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Abstract: Arbuscular mycorrhizal fungi (AMF) form a symbiotic relationship with plants; a symbiotic
relationship is one in which both partners benefit from each other. Fungi benefit plants by improving
uptake of water and nutrients, especially phosphorous, while plants provide 10–20% of their photo-
synthates to fungus. AMF tend to make associations with 85% of plant families and play a significant
role in the sustainability of an ecosystem. Plants’ growth and productivity are negatively affected
by various biotic and abiotic stresses. AMF proved to enhance plants’ tolerance against various
stresses, such as drought, salinity, high temperature, and heavy metals. There are some obstacles
impeding the beneficial formation of AMF communities, such as heavy tillage practices, high fertilizer
rates, unchecked pesticide application, and monocultures. Keeping in view the stress-extenuation
potential of AMF, the present review sheds light on their role in reducing erosion, nutrient leaching,
and tolerance to abiotic stresses. In addition, recent advances in commercial production of AMF
are discussed.

Keywords: symbiotic relationship; nutrients; abiotic stresses; stress extenuation

1. Introduction

Nutritional strategy can be the base of the characterization of soil-borne fungi. The
majority of these fungi are saprotrophic in nature and rely on dead organic matter for
their nutritional requirements. However, a small group of fungi exists that depends upon
living organisms for nutrients, either by mutualism or parasitism [1]. Some others can
change their feeding behaviour to seprotrophism, mutualism, or parasitism, depending
upon the available circumstances. Mycorrhizal fungi need an association with plant roots
to complete their life cycle; on the other hand, others can survive as free-living organisms
in a natural ecosystem.

Mycorrhizal fungi form a beneficial relationship between plants and microorgan-
isms [2]: a fungus takes nutrients (organic carbon) from the host plant to complete its
growth and development. At the same time, it helps the plant absorb water and nutrients
(nitrate and phosphate) and impart stress resistance. Such a mutual relationship dates back
400 million years [3]. There are two major divisions of mycorrhizal fungi based on their
interactional anatomy with host plant roots. The first ones are septate fungi, which are
Basidiomycota and Ascomycota and fall in the group ectomycorrhizas (hyphae of these fungi
never penetrate the cell lumen; instead, these develop in epidermal cells and surround the
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root tips of host plants). The second group includes arbuscular mycorrhizas, ericoid, and
orchid, which are regarded as endomycorrhizas (hyphae enter and develop in the cells of
plant roots) [1].

Arbuscular mycorrhizal fungi (AMF) belong to phylum Mucoromycota and subphylum
Glomeromycotina [4]. The colonization of AMF surrounds all woody plants, e.g., gym-
nosperm and angiosperm, consisting of flowering families and some non-flower-producing
families. A complex hyphal network is formed by soil fungi that are efficient in mineral
and water absorption from an extended surface area. Furthermore, the development of
arbuscules (highly branched organs) takes place in cortical cells of roots that enable the
fungi with bi-directional resource exchange with the plant [5]. This association is formed
in the roots of about 80% of terrestrial plants, as fungi provide phosphorous (P) and other
mineral nutrients, enhance the capacity to absorb water, improve leaf photosynthesis,
and upregulate the hydraulic conductivity of plant roots. These beneficial effects impart
abiotic stress tolerance in plants, enabling them to perform under adverse environmental
conditions [6].

The symbiotic association of AMF with plants traces back to prehistoric times. In
fact, there is a synchronization between the shift in plants from the aquatic to terrestrial
environment and their symbiotic relationship with fungi, implying that such an association
might have enabled this transition [7]. In the process of evolution, 10% of plants lost this
symbiotic association [8]. AMF are present in our natural environment and beneficial
in several ways. They play an essential role in enhancing plant nutrition acquisition,
increasing plant tolerance to and resistance against stresses, improving soil fertility and
structure, and having numerous beneficial uses in agriculture [2]. AMF make an association
with several plant species [9]. AMF–halophytes associations are evident in the literature.
Large quantities of Glomus geosporum spores were observed in saline soils, indicating that
AMF can thrive in saline soils. Sea wormwood, sea plantain, salt aster, and chamomile were
reported to be heavily colonized by AMF many decades ago [10]. Several Glomus species
thrive under drought and make associations with xerophytes. Plants release strigolactone
as a response to drought stress, which serves as a signalling molecule for AMF. AMF then
colonize the plants and help them to fetch water from a larger surface area [11]. AMF
possess an aerobic life cycle; however, these are found in association with wetland plants
and aquatic species throughout the world. However, there is a poor understanding of their
functionality in such ecosystems [12]. Interaction between soil microorganisms is reported
to have a positive impact on plants. AMF interact with other microbes in the soil, e.g., plant
growth-promoting rhizobacteria (PGPR). Studies reported the synergistic effect of AMF
and PGPR in enhancing plant growth and protection against pathogens [13]. Nitrogen (N)
fixation in the soil is carried by Rhizobia. Studies documented that AMF and Rhizobia share
the same signalling pathway, which triggers their association with plants [14]. A positive
correlation exists between AMF colonization and soil microbial diversity [15].

Many researchers defined the role of AMF spores in various contexts in relation to
various crops. In a mutual context, the plant provides carbon to the fungi by transferring
carbohydrates [16]. The extent to which arbuscular mycorrhiza can be beneficial to plants
depends on climatic situations. A plant with AMF has an advantage over those that lack
this association [17] and has more resistance to diseases [18,19]. AMF are easily adapted
to various habitats and a range of hosts. Their role in protecting plants during various
stresses such as drought and heat is instrumental [20]. The diverse role of the mycorrhizal
association in the soil–plant environment is depicted in Figure 1. The present review
focuses on the importance of AMF and their role in plant nourishment, reducing soil
erosion, heavy-metal immobilization, and plant growth regulation under stress conditions.
Some aspects of the commercial production of AMF are also discussed.
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Figure 1. Graphical depiction of the effect of mycorrhizal association on plant and root ecosystem.

2. AMF and Nutrition Acquisition

An explicit function of AMF mutual association is the transfer and acquisition of
nutrients by the plants [21]. AMF enhance the uptake of nutrients, especially P, in nearly
all plants [22]. AMF improves growth and development in plants under low P and N [23].
The extent of AMF growth varies so that a lower AMP percent is realized under high soil
P conditions [24]. P nutrition was enhanced by AMF symbiosis in lowland and upland
rice. P uptake in rice through fungal hyphae was significantly more than direct uptake by
rice roots [25]. After uptake by hyphae, polyphosphates (polyP (negatively charged liner
phosphate polymers)) are assembled in the cortical cells of rice after the hydrolysis of the
polyP chain upon arrival in arbuscules [25]. AMF-associated rice showed a reduction in
the transcription levels of two transporter genes (PT2 and PT6) involved in direct P uptake
by the root. In contrast, increased transcription levels of the AMF-specific P transporter
gene (PT11) were observed [26]. This can explain the significantly larger uptake of P by the
AMF-mediated pathway rather than direct uptake by roots.

Improved N nutrition was also observed by AMF symbiosis in many studies [27,28].
Uptake of N by AMF can be accomplished in organic (amino acids) as well as inorganic
forms (ammonium and nitrate ions) [29]. After being converted into positively charged
arginine by the glutamine synthetase/glutamate synthase cycle, an ammonium ion is
translocated to the arbuscular along with negatively charged polyP. From the arbuscules,
it is transported to plant cells by ammonium transporters after being converted back into
ammonium [27]. In trees and certain crops, N is the primary factor that can restrict growth.
Numerous studies have shown that AMF can transfer N to adjacent plants as well [30,31].

The colonization of AMF enhances the uptake of nutrients in plants. When AMF are
inoculated in the plant, they enhance macro and micro-nutrient acquisition, leading to
enhanced accumulation of photosynthates. In nutrient-deficient soils, AMF play a role
in the uptake of nutrients by the plants by increasing the surface absorbing capacity of
the roots of host plants [32]. Evidence showed that inoculation of AMF in tomato plants
exhibited increased K, N, P, and calcium (Ca) uptake and enhanced plant growth [33].
AMF form a mutual association with the roots of the plant, which, in turn, helps the
uptake of many mineral nutrients such as Ca, N, P, and zinc (Zn) [34,35]. AMF produce
siderophores (ferricrocin, glomuferrin) [36,37], which exhibit the ability to chelate the iron
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(Fe), particularly under Fe-deficient conditions. The chelated Fe is available to be up taken
by plants as well as fungi [38].

Under drought environments, symbiotic association enhanced the amount of N, Fe,
and P in Rose geranium [39], and pistachio plants inoculated with AMF depicted increased
Zn, potassium (K), and P contents under such conditions [40]. AMF inoculated “garden
mum” plants also contained a high level of N and P [41]. In addition, in Chinese ryegrass,
it enhanced tissue water content and P [42]. A decreasing trend in the uptake of chlorine
and sodium (Na) and an increased uptake of other nutrients were also linked to AMF [43].
Extraradical mycelium enhanced plant growth by enhancing the uptake of nutrients [44].
After developing a mutual association with the plant, AMF form extraradical mycelia
extending from the plant roots to the rhizosphere, thus enhancing the nutrient uptake [30].

Interestingly, AMF can take up N from decayed and dead matter, enhancing their
ability to grow and playing an essential function in the N cycle. Various researches have
shown that of the total N taken up by the arbuscular mycorrhizae, about 20–75% of it is
transferred to the host plant [45]. Furthermore, AMF enhance N and carbon acquisition
under increased levels of carbon dioxide [46]. Nevertheless, the acquisition of macro and
micronutrients and their distribution in olive saplings developed under a high level of
manganese were associated with AMF [47]. A symbiotic association between chickpea
and AMF accumulated high protein content, Zn, and Fe [48]. Studies revealed that the
function of the K+ transporter was enhanced by AMF infection in the roots of birdsfoot
trefoil [49], leading to a lower accumulation of Na, magnesium, and Fe [47]. A symbiotic
association with AMF increased the acquisition of mineral nutrients and higher carotenoid
contents in the plant. AMF can be used to enhance the production of crops such as potato
and maize [50,51]. As AMF lower the use of inorganic fertilizers, it is considered that, in
the future, AMF will be a substitute for chemical fertilizers [52]. Improved nutrition by
AMF symbiosis is also the key to abiotic-stress tolerance, hence maintaining normal plant
growth and development.

Role of AMF in Reducing Erosion and Nutrient Leaching

Biodiversity is severely affected by uncontrolled land use that endangers ecosystem
processes [33]. AMF can bring beneficial changes in the structure of soil that help improve
its physical, chemical, and biological properties. Besides enhancing plant growth and the
development of the root system, AMF protect the soil against wind and water erosion [53].
AMF form a network of hyphae with the roots of plants, which plays an important role in
enhancing soil texture.

AMF play a role in conserving nutrients in the soil by reducing their loss by leaching,
consequently lowering the hazards of groundwater pollution [2]. AMF have a beneficial ef-
fect on the water-holding capacity of soil and the supply of nutrients. Such benefits of AMF
are more pronounced for arid regions where low soil fertility and eroded soils are major
constraints on agricultural productivity. Growing such crops that develop AMF association
help mitigate these problems and realize good crop yields by both improving soil condition
and lowering the leaching of nutrients [54]. Leaching of nutrients is undesirable because it
pollutes both surface and groundwater and lowers the fertility status of the soils. Nitrate N
is often lost through leaching beyond the rhizosphere, which is retained by hyphae of AMF
and is available for plant use [55].

Frequent use of chemical fertilizers, pesticides, and herbicides poses problems to both
human and soil health [56]. AMF act as a growth regulator in most terrestrial environments,
and scientists have been persuaded to use AMF as a biofertilizer [57]. Biofertilizers are
formed from a mixture of natural substances such as microbes that enhance the growth,
development, and health of plants.

3. AMF and Abiotic Stresses

Enhanced water and mineral nutrition in plants and structured rhizosphere are the
direct beneficial outcomes of AMF that increase plant fitness to the environment. Plant
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productivity and growth are badly affected by abiotic stresses, and the intensive use of
pesticides and fertilizers has a harmful effect on our ecosystem. Besides altering the gene
transcription and balance of phytochromes, AMF affect the physiological functions of
plants leading to modified growth, development, and metabolism. AMF symbiosis goes far
beyond the standard two-way movement of carbon and P; rather, it leads to multifaceted
outcomes, which increase plant resistance to abiotic stresses [1]. When AMF are inoculated
in the plant, they enhance the tolerance against different stresses such as drought, heavy
metal, and high-temperature stress. AMF form spores and hyphae in the rhizosphere, while
inside the root tissues, they form arbuscules, hyphae, and vesicles to increase the access of
plant roots to large soil surface areas by hyphal network formation with roots of plants,
thereby enhancing growth in the plant. This section will discuss the abiotic-stress tolerance
induced by AMF symbiosis in plants.

3.1. Drought

The soil–plant environment continuum is the driving force for upward water fluxes.
A lapse occurs in this continuum due to water deficiency in the root zone that leads to
reduced leaf water potential, hence causing plants to adopt a compensation phenomenon,
i.e., closure of stomata, thereby leading to reduced water loss from the plant [58]. Plant
life processes are adversely influenced by drought stress: the deficiency of water lowers
the transpiration rate; influences the uptake of ions, enzymatic activities, absorption of
nutrients; and causes oxidative stress [59]. At an advanced stage of tissue dehydration,
normal plant growth, development, photosynthesis, nutrient absorption, and metabolism
are severely impaired [60]. Maintaining a continuous water supply under drought is
critical to sustained plant growth. In drought-stressed soils, AMF symbiosis with Lactuca
sativa was reported to increase water uptake as compared to plants where symbiosis was
absent [61]. AMF can increase water uptake in drought conditions by the stabilization of
soil structure and aggregation [62]. The porosity of soil and water retention in soil pore
spaces are outcomes of aggregate stability, ultimately increasing the access of roots to water.
Furthermore, extended fungal hyphae increase the root zone and directly transfer water
to the plant [1]. Fungal hyphae are capable of scavenging water from narrow soil pores
because the average diameter of hyphae (2–20 µm) is less than that of root hairs [63].

AMF manage to mitigate drought stress in many crops, such as soybean, onion, maize,
wheat, and strawberry. The mutual association of AMF with a plant enhances the size
and capability of roots, stomatal conductivity, and exchange of gases, and also helps the
plant against adverse climatic conditions [64]. AMF induce the ABA responses that control
plant physiological processes and stomata [65]. A plant having a mutual association with
AMF tolerates drought stress by morphological adaptation accompanied by physiological
and biochemical mechanisms. AMF maintain plant/soil water relations and enhance the
structure of soil by releasing glomalin in the soil [66].

3.2. Soil Salinity

Osmotic and ionic stresses on plants are the result of soil salinity. Ionic stress results
in decreased water availability to plants, ultimately leading to less photosynthesis, while
specific ion toxicity and nutrient deficiency are the outcomes of ionic stress [67]. A total of
1125 million hectares of area is salt-affected worldwide [68]. A soil-salinity problem is faced
under almost all climatic conditions. Salts are deposited by primary (precipitation of salt
from the atmosphere, seawater, and weathering of rocks) and secondary (anthropogenic
processes, i.e., mismanagement of water, irrigating the soil with brackish water, and
irrigating the soil for a long time) processes. Nevertheless, cultivating shallow-rooted
annual crops instead of perennial deep-root-system crops also results in increased saline
groundwater [69].

Higher Na levels in saline soils result in increased Na uptake that often is at the expense
of K, as both of these ions compete for the same binding sites. This Na-induced K deficiency
hinders the function of many metabolic enzymes with which it acts as a cofactor [70].
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Contrarily, Na accumulation in the cell is considered to be highly toxic as it disrupts the
structure of several enzymes [71]. A low K:Na ratio in salt-affected soils interrupts many
metabolic processes, which often results in osmotic stress, reduced photosynthesis rates,
and oxidative damage [71]. Hence, major determinants of salt-stress resistance in plants
are reduced Na uptake and its exclusion and compartmentation [72].

The presence of AMF has been reported in many salt-affected soils [73]. AMF-infected
plants depicted increased K uptake with reduced Na absorption as compared to non-
infected plants [74]. AMF are suggested to possess a buffering effect in salt-affected soil by
selectively uptaking K instead of Na, hence decreasing the salt load of plant cells. In rice
plants infected with AMF, Na was sequestrated in root-cell vacuoles, thus limiting the toxic
effect of Na accumulation in shoot cells [75], which resulted in enhanced photosynthetic
activity and improved plant biomass accumulation in AMF-infected rice plants as compared
to non-infected ones [75]. Osmotic adjustments were improved in AMF-infected plants due
to the accumulation of sugars, prolines, and betaines (osmoprotectants) that also develop a
favourable water gradient in roots even in higher Na concentrations in soil solutions. AMF
also maintain a plant’s physiological functions, e.g., its ability to absorb water efficiently
under saline conditions [76]. AMF enhance salinity tolerance in plants by modifying
physiological and biochemical processes, i.e., increasing photosynthetic efficiency and
improving nutrient availability, water uptake, and ionic homeostasis.

3.3. Heavy Metals

The chelation of heavy metals and their sequestration by fungi is an important perspec-
tive that can be utilized to sustain plant growth and development in heavy-metal-polluted
soils. Glomalin, a protein produced by the hyphae of AMF, sequesters toxic metal ions
that can be used as a tool for the biostabilization of metal-polluted soils. AMF are believed
to enhance tolerance against heavy metals; however, this ability is largely influenced by
plant and fungal species and the type of heavy metal present in the rhizosphere [77]. AMF
regulate the allocation of heavy metals in plant parts by hindering their transport from root
to shoot [78]. It was reported that the retention of heavy metals (cadmium (Cd), lead (Pb),
Zn) in the roots of maize plants when the plants were associated with AMF [79]. Plants
associated with AMF showed minor stress symptoms even with the presence of a high level
of heavy metals in their tissues, proving the toxic effect was potentially decreased due to
enhanced P nutrition and growth [77]. AMF hindered heavy-metal uptake in some plants.
For instance, AMF associated with Cnadulla officinalis attenuated the effect of heavy metals
by activating the antioxidant defence system and reducing the uptake of Cd and Pb [80].

AMF-induced biogeochemical alteration in the rhizosphere resulted in the immobiliza-
tion of heavy metals. Prevention of As translocation in plants and immobilization of Zn in
the rhizosphere by AMF was reported in several studies [81]. In the soil–plant continuum,
the AMF effect chromium (Cr) translocation and transformation [82]. The immobilization
of Cr was accomplished by reduction of Cr into Cr-phosphate analogues. Transformation
of heavy metals in the rhizosphere can be accomplished by AMF through root exudate
alteration, precipitation, acidification, and immobilization [83]. Heavy-metal-tolerant AMF
species thrive and flourish in polluted soils and play a significant role in phytoremediation,
which is believed to be the sustainable and ecological sound technology for heavy-metal-
polluted-soil remediation. Table 1 summarises previous studies on AMF’s potential to
mitigate abiotic stresses such as drought, salinity, and heavy metals.
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Table 1. Some case histories of plant–AMF association leading to abiotic-stress tolerance.

Stress Host Species Fungus Mechanism Involved References

Drought stress

Glycine max Arbuscular
mycorhizal fungi

Increased seed fresh and dry weight and
photosynthesis [84]

Triticum
aestivum

Gigaspora
decipiens,

Glomus mosseae
Enhanced growth, chlorophyll content [85]

Triticum durum Rhizophagus
intraradices

In grains, increased levels of Zn, manganese,
Fe, and copper (Cu) [86,87]

Olea europaea Arbuscular
mycorrhiza Increased uptake of minerals [88]

Zea mays Rhizophagus
intraradices Enhanced K, N, and P uptake [89]

Fragaria
ananassa

Funneliformis
geosporus BEG11

Enhanced water usage
efficiency [90]

Antirrhinum
majus

Glomus
deserticola

Enhanced level of proline and
water, number of leaves [91]

Vigna
subterranea Gigaspora gregaria Enhanced level of minerals and lower level of

proline [92]

Pontius
trifoliata

Paraglomus
occultum

Improved rate of water
absorption and length of the hypha [93]

Digitaria
eriantha

Rhizophagus
irregularis

Improve conductivity of
stomata and dry matter of shoot [94]

Ipomoea batatas Glomus species Osmotic potential adjustment [95]

Saccharum
arundinaceum Glomus species

Improve the uptake of water,
metabolites, phenolic, and

glutathione levels
[96]

Pelargonium graveolens Funneliformis mosseae
Increase the contents of

nutrients, essential oil, and
biomass of plants

[97]

Robinia
pseudoacacia

Rhizophagus
intraradices

Enhanced rate of
photosynthesis and water-use efficiency [98]

Foeniculum
vulgare

Arbuscular
mycorhizal fungi

High production of essential oil, main the
concentration of salts [99]

Malus
domestica

Arbuscular
mycorhizal fungi

Increasing the capacity of
gaseous exchange, improving the

fluorescence parameters of
chlorophyll

[100]

Thymus species Arbuscular
mycorhizal fungi

Increases dry weight of root and shoot,
pigments of

photosynthesis
[101]

Salinity stress

Cucumis sativus Glomus
intraradices

Improved level of antioxidant
enzymes [45]

Oryza sativa Claroideoglomus etunicalum
The increased conductivity of

stomata and the rate of
photosynthesis

[6]

Solanum
lycopersicum

Rhizophagus
irregularis

Increased fresh weight of roots and shoots
and number of leaves [102]

Aleurites
moluccanus Claroideoglomus etunicalum Enhanced conductivity of

stomata and level of soluble sugars [103]

Acacia species Glomus
fasciculate Increased level of Cu, Zn, and P [74]

Aeluropus
littoralis Claroideoglomus etunicatum Enhance the dry mass of roots and shoots,

and conductivity of stomata [103]

Acacia nilotica Glomus
fasciculate Enhance biomass of root and shoot [74]
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Table 1. Cont.

Stress Host Species Fungus Mechanism Involved References

Cd toxicity

Sesbania
rostrata Glomus mosseae Enhances concentration of N and P [42]

Medicago sativa Glomus
aggregation

Enhanced concentration of N and P in shoots
and reduced cadmium concentration in

shoots
[104]

Oryza sativa Funneliformis mosseae Decreased uptake of cadmium [105]

Triticum
aestivum Indigenous Enhanced growth in plant and

decreased uptake of Cd [106]

Lycopersicon
esculentum L. Funneliformis mosseae

Increased growth in plant and
restricted translocation of Cd from root to

shoot
[107]

Zea mays Rhizophagus
clarus

Enhanced dry matter
production [108]

Trigonella
foenum-graceum.

Glomus clarum, Acavlospora
laevis

Enhances the function of
antioxidant enzymes [109]

Pb
toxicity Populus cathayana Funneliformis mosseae Enhanced P uptake under stress [110]

Cu toxicity Phragmites
australis

Rhizophagus
irregularis

Improved plant growth and
development and also
enhanced the rate of

photosynthesis

[111]

Uranium toxicity Sesbania
rostarataa

Glomus
etunicatum Increased biomass of plant [112,113]

Arsenic (As)
toxicity Trifolium repens L. Glomus

versiforme
Increased antioxidant enzymes and dry

biomass of plants [113]

Nickel (Ni)
toxicity

Helianthus
annuus L. Claroideoglomus claroideum increased growth in plant [114]

Mercury toxicity Zea mays Glomus sp., fungi from
Glomeromycota

Enhanced biomass of plant and
increased content of mercury in central

cylinder of AMF colonized plants
[115]

Cu
toxicity Carotalaria juncea Rhizophagus

clarus
Increased plant growth and

reduced phytotoxicity [116]

As(III), As (IV)
toxicity Oryza sativa Rhizophagus

irregularis
Increased water use efficiency and

chlorophyll concentration [117]

Ni, Cd
toxicity

Daucus carota L., Corchorus
olitorius L.

Glomus mosseae,
Gigaspora
margarita

Improved plant growth and
decreased accumulation of metals [118]

Cd, Zn
toxicity Canjanus cajan Rhizophagus

irregularis
Improved fresh weight of root and shoot and

area and leaf number [119]

Cr, Ni, Cd, Pb
toxicity Zea mays

Rhizophagus
intraradices,
Rhizophagus
fasciculatus

Enhanced concentration of
chlorophyll and P and

improved length of root and shoot
[120]

Pb, Cd, Cu, Zn
toxicity

Vetiveria
zizaniodes Glomus mosseae Increased biomass and

decreased stress [121]

Ni, Cd, Cr, Cu, Cd
toxicity

Helianthus
annuus L.

Funneliformis
caledonium

Increased plant growth.
Absorption of P and reduced

concentration of heavy metal in shoots
[93]

Cold stress Solanum melongena
Rhizophagus

irregulars,
Funneliformis mosseae

Improving photochemical
reactions, reducing the damage in the

membrane, and
activating the antioxidants

defense system

[122]
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Table 1. Cont.

Stress Host Species Fungus Mechanism Involved References

Heat stress Solanum
lycopersicum

Rhizophagus
irregularis

Increased plant photosynthetic
efficiency [123]

Salinity-Alkali Legmus
Chinensis Glomus mosseae Enhanced water, P, and N

concentration [42]

Drought and salt
stress

Ricinus
communis

Arbuscular
mycorhizal fungi

Activating the growth of plant and
enhancing the net stomatal

conductivity, rate of
transpiration, and

photosynthesis, and reducing the
intercellular concentration of carbon dioxide.

[93]

4. Commercial Production of AMF

Green technologies that pose a low impact on the environment and human health
are gaining popularity and reducing the commercial share of agrochemicals. Plant bios-
timulants trigger plant nutrition regardless of the nutrient status of the product with an
improvement in nutrient use efficiency and abiotic stress tolerance. Biostimulants can be of
microbial and non-microbial origin, including AMF [124].

There is an increasing awareness and trend amongst the farming community about
the beneficial effect of AMF. Many local and global ventures are preparing AMF inocu-
lum/products that are easy to handle and can be easily transported and used for various
crops. Though this practice is yet to be used on a large scale, the companies dealing with
the marketing of mycorrhizal products have tremendously increased in the recent past.
The main companies dealing with mycorrhizal products are present in Europe, Asia, North,
and Latin America in the regional context. At present, firms dealing with the export of
mycorrhizal products are mainly from U.S., Italy, Canada, and Spain. The top bio-stimulant
selling market is the European market. The companies marketing AMF products have
increased from 10 to about more than 75 from 1990 to 2017, as shown in Figure 2. The
majority of firms are present in Italy, Spain, Belgium, France, Austria, and Switzerland,
as shown in Figure 3. These products are used in agriculture, forestry, horticulture, and
landscaping, as shown in Figure 4. In addition to the pure product of AMF, some products
contain fungal inocula mixed with plant-promoting rhizobacteria [51].
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supply the major crop nutrients is termed as biofertilizers [126], and biostimulants are
considered as a tool to mitigate the abiotic stresses in plants [127]. Bioprotectants are
natural products that provide protection to plants against pests and pathogens [128].

Registration is carried out in accordance with the national rules of all E.U. state
participants. In some instances, this monitoring procedure is costly. The International
Mycorrhiza Society and The European Biostimulant Industry Council play a role in the
promotion of biostimulants [125]. Basiru et al. [129] summarized seven countries to be
major shareholders in AMF commercial production, including Canada, Spain, Italy, Czech
Republic, United States, United Kingdom, and Germany; however, AMF commercial-
production data is not available for Australia. After North America and Europe, Asia Pacific,
including China, Taiwan, and India, are leading players in the AMF market. Moreover,
South Africa and Kenya are leading in this market in Africa [129].

Nevertheless, more work is needed to broaden AMF-producing firms in developing
countries and provide awareness about these products.

5. Conclusions and Future Prospects

Various studies proved the valuable role of AMF in improving plant growth and devel-
opment under unfavourable conditions. AMF help in plant nutrient and water acquisition,
reduce soil erosion, and enhance plant stress tolerance against drought, salinity, and heavy
metals. AMF have been proven as a sustainable and environmentally benign source of
crop supplements. It has been concluded that plants inoculated with AMF can success-
fully cope with different ecological extremes, including salinity, drought, low nutrient
levels, and heavy metals present in the rhizosphere, and subsequently help to improve the
per-hectare yield of crops. AMF can significantly help to lower dependence on synthetic
fertilizers. It has a noteworthy effect in re-establishing deteriorated soils’ productivity. A
future insight into the underlying mechanisms controlling AMF-intervened development
and signalling mechanisms will further pave the way for utilization in the agricultural
system. Recognizing the systematic communications under field conditions, identifying
useful strains of AMF or their blends, the impact of co-inoculation with other microbes,
producing transgenic plants overexpressing the desired traits necessary to establish the
symbiosis with AMF, and analysing the dynamic routes in this regard are some promising
areas that need to be further explored.
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