula and one station is situated in East Malaysia (Kuching). The
four locations in peninsular Malaysia are distributed in the north (Perai) the center (Shah
Alam), the south (Melaka), and the east (Kuala Terengganu) of peninsular Malaysia.

The selected air quality monitoring stations are displayed in Figure 1, while Table 1
provides a description and locations of all stations covered in this study. All the sampling
sites are located in schools that are closed to residential areas. However, all of these areas
are surrounded by the urban center and residential areas.
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Figure 1. Location of the five selected air quality monitoring stations in Malaysia.

Table 1. Locations and the description of monitoring stations.

Region Monitoring Site Latitude, Longitude Area Description

North Ipoh N 4.6305,
E 101.1178

Urban area
Residential area

Center Shah Alam N 3.1066,
E 101.5573

Urban area
Residential area

Near industrial area

South Melaka N 2.1919,
E 102.2545

Urban area
Residential area

Near industrial area

East Peninsular Kota Bharu N 6.1464,
E 102.2481

Urban area
Residential area

East Malaysia Kota Kinabalu N 5.9532,
E 116.0551

Urban area
Residential area

2.2. Air Pollutant Dataset

The air quality data were gathered from the Air Quality Division of the Department
of Environment (DoE), Malaysia. The data were collected and monitored by Alam Sekitar
Malaysia Sdn. Bhd. (ASMA), the authorized agency for DoE. The equipment used by
ASMA to monitor the air quality data is from Teledyne Technologies Inc. USA (Thousand
Oaks, CA, USA), and Met One Instrument Inc. USA (Grants Pass, OR, USA). Based on the
Standard Operating Procedures for Continuous Air Quality Monitoring (2007), the analyzer
used by ASMA to monitor PM10 was a BAM-1020 Beta Attenuation Mas Monitor from
Met One Instrument, Inc. USA. This instrument has a high resolution of 0.1 µg m−3 at a
16.7 L min−1 flow rate, with lower detection limits of <4.8 µg m−3 and <1.0 µg m−3 for 1 h
and 24 h, respectively. The instruments used by ASMA to monitor SO2, CO, and O3 were
the Teledyne API Model 100A/100E, Teledyne API Model 200A/200E, Teledyne API Model
300/300E, and Teledyne API Model 400/400E, respectively, from Teledyne Technologies
Inc., USA [1], while SO2 measurement was based on the UV fluorescence method, where
the lowest level of detection is at 0.4 ppb. CO was measured using the non-dispersive,
infrared absorption (Beer Lambert) method with 0.5% precision and the lowest detection of
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0.04 ppm. Ozone concentration was measured through the UV absorption (Beer Lambert)
method with a detection limit of 0.4 ppb. The measurements of SO2, CO, and O3 were
at a precision level of 0.5%. For NmHC, the analyzer used by ASMA measured using
a Teledyne API M4020 from Teledyne Technologies Inc., USA, which is equipped with
aflame-ionization detector (FID) and a measurement accuracy of 1%. These instruments
were used due to well-proven accuracy, reliability, and robustness.

In this study, two sets of air pollutants data were used. The first set of data was
identified based on the availability of data from 1 January 2003 to 31 December 2012. These
long-term datasets were used to develop the prediction models of the daytime O3 level.
The predicted models were then validated using several performance measurements. The
air pollutants (O3, PM10, NO2, SO2, NmHC, and CO) and weather parameters (WS, WD, H,
T, and UVB) used in this research are tabulated in Table 2.

Table 2. The units of air pollutants and weather parameters.

Air Pollutant/Weather Parameters Unit

Ground-level ozone (O3) ppb
Nitrogen dioxide (NO2) ppm
Carbon monoxide (CO) ppm
Sulphur dioxide (SO2) ppm

Particulate matter (PM10) (µg/m3)
Non-methane Hydrocarbon (NmHc) ppm

Ambient temperature (T) ◦C
Humidity (H) %

Wind speed (WS) km/h
Wind direction (WD) degree (o)

Ultraviolet radiation (UVB) W/m2

Table 3 shows the summary of the mean and standard deviation for hourly dataset of
the air pollutants and weather parameters at the five study areas from 2003 to 2012. These
long-term data were used to develop the prediction models to estimate the hourly O3 level
in the band of great solar intensity.

Table 3. Descriptive statistics (mean ± standard deviation) of air pollutants and weather parameters
from 2003 to 2012. O3: ozone; PM10: particulate matter; CO: carbon monoxide; SO2: sulphur dioxide;
NO2: nitrogen dioxide; and NmHC: non-methane hydrocarbons.

Area/Parameter Ipoh Shah Alam Melaka Kota Bharu Kota Kinabalu

Wind Speed (km/h) 9.18 ± 2.71 8.75 ± 2.26 8.70 ± 2.77 8.47 ± 3.33 8.73 ± 2.26
Temperature (◦C) 33.39 ± 2.36 32.81 ± 2.47 31.60 ± 1.74 30.78 ± 79.55 31.59 ± 2.31

Solar Radiation (W/m2) 677.27 ± 183.81 533.16 ± 191.70 Not Available 553.42 ± 215.86 668.93 ± 7.98
Humidity (%) 56.88 ± 8.66 59.37 ± 9.74 61.87 ± 8.50 63.26 ± 10.24 68.93 ± 7.98
NmHC (ppm) 0.13 ± 0.056 0.22 ± 0.12 Not Available 0.20 ± 0.11 Not Available

SO2 (ppm) 0.0018 ± 0.0012 0.0038 ± 0.0037 0.0022 ± 0.0021 0.00064 ± 0.0010 0.00055 ± 0.00070
NO2 (ppm) 0.0093 ± 0.0039 0.012 ± 0.0074 0.0043 ± 0.0021 0.0054 ± 0.0035 0.0022 ± 0.0019
CO (ppm) 0.43 ± 0.19 0.51 ± 0.34 0.32 ± 0.19 0.46 ± 0.22 0.23 ± 0.12

PM10 (µg/m3) 43.96 ± 19.17 47.23 ± 32.21 34.98 ± 21.25 35.62 ± 13.55 29.55 ± 12.56
O3 (ppb) 27 ± 6.1 31 ± 7.6 20 ± 6.5 18 ± 5.6 15 ± 3.9

As for the model deployment, the prediction models (developed from previous dataset)
were later deployed on the 2018 dataset. Table 4 shows the mean and standard deviation
for hourly dataset at the five selected areas in 2018. Statistically, no significant differences
were detected among the variables in 2018 when comparisons were made with the iden-
tical variables from the previously presented dataset. Verification of the best prediction
model aimed to prove that the model was still reliable in predicting daytime O3 level in
different years.
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Table 4. The mean and standard error of all the parameters at the five stations in 2018.

Area/Parameter Ipoh Shah Alam Melaka Kota Bharu Kota Kinabalu

Wind Speed (km/h) 8.38 ± 3.19 8.14 ± 2.81 8.62 ± 2.94 7.98 ± 3.35 8.82 ± 2.37
Temperature (◦C) 33.37 ± 2.62 32.81 ± 2.63 31.46 ± 1.89 30.58 ± 2.54 31.97 ± 2.38

Solar Radiation (W/m2) 742.25 ± 195.66 592.80 ± 187.38 Not Available 596.79 ± 197.86 619.79 ± 192.54
Humidity (%) 57.67 ± 8.94 59.35 ± 9.99 62.31 ± 9.10 63.87 ± 11.03 67.64 ± 7.96
NmHC (ppm) 0.13 ± 0.06 0.24 ±0.12 Not Available 0.19 ± 0.09 Not Available

SO2 (ppm) 0.0019 ± 0.0015 0.0037 ± 0.004 0.0021 ± 0.0026 0.0057 ± 0.001 0.005 ± 0.007
NO2 (ppm) 0.0094 ± 0.0051 0.012 ± 0.0089 0.0044 ± 0.0026 0.005 ± 0.0038 0.0021 ± 0.019
CO (ppm) 0.416 ± 0.202 0. 535 ± 0.348 0.328 ± 0.193 0.443 ± 0.233 0.234 ± 0.128

PM10 (µg/m3) 45.12 ± 22.66 47.34 ± 32.27 35.02 ± 22.10 36.35 ± 17.18 29.90 ± 15.37
O3 (ppb) 39 ± 16.0 52 ± 32.0 34 ± 11.0 24 ± 9.0 22 ± 6.0

In this study, the multivariate air pollutant data were treated as cross sectional data
which focus on observing information of air pollutants concentration at a particular time,
in various locations, and depend on the information sought. In order to predict the daytime
O3 level in the band of greatest solar radiation, the hourly dataset (2003–2012) for model
development was chosen to be during noon (12.00 p.m. to 4.00 p.m.) as O3 level was
observed to be highest once it received the greatest amount of solar radiation [15]. A total
number of 14,124 datasets were used to develop and validate the prediction model. Out
of the total data, random partition of the dataset was conducted using SPSS where 80%
of the data were used for model development and the remaining data (20%) were used
for model validation. Table 5 shows the results of Kolmogorov–Smirnov test of normality
for hourly O3 measurement record (12.00 p.m. to 4.00 p.m.) from the first dataset (2003 to
2012) for all study areas. It indicates that the datasets used were normally distributed as
the p-values > 0.05.

Table 5. Kolmogorov–Smirnov Test of Normality.

Station
Kolmogorov-Smirnov a

Statistics df p-Value

Ipoh 0.163 14,124 0.200
Shah Alam 0.142 14,124 0.200

Melaka 0.154 14,124 0.200
Kota Bharu 0.170 14,124 0.200

Kota Kinabalu 0.168 14,124 0.200
a Lilliefors Significance Correction.

2.3. Principle Component Analysis (PCA)

Prior to conducting Principal Component Analysis (PCA), the Kaiser–Meyer–Olkin
(KMO) and Bartlett’s test of sphericity tests needed to be performed. KMO test was used
to measure sampling adequacy for each variable in the model. The value of KMO must
be greater than 0.5, showing that the data are adequate [31]. In addition, Bartlett’s test
of sphericity was applied to show a high degree of relationship between the parameters
and that the data are suitable for factor analysis (p < 0.001). These requirements had been
completed before the Principal Component Analysis.

In this study, PCA was used to group the large amounts of air pollutants data and
weather parameters into a few sets of groups named as principal components. These
principal components were later used as the input to the modified model. PCA is generally
written as below [31]:

PCi = A1iX1j + A2iX2j + · · ·+ AniXnj (1)

where PCi is ith principal component, Aji is the loading of the observed variable, X is the
measured value of variables, i is the component number, j is the sample number, and n is
the total number of variables.
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The principal components (PCs) generated by PCA are sometimes not readily available
for interpretation; therefore, it is advisable to rotate them by varimax rotation with the
eigenvalues greater than 1 [42–44]. Varimax factors (VFs) coefficient with a correlation from
0.75 are considered as a strong significant factor loading; those that range from 0.50–0.74
are moderate, while 0.30–0.49 are classified as weak significant factor loading [31]. The
equation is expressed as below:

Zij = a f1X1i + a f2X2i + · · ·+ a fmXmi + e f i (2)

where Z is the measured value of a variables, a is the factor loading, f is the factor score, e is
the residual term accounting for errors or other sources variation, i is the sample number, j
is the variable number and m is the total number of factors.

2.4. Prediction Model

Overall, six models were developed, i.e., linear (Multiple Linear Regression) and
non-linear model (Artificial Neural Network) including their modified models. Three
models were developed from Multiple Linear Regression (MLR), Feed-Forward Neural
Network (FFANN), and Radial Basis Function Neural Network (RBFANN); the remaining
three models were their modified model, i.e., combination of MLR, FFANN, and RBFANN
with PCA, namely PCR, PCA-FFANN, and PCA-RBFANN.

For MLR, FFANN, and RBFANN models, the measured records of hourly ground level
ozone (O3) concentration, weather parameters (wind speed (WS) ambient temperature (T),
humidity (H), and other pollutants (NmHC PM10, SO2, NO2, and CO) were used as input.
In the modified model, the principal components were used as input. The output for this
study is the prediction value of maximum hour of ozone concentration for the next day,
known as O3(t+1).

2.4.1. Multiple Linear Regression (MLR)

A random response Y relating to a set of independent variables x1, x2, . . . , xk based on
the multiple regression model is as shown below [26,45]:

Y = γ + β1x1 + β2x2 · · ·+ βkxk + ε (3)

where γ, β1, β2, and βk are unknown parameters and ε is an error term factor.
Multicollinearity occurs when there are high correlations between two or more predic-

tor variables. Multicollinearity is a problem because it weakens the statistical significance
of an independent variable; thus, it causes larger standard error of a regression coefficient.
As a result, this coefficient will be less likely to be significant statistically [45].

Multicollinearity assumption was verified by Variance Inflation Factor (VIF) accompa-
nied with the regression output. The average value of VIF under 10 is acceptable, signifying
multicollinearity does not exist among independent variables [46]. The VIF is given by:

VIF =
1

1− R2
i

(4)

where VIFi is the variance inflation factor associated with the ith predictor, and R2
i is

the multiple coefficients of determination in a regression of the ith predictor on all other
predictors. In this study, the VIF was calculated for the prediction calculated by MLR and
PCR models to evaluate whether multicollinearity existed in the models.

2.4.2. Feed-Forward Artificial Neural Network Model (FFANN)

The most common and popular neural network architecture is the Feed-Forward
Artificial Neural Network (FFANN), which typically contains three layers such as the input
layer, hidden layer, and output layer. This study uses FFANN for its simplicity as one of
the predictive models and it was built using Matlab Script.
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In this study, the tansig-purelin was used as the transfer function; tansig from hidden
node to output layer; and purelin as the transfer function from input to hidden node. The
number of hidden layers and hidden neurons (nodes) were tried and increased systemati-
cally, checking each time if the prepared neural network obtained the stable performance
error with the fixed number of neurons. A three-layer neural network with two hidden
layers was used in this study. The tested number of neurons used were from 2 until 10 by
incremental of two units. In FFANN, the final layer output is the function of the linear com-
bination of the unit’s activation function and the non-linear input weighted sum function.
Assuming that the pattern of concentration does not change significantly from day to day,
the model proposed can be used by providing values of new predictive variables to predict
concentrations for a consecutive hour. The performance of the model was monitored to
make sure that the model stopped training and chose the best number of neurons.

2.4.3. Radial Basis Function Artificial Neural Network (RBFANN)

The basic idea of RBFANN network is to fit a curve of the data into a high dimensional
space. RBFANN networks represent another type of ANN with an input layer, an output
layer, and a hidden layer of radial units, each actually modelling a Gaussian response
surface. The main important advantage of the RBF approach is that the RBF network can
yield the minimum approximating error of any function; thus, it is suitable for modelling
complex input–output mappings [47]. RBF is also one of the unusual but extremely fast
and effective methods which has smoothness function (σ) that relies from 0.1 to 0.9 [48].
In RBFANN, the critical step for good prediction is selection of the smoothness parameter
(σ) [48]. Hence, this study uses σ value from 0.1 until 0.9 by incremental of 0.1. Ten variables
(O3, PM10, CO, NO2, SO2, NmHC, UVB, humidity, wind speed, and temperature) were
used as inputs for RBF model.

2.4.4. Modified Models

Hybrid models are combination of MLR, FFANN, and RBFANN models with the
principal components analysis (PCA). The aim is to reduce the complexity of the model and
to determine the relevant independent variables to predict the future O3 concentrations.
The differences between modified models and the models of MLR, FFANN, and RBFANN
were the input variables.

In the modified models, the selected principal components from the output of Principal
Component Analysis (PCA) were used as input. The scores of high loadings components
with an eigenvalue greater than or equal to 1 explain most of the variation in all datasets,
which is ideal to use as in regression equations as independent or predictor variables; thus,
PCR, PCA-FFANN, and PCA-RBFANN establish the relationship between the dependent
or response variable and the selected PCs of the independent variables [49]. The sub-model
for every principal component (PC) according to the study areas are given in Section 3.1.

2.5. Performance Indicators

Performance indicators were used to evaluate the goodness of fit of the predicted
models in the sample locations. According to Ahmat et al. [50] and Ghazali et al. [51], in
order to describe the fitness for each of the selected distribution, there are at least four
types of performance indicators which need to be used. There are many performance
measures that have been used by researchers to describe the performances of their de-
veloped models. They are usually divided into two types, i.e., error measurement and
performances measurement. For error measurement, the smaller the value to zero, the
smaller the differences between the predicted and the observed values. For performances
measures, it describes the linear relationship between the observed and predicted values.
Hence, the closer the predicted values to the straight line, the better the agreement between
observed and predicted values or the closer the value to 1, the better the prediction model.
Thus, the best model is selected based on the highest accuracy measures and the smallest
error measures between the predicted and their corresponding observed values [52].
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In this research, the performance measures selected were the Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), Coefficient of Determination (R2), and Index of
Agreement (IA). Table 6 shows the equations for each of the performance measures.

Table 6. The Performance Indicators [52].

Performance Index Equation Description

Mean Absolute Error
(MAE) MAE = 1

n

n
∑

i=1
|Pi−Oi| (5) Value close to zero

indicates better method.

Root Mean Squared
Error (RMSE) RMSE =

(
1
n

n
∑

i=1
[Oi− Pi]2

)1/2
(6) Value closer to zero

indicates better method.

Coefficient of
determination (R2) R2 = 1−

n
∑

t=1
(Pi−õ)2

n
∑

t=1
(|Oi−õ|2)

(7) Value closer to one
indicates better method.

Index of Agreement
IA = 1−

n
∑

i=1
(P−Oi)2

n
∑

i=1
|Pi−õ|+|Oi−õ|2

(8) Value close to one
indicates better method.

3. Results
3.1. Principle Components Analysis (PCA)

Table 7 shows the results of Keiser–Meyer–Olkin (KMO) and Bartlett’s Test. The KMO
values were greater than 0.5 and the significant p-value for Bartlett’s Test were smaller than
0.001 for all stations. Hence, these datasets were suitable for PCA.

Table 7. KMO and Bartlett’s Test.

Station KMO Measure of
Sampling Adequacy

Bartlett’s Test of Sphericity

Approximate
Chi-Square p-Value

Ipoh 0.700 54,319 <0.000
Shah Alam 0.716 68,026 <0.000

Melaka 0.575 42,357 <0.000
Kota Bharu 0.709 73,029 <0.000

Kota Kinabalu 0.664 37,185 <0.000

After the extraction of PCA was applied, factors were considered as the principal
component based on eigenvalues of more than 1 (>1.0) and varimax rotation was used as a
criterion. Due to excessive factors with more significant variables, the eigenvalues with
less than one (<1.0) were overlooked due to multicollinearity being present among original
variables [31]. The eigenvalues for all linear components before extraction, after extraction,
and after rotation are shown in Table 8. Based on the percentages of the eigenvalues, the
most significant principal component in explaining the amount of variance is the first,
followed by the second and third principal components.

The scores of high loadings components with an eigenvalue greater than or equal
to 1 were selected as an input to the modified models. The sub-models of each principal
component according to the study areas is given in Table 9. Only the strong factor loading
of the Varimax factors (VFs) and coefficient (≥0.75) are considered as the components of
each principal component (PCs).
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Table 8. Total Variance Explained.

Component Station
Initial Eigenvalues

Total Variance (%) Cumulative (%)

1
Ipoh

2.752 27.520 27.520
2 2.665 26.646 54.166
3 1.248 12.483 66.649

1
Shah Alam

3.221 32.209 32.209
2 2.607 26.074 58.283
3 1.058 10.579 68.862

1
Melaka

2.352 29.395 29.395
2 2.028 25.350 54.746
3 1.212 15.146 69.891

1

Kota Bharu

3.587 35.866 35.866
2 1.980 19.800 55.666
3 1.105 11.051 66.717
4 1.025 10.251 76.969

1
Kota Kinabalu

2.775 30.838 30.838
2 1.800 20.004 50.843
3 1.232 13.692 64.535

Table 9. Sub model for PCR.

Area Principle
Components (PCs) Sub-Model

Ipoh
PC1 0.781PM10 + 0.760CO + 0.739NO2 + 0.713NmHC
PC2 −0.934H + 0.871T + 0.772UVB
PC3 0.819 WS

Shah Alam
PC1 0.928T − 0.923H + 0.735UVB + 0.717O3
PC2 0.824PM10 + 0.812CO
PC3 −0.883WS

Melaka
PC1 0.924T − 0.896H
PC2 0.880CO + 0.875PM10
PC3 0.907SO2

Kota Bharu

PC1 0.929T − 0.923H + 0.852NmHC
PC2 0.815NmHC + 0.806NO2 + 0.774CO
PC3 0.855O3 + 0.735PM10
PC4 0.903WS

Kota
Kinabalu

PC1 0.900T + 0.855UVB − 0.824H
PC2 0.809PM10 + 0.758CO

The descriptions of principal components for each study areas are explained according
to Tables 8 and 9. Each principal component with the specific significant variables was
used as the input to the hybrid models.

For Ipoh, the first component described 27.520% with four significant variables which
were PM10, CO, NO2, and NmHC. The second component explained 26.646% which
consists of three significant variables (H, T, and UVB) and the remaining 12.483% was
explained as the third component (wind speed) which made the cumulative variance
68.89%. Subsequently in Shah Alam, there were three principal components with the first
component being 32.209%, which was made up of four significant factor loadings (T, H,
UVB, and O3); the second component was 26.074% with two significant variables (PM10
and CO), and the remaining 10.579% (WS).

However, for Melaka, the first component explained 29.395% with two significant
factor loadings which were T (0.924) and H (−0.896); 25.350% for the second component
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which were significantly contributed to by CO (0.880 and PM10 (0.875) and the remaining
15.146% (PC3) was strong explained by SO2 (0.907).

Kota Bharu showed that the two principal components are formed with cumulative of
variance at 55.666% where first factor is higher than second factor with 35.866% (T, H, UVB)
and 19.800% (NmHC, NO2, CO) of variability. The third and fourth factors were 11.051%
(O3 and PM10) and 10.251% (WS) respectively. For Kota Kinabalu, the first component
explained 30.838% of the total variance, 20.004% for PC2, and the remaining 13.693%
explained the third component. The weather parameters (T, UVB, and H) were the strong
loading factor for the first component, while, for the second component, PM10 and CO
were the important factors and for PC3, NO2 was the only strong factor.

3.2. Development of Ground-Level O3 Prediction Models and Their Performances
3.2.1. Multiple Linear Regression (MLR) and Its Modification (Principal Component
Regression (PCR))

The summary of the developed model (MLR and PCR) and range of Variance of
Inflation Factor (VIF) are given in Table 10. The VIF values for MLR and PCR models
were lower than 10, which proved that multi-collinearity issue does not exists in the model.
Hence, in this case, the developed MLR and PCR models had minimal relationship between
independent variables that resulted in good-fitted model.

Table 10. Summary of the Multiple Linear Regression (MLR) models and Principal Component
Regression (PCR) models for O3 concentration forecasting. VIF: Variance of Inflation Factor.

Location Method Models Range of VIF

Ipoh
MLR

O3+1 = 61.914 + (0.001 CO) − (0.387 Humidity) − (1.923 NmHC) +
(0.341 NO2) + (0.41 O3) − (0.003 PM10) − (0.454 SO2) − (0.657

Temperature) − (0.002 UVB) + (0.568 Wind Speed)
1.147–4.170

PCR O3+1 = 12.564 + (0.067 PC1) + (0.072 PC2) + (1.021 PC3) 1.027–1.062

Shah Alam
MLR

O3+1 = 109.995 + (0.002 CO) − (0.404 Humidity) − (0.00001392 NmHC)
+ (0.07 NO2) + (0.351 O3) − (0.001 PM10) − (0.048 SO2) − (1.727

Temperature) + (0.002 UVB) + (0.21 Wind Speed)
1.227–4.373

PCR O3+1 = 52.582 + (0.002 PC1) + (0.000 PC2) − (0.012 PC3) 1.062–1.151

Melaka
MLR

O3+1 = 11.902 − (0.001 CO) + (0.033 Humidity) + (0.35 NO2) + (0.337
O3) + (0.022 PM10) − (0.148 SO2) + (0.252 Temperature) − (0.07 Wind

Speed)
1.066–4.364

PCR O3+1 = 23.715 + (0.105 PC1) + (0.003 PC2) − (1.031 PC3) 1.032–1.061

Kota Bharu
MLR

O3+1 = 14.267 − (0.002 CO) − (0.027 Humidity) − (0.004 NmHC) +
(0.127 NO2) + (0.617 O3) + (0.1 PM10) + (0.188 SO2) − (0.146

Temperature) − (0.022 Wind Speed)
1.141–5.751

PCR O3+1 = 10.296 + (0.001 PC1) − (0.005 PC2) + (0.464 PC3) − (0.130 PC4) 1.047–1.259

Kota
Kinabalu

MLR
O3+1 = 14.267 + (0.002 CO) − (0.027 Humidity) − (0.004 NmHC) +

(0.127 NO2) + (0.617 O3) + (0.1 PM10) + (0.188 SO2) − (0.146
Temperature) − (0.022 Wind Speed)

1.153–2.799

PCR O3+1 = 16.655 − (0.013 PC1) + (0.028 PC2) − (0.333 PC3)11 1.052–1.205

Table 11 shows the performance measurements of the predicted daytime O3 level by
MLR and PCR. In terms of predictive model by MLR, generally, for all study areas, MLR
model gave very good predictions compared to its modified version model, PCR. The
predicted values by MLR gave lower error compared to PCR with the range of error (MAE)
within 2.684 to 11.59 and 3.597 to 13.92 for MLR and PCR, respectively. The predicted
values of O3 level in Kota Bharu and Kota Kinabalu gave smaller value of error compared
to other places. For goodness of fit test (PA, IA, and R2), MLR fit the observed data better
than PCR with the range of 0.757 to 0.952 and 0.531 to 0.870.
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Table 11. Model validation based on all parameters and PCA as inputs.

Location Method MAE RMSE IA R2

Ipoh MLR 7.055 8.901 0.874 0.887
PCR 8.355 10.692 0.806 0.694

Shah Alam MLR 11.59 15.053 0.757 0.903
PCR 13.92 18.482 0.563 0.531

Melaka MLR 5.855 7.737 0.772 0.952
PCR 6.969 9.17 0.636 0.672

Kota Bharu MLR 2.684 3.373 0.949 0.944
PCR 3.731 4.885 0.870 0.800

Kota Kinabalu MLR 3.119 3.779 0.884 0.866
PCR 3.597 4.794 0.658 0.531

The performances of MLR and PCR in predicting the daytime O3 concentration can
further be observed using graphical presentation. Figure 2 shows the observed and pre-
dicted value of O3 level for the five study areas. From the plot, the MLR model fits the
data very well compared to PCR for all the stations. The high R2 values of MLR model
were due to small and unbiased differences between the observed values and the model’s
predicted values. This can be observed as the distance between the fitted line and all the
data points was minimized. The more variance that is accounted for by the regression
model, the closer the data points will fall to the fitted regression line. Contrarily, for PCR
model, wider distance between the regression line and all the points can be seen. Hence,
reduced R2 values were observed for the predicted values of PCR model.

3.2.2. Artificial Neural Network (ANN) and Its Modification (PCA-FFANN)

The best performance indicated by the different number of neurons for the neural
network analysis and the hybrid is shown in Table 12. Overall, FFANN performed very well
compared to it modified-version model, i.e., PCA-FFANN. Basically, the predicted O3 level
using FFANN had low percentage of measured error (RMSE) compared to PCA-FFANN by
around 20.3 percent. Furthermore, very good agreement between observed and predicted
O3 level was detected with FFFANN model due to very close value of the performance
measures (PA, IA, and R2) to 1. This indicates that the prediction of maximum hour O3 level
were very close to the observed concentration of O3. A number of researchers have been
applying ANN for prediction of ambient air pollutants concentration. ANN was identified
as one of the best models for PM10 level prediction [31,53] and ground-level O3 [24,25].

Table 12. Model validation based on all parameters and PCA as inputs.

Location Method No. of
Neuron MAE RMSE IA R2

Ipoh FFANN 2 6.937 9.071 0.871 0.839
PCA-FFANN 2 8.402 10.693 0.804 0.706

Shah Alam FFANN 2 12.090 15.677 0.729 0.846
PCA-FFANN 6 13.233 17.534 0.638 0.576

Melaka FFANN 2 5.599 7.850 0.769 0.853
PCA-FFANN 6 6.438 8.816 0.684 0.647

Kota Bharu FFANN 2 2.449 3.519 0.940 0.949
PCA-FFANN 4 3.708 4.918 0.870 0.771

Kota Kinabalu FFANN 8 2.619 3.579 0.841 0.691
PCA-FFANN 4 3.583 4.779 0.658 0.540
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Figure 2. Observed versus predicted values of ground-level O3 concentration using MLR and PCR. 
The blue marker is the observed value and the brown marker shows the predicted values. 
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Figure 2. Observed versus predicted values of ground-level O3 concentration using MLR and PCR.
The blue marker is the observed value and the brown marker shows the predicted values.
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Comparatively, PCA-FFANN model performed moderately compared to FFANN in
predicting O3 level for all the areas. Principal components (PCs) were used as input to
FFANN to reduce the dimension of a given data set, making the data set more approachable
and computationally easier to handle, while preserving most patterns and trends. Modified
model of FFANN (by using PCs as input to train and validate FFANN model) was expected
to increase the accuracy of the model. A few studies have applied the modified FFANN
model with PCA and had successfully increased the accuracy of the model in predicting
PM10 level [31,35] and ground-level O3 concentration [25,36].

Graphical presentation of the predicted and observed O3 level is presented in Figure 3.
Generally, it can be seen that the predicted O3 level using FFANN and PCA-FFANN was
fitted with the range of the best fitted values by the model, which in this case were more
distributed at the center of the observed data points. In addition, the range of O3 level
predicted by PCA-FFANN was observed to be smaller than the value predicted by FFANN,
or, in other words, the range of the best fitted values was more narrowed compared to its
non-modified model. However, better variation of the predicted values (FFANN was better
than PCA-FFANN) was observed in Kota Bahru and Kota Kinabalu where the error was
significantly small (Table 12) compared to other areas.

3.2.3. Radial Basis Functions (RBFANN) and Its Modification (PCA-RBFANN)

Table 13 shows the validation of models according to the best spread number for
RBFANN and its modified model (PCA-RBFANN).

Table 13. Model validation based on all parameters and PCA as inputs.

Location Method Smoothness
Function (σ) MAE RMSE IA R2

Ipoh RBFANN 0.2 8.675 11.118 0.770 0.558
PCA-RBFANN 0.1 9.148 11.640 0.746 0.587

Shah Alam RBFANN 0.1 12.049 16.418 0.741 0.531
PCA-RBFANN 0.1 13.941 18.422 0.567 0.539

Melaka RBFANN 0.1 6.247 8.620 0.710 0.852
PCA-RBFANN 0.1 7.577 9.977 0.506 0.649

Kota Bharu RBFANN 0.1 3.173 4.579 0.899 0.775
PCA-RBFANN 0.1 4.316 5.690 0.791 0.771

Kota Kinabalu RBFANN 0.1 3.036 4.292 0.783 0.379
PCA-RBFANN 0.1 3.774 4.990 0.587 0.483

Generally, prediction of maximum O3 level made by RBFANN was found out to be
moderately good for all the study areas except for Melaka and Kota Bharu with the range
of R2 value from 0.531 to 0.852. Predicted O3 levels using RBF neural network at these
two cities were quite well-correlated with the value of R2 of 0.852 and 0.775 for Melaka
and Kota Bharu, respectively. Comparable findings were identified by a study conducted
by Abdullah et al. [40], where RBFANN was used to predict PM10 concentration in Pasir
Gudang, Malaysia. The results showed that RBFANN model was able to explain 65.2% and
84.9% variance in the data during training and testing, respectively. Hence, it is proven
that RBFANN is a promising nonlinear model which has high ability in representing the
complexity and nonlinearity of ambient air pollutant concentration in the atmosphere.
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Figure 3. Observed versus predicted ground-level O3 concentration using FFANN and PCA-
FFANN. The blue marker is the observed values and the red marker shows the predicted values. 
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Figure 3. Observed versus predicted ground-level O3 concentration using FFANN and PCA-FFANN.
The blue marker is the observed values and the red marker shows the predicted values.
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The performance of RBFANN in predicting air pollutant level, if compared to another
well-known neural network such as multi-layer perception (MLP), is known to be less
accurate than other neural networks. This was supported by the findings from the study
conducted by Kumar et al. [54] that compared RBF with MLP neural network for prediction
of O3 level in India. The results suggested that MLP had slightly better prediction of O3
level with the range of RMSE value of 5.4 to 15.4 compared to RBF, with the range of 5.2
to 18.6.

Its modified version, PCA-RBFANN, performed less accurately than its basis model.
However, noticeable improvement was observed on R2 value for the Ipoh, Shah Alam, and
Kota Kinabalu, where better goodness-of-fit measure of the predicted data to the regression
line was detected. When a regression model accounts for more of the variance, the data
points are closer to the regression line; hence, a better fitted model was witnessed.

Figure 4 shows the graphical exhibition of the predicted and observed O3 level at all
study areas. As a whole, inconsistent performances of the predicted values using RBFANN
or PCA-RBFANN can be observed. For prediction using RBF neural network (RBFANN),
all of the cities except for Melaka were detected to have wider range of the best fitted
values compared to the predicted values by FFANN (Section 3.2.2). Predicted data points
of O3 level by PCA-RBFANN were observed to have narrower range of the best fitted
values, especially in Ipoh and Kota Kinabalu. Oppositely, in Melaka, the predicted data
points using RBFANN had a very constricted range of the best fitted values compared to
its modified version (PCA-RBFANN).

3.3. Summary

Table 14 summarizes the performance of the six models used to predict the ground-
level O3 in Malaysia. Overall, MLR gives small error (6.061 and 7.769 for MAE and RMSE
respectively) and offer most fitted data to the regression line, with the value of R2 and
IA close to 1. FFANN and RBFANN fitted the observed O3 data points well but were
slightly less accurate compared to MLR. Interestingly, all the unmodified models (MLR,
FFANN, and RBFANN) significantly outperformed their modified version model (PCR,
PCA-FFANN, and PCA-RBFANN). The sequence of model from the best fitted model to
the least is as follows:

MLR > FFANN > RBFANN > PCR> PCA-FFANN > PCA-RBFANN

Table 14. Summary of performance measures for the six prediction models.

Model
Performance Indicators

MAE RMSE IA R2

MLR 6.061 7.769 0.847 0.905
PCR 7.314 9.605 0.707 0.648

FFANN 5.939 7.937 0.830 0.877
PCA-FFANN 7.073 9.348 0.731 0.641

RBFANN 6.636 9.009 0.781 0.619
PCA-RBFANN 7.751 10.144 0.639 0.606
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Figure 4. Observed versus predicted ground-level O3 using RBFANN and PCA-RBFANN. The blue
marker is the observed values and the green marker shows the predicted values.
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3.4. Deployment of the Best Selected Prediction Model of Ground-Level O3

Deployment of the best-chosen model (MLR) was done in order to prove that the
model was able to predict the maximum hour of O3 concentration using different years
of dataset.

Table 15 shows the results of performance measures for the predicted O3 level using
MLR for the dataset of 2018. Small error measurement was detected, with ranges from 2.3
to 14.7 that resulted in small differences between the predicted and observed values of
O3 level. High accuracy of performance measures (IA and R2) indicates high agreement
between the observed and predicted data points. Therefore, with this high agreement
between the predicted data and the observed data, it was proven that the linear regression
models can be used to predict the O3 level at any year provided no to small significant
change on the dataset variability. Good prediction model was able to be developed due to
the long-term period (2003 to 2012), which was taken into account during development
of model where 80% of the dataset was used for model development and the remaining
was used to validate the performances of the model. Thus, deployment of MLR as the best
selected model for predicting daytime O3 concentration was considered effective.

Table 15. Performance measures of model verification for the five study areas.

Area/Performance MAE RMSE IA R2

Ipoh 8.030 10.815 0.759 0.887
Shah Alam 11.470 14.678 0.736 0.903

Melaka 9.263 12.331 0.744 0.952
Kota Bharu 2.363 3.208 0.951 0.944

Kota Kinabalu 2.447 3.197 0.928 0.866

4. Discussion
4.1. Performances of the Predictive Models (Basis Model)

Multiple Linear Regression predicted the maximum O3 concentration better than other
predictive models including the hybrid methods. High agreement between the observed
and predicted values was witnessed with the calculated R2 value > 0.8 for each study areas.
MLR successfully modeled the relationship between the independent variables (previous
O3, NmHC, PM10, SO2, NO2, and CO, wind speed, ambient temperature, humidity) and a
dependent variable (O3(t+1)), by fitting a linear equation to the observed data.

Multiple linear regression is one of the most widely used methods for predicting ozone
concentrations with weather parameters and different atmospheric pollutants. In several
studies conducted by Hassanzadeh et al. [11] and Barrero et al. [12], the connection between
weather status and ozone concentration has been observed using this method. The best
prediction equation for ozone and weather variables is found in Hassanzadeh et al. [11]
using a multiple regression procedure. Barrero et al. [12] also show that the MLR allows
maximum O3 concentration to be predicted in city areas within several hours in advance.
Banja et al. [13] applied multiple linear regression to predict the next day’s maximum ozone
concentration for the first time in Tirana, Albania. The relationship between daily maximum
ozone values and weather variables was investigated. MLR analysis has been performed to
establish the relationship between the weather parameters and peak ozone concentration.
It was found out that MLR performed well with the value of R2 = 0.87. Abdullah et al. [55]
investigated the variation of O3 concentrations in Klang, Malaysia from 2012 to 2015. MLR
model was developed and signifies that nitrogen oxides (NO), relative humidity (RH), NO2,
CO, wind speed, temperature, and sulphur dioxide (SO2) are the significant predictors
for O3 concentration. The calculated value of R2 for MLR is 0.810. Since MLR is a simple
linear regression method that can easily be used to correlate other pollutants and weather
parameters, it was abundantly used to model O3 concentration. Hence, from the above
mentioned studies, it can be proven that the maximum O3 concentration was best explained
by the simple linear regression.
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FFANN gives good prediction for the maximum concentration of O3; however, it
was less accurate than MLR. The reduction percentage of R2 for prediction model using
FFANN and MLR was 8.2%, indicating that FFANN performed slightly less well than MLR
in predicting maximum O3 concentration in Malaysia. The main purpose of using neural
artificial networks to model ozone is to capture the non-linear characteristics of the relation-
ship overlooked by a conventional statistical technique (e.g., regression model) [54]. Even
though ANN was known as a powerful predictive model, the main factor that influences
the accuracy of the model was the associations of air pollutants and weather parameters.
It was proven by the research conducted by Pawlak and Jaroslawski [25] that developed
artificial neural network models for the prediction of the daily maximum hourly mean
of surface ozone concentration for the next day at rural and urban locations in central
Poland. The models were generated with six input variables: forecasted basic meteoro-
logical parameters and the maximum O3 concentration recorded on the previous day and
number of the month. The mean error (ME) value indicates a tendency to overestimate the
predicted values by 4.8 µg/m3 for Belsk station and to underestimate the predicted values
by 0.9 µg/m3 for Warsaw station. The analysis of days when the relative error value was
>50% revealed that all predictions with extremely high relative error value were associated.

RBF gives the worst performance in predicting maximum O3 concentration in Malaysia
if compared to MLR and FFANN. Implementation of RBF model to predict air pollutant
is still very recent. Abdullah et al. [47] trained and tested the nonlinear model, namely
Radial Basis Function (RBF), to predict particulate matter (PM10) concentration in an
industrial area of Pasir Gudang, Johor, Malaysia. Daily observations of PM10 concentration,
meteorological factors (wind speed, ambient temperature, and relative humidity), and
gaseous pollutants (SO2, NO2, and CO) from 2010 to 2014 were used. Results showed that
RBF model was able to explain 65.2% (R2 = 0.652) and 84.9% (R2 = 0.849) variance in the
data during training and testing, respectively. This finding was found to be similar to this
study, where the prediction of maximum O3 concentration using RBFANN in Malaysia was
in the range of 0.38 to 0.85 (R2). Thus, it is proven that a nonlinear model has high potential
in virtually representing the complexity and nonlinearity of O3 in the atmosphere without
any prior assumptions.

4.2. Performances of the Modified Models

Overall, the hybrid models of PCR, PCA-FFANN, and PCA-RBFANN performed
worse than their basis models, i.e., MLR, FFANN, and RBFANN, respectively. The lesser
accuracy of the models was mainly due to application of principal components (PCs) as
an input to the modified models. Hair et al. [56] outlined that the variables needed to
be included in the analysis of PCA should be ideally derived from past research studies
or based on the judgement of other researchers. However, in Malaysia, there were very
limited studies focusing on modeling of O3 concentration for all regions of Malaysia. Most
of the studies were performed at the Lembah Klang that was the most populous area in
Malaysia [1,23,45].

As stated previously, the main propose of using principal components as input to the
modified models was to reduce the dimension of the dataset, though, PCA as a dimension
reduction methodology is applied without considering the association between the depen-
dent variable (O3 concentration) and independent variables (PM10, CO, NO2, SO2, NmHC,
UVB, humidity, wind speed, and temperature). Thus, PCA is termed as an unsupervised
dimension reduction methodology [57]. The performance of the modified models was
not as good as compared to its basis model alone because the principal components that
were used as the input to this hybrid model is governed by cumulative of variance during
grouping the factors. For example, the percentage of cumulative variances are 69% for Shah
Alam, and 66% for Ipoh which is lower than 70% (from Table 7). This means that only 69%
and 66% of the total variance is explained. Lower percentage of reliability will affect the
performance of hybrid models that used the principal components as the input parameters.
In detail, specifically take Shah Alam as an example. The first principal component (PC)
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contributed 32% (refer Table 8) of the total variance explained that the group of parameters
were correlated to the O3 concentration. However, for the second PC that was calculated
26% of the total variance was less explanatory for the target compared to the first factor. The
third factor contributed only 10.6% of the total variance and it can be related to the target.

A few studies obtained similar findings as reported in this study. Ozbay et al. [58] also
reported comparable findings with PCR showing significantly lower R2 than MLR when
studying the variation in O3 at Dilovasi, Turkey. Elbayoumi et al. [57] also reported that
the use of PCR does not increase the accuracy in predicting indoor PM10 and PM2.5 in the
Gaza Strip (Palestine) compared with the use of MLR. For both of the studies, significant
reductions of ranging from 20% to 30% have been reported [57,58]. Elbayoumi et al. [57]
related the poor performance of PCR due to the fact that PCA is an unsupervised dimension
reduction methodology.

Furthermore, PCs were usually not understandable. Most of supervised learning
algorithms (for example logistic regression, tree-based algorithm, or neural network) can
evaluate the importance of input features. These features are important as they help
users to distinguish which data were further needed for exploration and features that
might be beneficial or worth more [58]. These features, when combined with the machine
learning algorithm, are expected to enhance the accuracy of the model [40,41]. Balogun and
Tella [40] reported that the input feature of Random Forest when combined with regression
contributed to higher accuracy model with high of R2 (0.97). However, when applying
principal components as the input, reduction of predictive tools can be expected since it
is done in such a way that the principal components are orthogonal and have the largest
possible variances which did not truly interpret the actual situation.

All the issues in applying PCA that were highlighted above might be the reasons that
lessen the performances of the modified models in predicting the daytime concentration of
O3 in Malaysia.

5. Conclusions

Six models (MLR, FFANN, RBFANN, and their modified models, namely PCR, PCA-
FFANN, and PCA-RBFANN) were developed to predict daytime O3 level at five specified
study areas. Out of six models, MLR outperformed other methods with highest accuracy
prediction for all study areas. This indicates that the daytime O3 level in major urban areas
in Malaysia is best described using linear regression. This might be due to very limited or
less extreme concentration observed in the O3 dataset; hence, a linear regression model is
applicable to predict daytime O3 concentration for most urban areas in Malaysia.

For nonlinear models, FFANN gives better prediction compared to RBFANN. The
differences in the basis function of the two machine algorithms might be the reason for
the worse predictions made by RBFANN. RBFANN has localized basis functions (e.g.,
Gaussian) whereas FFANN has global basis functions (sigmoid). Since this study predicted
O3 level at the greatest band of solar intensity, sigmoid basis function was more relevant in
fitting the dataset.

On the other hand, all the modified models show underperform prediction compared
to the unmodified models. The main reason for this reduced efficiency was the input to
the modified models. In the modified models, the selected principal components from
the output of Principal Component Analysis (PCA) were used as input. These inputs
were selected based on the high factor loading and eigenvalues (>1) for each principal
component. However, this selection of inputs leads to multidimensional issues and feature
redundancy that lead to a less effective model.
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