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Abstract: With the current transitioning and increasing complexity of power systems owing to
the continuous integration of distributed generators (DGs) and Flexible AC Transmission Systems
(FACTS), power system quality and security studies have extended to incorporate the impacts of these
technologies. This paper presents a review of the operation and reliability impacts of FACTS tech-
nologies in improving power quality and security in modern Cyber-Physical Power Systems (CPPS).
While introducing DG to the power system helps to decentralize the network for easy accessibility
and enhances clean energy system, it creates new challenges such as harmonics, voltage instability,
and frequency distortion. These challenges can be tackled with FACTS devices which are flexible and
dynamic smart electronic controllers used to stabilize power system parameters to improve power
quality and reliability. This paper examines the current state-of-the-art optimization techniques
and artificial intelligence and/or computational techniques for optimal placement and operation of
FACTS devices. This review highlights the generational advancement of FACTS technologies and
the different objectives of optimal placement and operation of these devices. Moreover, the concept
of CPPS is discussed with the potential utilization of distribution-FACTS (D-FACTS) devices for
network security. Furthermore, a bibliometric analysis was carried out to show research trend of
FACTS utilization. The result presents future trajectories for power utility industries and researchers
interested in power system optimization and the application of FACTS technologies in smart power
system networks. Some of the significant findings leads to proposed demand-side management for
placement of DGs and FACTS technologies as a more strategic optimal system sizing to minimize cost.
It was also concluded that future design of FACTS/D-FACTS devices must consider and appreciate
interactions with the automated systems of CPPS to enhance effective integration. To this end, design
modification of the operational configuration of these devices with sensors for real-time synchronized
control and interaction with other CPPS technologies is an area that requires more research attention
in the future.

Keywords: optimization; FACTS technologies; distributed generators; renewable energy sources;
power system; transient analysis; smart grid

1. Introduction
Power System Quality and Reliability

Quality and reliable electricity is paramount to both the supply authority and the
consumers [1]. The continual demand for electricity as the world’s population continues to
grow keeps the power system constantly transitioning into more complex interconnected
networks. This increasing complexity is due to power system quality and reliability
problems requiring advanced technologies to improve existing traditional networks. Power
system challenges are vast in dimension, ranging from generation problems, such as

Sustainability 2022, 14, 7707. https://doi.org/10.3390/su14137707 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14137707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6416-6809
https://orcid.org/0000-0003-2607-7439
https://orcid.org/0000-0002-9178-2700
https://doi.org/10.3390/su14137707
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14137707?type=check_update&version=1


Sustainability 2022, 14, 7707 2 of 26

access to energy sources, generator capacity, and ageing, to transmission problems such as,
voltage losses, reactive power imbalances, and harmonics, and distribution problems, such
as voltage surge, components faults, line sag, etc.

A quality power system is the delivery of power to the end-user as demanded. The
consistent and uninterrupted supply of power defines its reliability [2,3]. Reliability
concepts can be divided into system accuracy and system security [4]. According to
Sinishaw et al. [4], system accuracy is the ability of the power system to deliver power to
the end-user constantly as demanded within the system operating constraints. In contrast,
system security is concerned with the ability of the system to withstand abrupt disturbance
and respond quickly and adequately to dynamic changes in the network. The complex and
interconnected nature of the power system involves many components operated within
predetermined constraints, some of which limit the effective generation, transmission
and distribution of power. However, the network system must be operated with the un-
derstanding and effective allowance for these constraints for efficient delivery of quality
power. Furthermore, even when the system is operated within the acceptable limits, further
consideration must be put in place for unforeseen circumstances, such as transient faults
and natural causes of interruptions. Power system is perpetually open to changes that will
enhance the quality and reliability of the systems to cope with their limitations and sudden
disruptions. These perpetual required changes to the power system involve adjustment
of exiting components, parameter modifications, and introduction of new technologies.
Therefore, researchers and power system engineers are constantly proposing new ways of
operating the system or new technologies to improve security. The challenge is that even
the new technologies create new operating boundaries and introduce new disturbances in
the system. For instance, the introduction of renewable energy sources (RES) as distributed
generators (DGs) to decentralized power system networks and provide more environmen-
tally friendly and sustainable energy comes with some degree of uncertainty owing to
intermittency and uncontrolled characteristics [5–7]. Moreover, components ageing and
failure contribute to power system reliability issues [8,9]. Power system components failure
rate can be improved by proper planning (generator capacity, transmission, and distribution
expansion planning), timely maintenance, and replacement of worn-out equipment [10–13].
Other power quality problems, such as voltage instability, reactive power imbalances,
harmonics, and a host of others, can be attributed to the ageing of existing power system
components and RES penetration as DGs. To tackle most of these power system chal-
lenges, several researchers and power system engineers have suggested that the FACTS
technologies be integrated into the power system network, especially considering the cost
of replacing existing old infrastructures [14–17]. The optimal location of DGs and FACTS
devices in the power system network is of high economic importance. Therefore, several
authors have proposed several optimization approaches for optimal placement of FACTS
devices [1,18–22]. A survey of impact assessment and optimization approaches for optimal
placement of FACTS and DG were presented in [23–25]. Most previous reviews in this
area available in open literature considered impact assessment of FACTS devices for power
system quality enhancement and optimization techniques used for optimal placement of
FACTS and DGs in traditional centralized power system transmission networks. This paper
presents an updated assessment review of the reliability impacts of FACTS technologies
considering its operations in a cyber-physical power system (CPPS). CPPS involves the
use of automated technologies, such as computer-aided technologies, information and
communication technology (ICT), and technologies such as the internet of things (IOT) and
the internet of energy (IOE). The remainder of this paper is such that Section 2 presents an
overview of FACTS technologies, Section 3 details a survey of optimization approaches
used for placement of FACTS devices with objectives of improving power system reliability,
Section 4 presents impacts of FACTS in a deregulated CPPS and future outlook, Section 5
examine research trends and prospects, and Section 6 concludes the review with an outline
of important findings and recommendation for future work.
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2. Overview of FACTS Technologies

The advancements in power electronics have shown considerable improvement in
satisfying the need for voltage stability and power quality improvement by introducing
FACTS technology [26]. The main functions of these devices are reactive power com-
pensation, voltage control, and power flow control to enhance better power quality in
modern power systems [27]. The first generation of FACTS devices were mechanically
controlled capacitors, inductors, and phase-shifting transformers with mechanical on-load
tap changers [26]. The second generation was developed such that thyristor valves replace
the mechanical switches. This gave a significant improvement in the speed of the devices.
The third generation was designed using voltage source converter (VSC) based devices [26].
These devices provide multiple and total control of the power system parameters [28].
To further extend the application of FACTS devices to a distribution network, there are
custom power (CP) devices similar to FACTS devices, except that they are used only in
distribution networks. An example is the distributed synchronous static compensators
D-STATCOM [24]. The modification of FACTS to CP to be used in distributed networks
can be considered as the foundation for the fourth generation of FACTS technologies.
This advancement expands the application of FACTS controllers from being used only in
transmission networks to deregulated CPPS networks.

2.1. Benefits of FACTS Technology in Power System

FACTS devices are used in power systems for economic and technical benefits. Most
existing power systems are old and operate under full capacity due, amongst other things,
to infrastructure or components worn-out. Building a new power grid or replacing existing
components will be an expensive venture; FACTS devices are, therefore, used to optimize
the system performance capacity at a lower cost. Furthermore, in a deregulated power sys-
tem network and competitive market, FACTS devices can be used to maximize consumers’
social welfare and utility’s profit in the face of imbalance cost due to RES uncertainty [18,19].
Moreover, when optimally placed, FACTS devices can reduce congestion, curtailment and
price volatility [29,30].

Research has shown that FACTS technologies can be used to tackle many power system
quality and reliability challenges such as: optimizing line power transfer capacity and load-
ability [31–33]; limiting short circuit currents [34]; enhancing power system transient stability
state and system security [22,35,36]; compensate reactive power and load for optimal perfor-
mance [37]; reducing sub-synchronous resonance and enhancing system damping [38,39]; and
improving voltage stability and general power system quality [40,41].

2.2. Classification of FACTS Controllers

According to Rath et al. [29], FACTS controllers can be divided into four categories
according to how they are connected: shunt controllers, series controllers, series-series
controllers, and series-shunt controllers.

2.2.1. Series Controllers

Series Controllers inject voltage in series with the line. They are used to reduce
the transfer reactance of a power line and hence increase transmission line capacity and
improve system stability. Examples of series controllers are Thyristor Controlled Series
Compensator (TCSC) and Static Synchronous Series Compensator (SSSC) [42]. Figure 1
shows the structure and form of TCSC designed with two-directional thyristors.

While the TCSC can be modelled as a series impedance, the SSSC is a series voltage
source [42]. Figure 2 shows the Schematic diagram of SSSC designed based on solid-state
voltage source converter and series connected to a transmission line through a transformer.
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Figure 2. Schematic diagram of SSSC [43].

2.2.2. Shunt Controllers

Shunt controllers are mainly used in high voltage systems to improve voltage pro-
files by supplying reactive power as they inject current into the system at the point of
connection. The shunt controller only provides or absorbs variable reactive power when
the injected current is in the 900 phase with the line voltage. Any other phase relationship
will also control real power as well. Static Var Compensator (SVC) and Static Synchronous
Compensator (STATCOM) are such controllers [44].

The SVC is designed with Thyristor Switched Capacitor (TSC) and Thyristor Con-
trolled Reactor (TCR) or Thyristor Switched Reactor (TSR), as shown in Figure 3. The TSR
is used to absorb reactive power, while the TSC is used to supply reactive power [45].
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STATCOM is an advanced SVC designed with a VSC which has a Gate turn off
thyristor and d.c capacitor linked with a transformer connected to a transmission line, as
shown in Figure 4. The conversion of dc input voltage into ac outputs to compensate for
the real and reactive power of the system is performed by STATCOM [45].
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2.2.3. Combined Series-Series Controllers

This is a combination of separate series controllers, which are coordinately controlled,
in more than one transmission line system. It could also be a unified controller, in which
series controllers provide independent series reactive compensation for each line and
also transfer real power among the lines through the power link. Interline Power Flow
Controller (IPFC) [44].

IPFC has two series converters connected to two different transmission lines, as shown
in Figure 5. It provides a very good power flow control for more than one transmission line,
with each of the two SSSC giving series power addition for its own transmission line. The
two converters are joined through a DC capacitor and attached to the AC network through
transformers directly connected. By this, it not only provides reactive power addition, but
also any of the converters can be manipulated to inject real power to the dc joint from its
own Transmission line.
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2.2.4. Combined Series-Shunt Controllers

These controllers have combined shunt and series controllers, which have sophisti-
cated control. A real power exchange can occur through their shared DC link when the
shunt and series controllers are jointly used. The Unified power flow controller (UPFC) is
a series-shunt controller. It is considered one of the most versatile and powerful FACTS
devices in the power system today [46]. It is primarily used for flexible control of powers
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for better voltage stability. It allows concurrent or independent control of these parame-
ters with transfer from one control scheme to another in real-time. Figure 6 depicts the
schematic diagram of UPFC.
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Figure 6. Schematic diagram of UPFC [47].

UPFC, as shown in Figure 6, is designed using STATCOM and SSSC linked together
with a d.c. The converters are connected to the line with transformers. The unique
combination of this device allows for flexibility of operation when connected to a power
system network.

The dynamic flow controller (DFC) is a hybrid device combining a Phase Shifting
Transformer (PST) and switched series compensator, such as TSC and TSR, as shown in
Figure 7.
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2.2.5. The Merit of the Voltage Source Converter Based FACTS over Thyristor
Controlled Devices

• They consist of voltage source converters designed with an insulated-gate bipolar
transistor or integrated gate-commutated thyristor, making them capable of controlling
their output voltage;

• With the voltage source converters, there is no risk of shunt or series resonant with the
inductive line impedance that may initiate sub-synchronous oscillation;

• They can control their output voltage over the whole VA rating independent of the
AC system parameters;

• They exchange controllable real power with AC system.
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Figure 8 depicts an overview of major FACTS devices classified according to their
connection and different generations.
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2.2.6. Distribution-FACTS Controllers

D-FACTS technologies are advanced FACTS controllers mainly deployed in distribu-
tion networks. Due to the increasing introduction of DGs to the power grid, D-FACTS are
becoming more promising than convectional FACTS devices, gaining more recent traction
in power grid deployment [48]. D-FACTS devices are smaller and, hence, less complex
and cheaper than traditional FACTS devices [49]. Beyond the merit of flexibility and cost-
effectiveness, D-FACTS controllers are suitable for easy configuration with the sensing and
communication system of the modern smart grid for advanced functionality. Therefore,
D-FACTS devices are considered an alternative solution to the limitations of traditional
FACTS devices.

The similarity of D-FACTS devices to other convection FACTS devices extends beyond
functionality to technical configuration; hence, most D-FACTS devices assumed the name
of the specific FACTS controller with a similar configuration. D- STATCOM, for instance, is
designed to perform a similar function as STATCOM; therefore, the operational configura-
tion and connection in the power grid are the same. Moreover, D-SSSC is the distribution
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version of the SSSC controller. Both are connected in series along power lines and provide
dynamic control for power quality and security improvement.

Pinheiro et al. [48] demonstrates an application of series VSC in distribution network
for effective power flow under variable load disturbances. The study results show VSC
as active tool for independent control and transfer of real and reactive powers between
distribution feeders. On the other hand, the biggest challenge of using series converter in
an electrical power system is its ability to make smart decisions or otherwise be removed
and protected in case of a short circuit or power outage [48]. An efficient coordination of
voltage and reactive power in an automated distribution system using distribution SVC
(D-SVC) alongside DGs was presented by Shaheen et al. [50]. This integrated configuration
not only achieved optimum distribution system operation and control, but also minimized
losses and reduce emissions [51]. D-FACTS can also be utilized to regulate the oscillatory
stability of induction motors or synchronous generator [52].

3. A Survey on Optimization Methods

The optimal location, operation and control of FACTS controllers have been the focus
of research in the area of FACTS installation and utilization in power systems. Due to
the complexity of the power system network, successful installation and utilization of
FACTS controllers are conducted, subject to certain constraints. Therefore, most optimal
utilizations of FACTS devices are executed as constraint optimization with multi-objectives
commonly geared towards general enhancement of power system quality, reliability, and
security. Several optimization solution techniques have been utilized to solve the constraint-
multi-objectives problem of FACTS placement, operation and control in the power system
network. These optimization techniques are classified in Figure 9 as convectional mathe-
matical methods and artificial intelligence techniques. The artificial intelligent techniques
could be metaheuristic approach or hybrid metaheuristic approach.

Convectional mathematical optimization methods, such as Newton–Raphson, linear
programming, non-linear programming, dynamic programming, eigen-value analysis,
Lagrangian relaxation, sequential quadratic programming, index and sensitive methods,
residue-based method, and many others, provide good convergence characteristic and
strong accuracy performance but are usually drawback by limited global optima solution
due to dependence on randomly selected initially values. Other drawbacks of these
methods include long computational time and limitation in handling large non-linear multi-
objective or multi-constraint optimization problems. These drawbacks can be minimized
by modification of some of the existing methods. Bone et al. [53], for instance, presented a
steady state model of FACTs devices using unaltered power-flow routines and concludes
that the methods converges rapidly.

Heuristic and Metaheuristic techniques are dynamic nature-inspired algorithms that
are capable of solving large and complex optimization problems and mostly have the
potential of obtaining global optima solutions. These algorithms are based on the concept
of evolution, animal intelligence, plant intelligence, and sometimes chemical and physical
theories. Some of the commonly used Heuristic and Metaheuristic techniques are Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), Bacterial Foraging Algorithm (BFA),
Grey Wolf Optimizer (GWO), Fuzzy logic (FL), Ant Colony Optimization (ACO), Artificial
Bee Colony (ABC), Bat Algorithm (BA), Firefly Optimization Algorithm (FOA), Cuckoo
Search (CS), etc. Despite their superior fast computational advantage and ability to handle
more complex optimization problem, metaheuristic methods have different drawbacks;
hence, a continuous and sustained search by researchers for a better algorithm for optimal
placement and sizing of FACTS devices [54]. The drawbacks of some of metaheuristic
approach include undefined convergence by ACO; low convergence rate; parameter adjust-
ment, as in the case of BA; and many more for each individual algorithm [54].
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The hybrid methods, which are either a combination of a convectional mathematical
method with a metaheuristic method or a combination of two or more different metaheuris-
tic methods, provide better performance in determining the optimal location, sizing and
control of FACTS devices. This is because the dimensions of the optimization problems
can be shared by each algorithm and the limitations of one can be complimented by the
strength of another [55].

3.1. Optimal Sizing and Location/Placement of FACTS Controllers

To achieve the maximum benefits of FACTS utilization in a power system network, its
location in the network is of paramount importance. Therefore, researchers have deployed
different optimization techniques to determine the best possible location to place FACTS in a
power system network to achieve an optimal solution. Yuvaraj et al. [56] used the Harmony
Search algorithm (HSA) to size and locate D-STATCOM in a radial distribution system to
minimize the system’s total power losses. Taher and Amooshahi [57,58] employed hybrid
immune algorithms such as immune particle swarm optimization (IPSO) and immune
genetic algorithm (IGA) to optimally place UPFC to reduce the production cost of generators
and installation cost of UPFC. At the same time, maximizing active and reactive power for
system loadability, congestion management, and optimal power flow.

Similarly, in another study, Taher and Afsari [59] used an immune algorithm to
determine the best size and location of D-STATCOM to minimize the system cost while
improving the current and voltage profile of the system. Packiasudha et al. [60] used
a cumulative gravitational search algorithm to optimally search for the best location of
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FACTS device in a deregulated network with the objective of system loss minimization.
The evolution algorithm was proposed by Alamelu et al. [61] for sizing and siting of
UPFC in a power system network to minimize total system cost and enhance loadability.
Inkollu and Kota [62] presented a hybrid method of particle swarm optimization (PSO)
and gravitational search algorithm (GSA) for optimal setting of UPFC and IPFC to enhance
voltage stability.

In recent years, due to high renewable energy penetration, the placement of FACTS
devices with distributed energy has gain more consideration [63]. A model for optimal
placement of FACTS controllers to curtail wind power cost in a highly wind power pene-
trated market environment was presented by Zhang et al. [64]. The stochastic mixed integer
program bi-level model was also used to identify the investment decisions on series FACTS
using a derived shift factor structure within a market environment under high wind power
penetration. Furthermore, the proposed shift factor formulation is considered to outperform
similar Bθ formulation in area of computational speed as a result of its minimized model
size but its limited application to DC power flow is a major setback in optimal power
flow analysis. The co-optimization model was alternatively reformulated for transmission
expansion planning with TCSC location by [65], wherein two mixed integer liner programs
were proposed for better solution of the multi-optimization problem. An improved squirrel
search algorithm was used to determine the optimal location of Generalized Unified Power
Flow Controller (GUPFC) and IPFC integrated with wind farm and fuel cell [66]. The
model was inspired by natural motion of flying squirrel from one tree to another using
gliding positions. It was considered efficient for optimal location of the FACTS devices
with objectives of enhancing voltage profile, reduce the operational cost and power losses
of the system. Frolov et al. [67] implore sequence of quadratic programming to determine
optimal location of FACTS devices for the control and management of uncertainty of re-
newable energy integration in a large transmission power system. The proposed multiple
scenario-aware model shows strong efficiency. The associated uncertainty of wind power
penetration in a deregulated network is considered with dynamic line rating by optimal
allocation of SVCs and TCSCs using a probabilistic method in [68]. It was observed that
the maximum loadability limit of dynamic line rating was better enhance with SVC than
with TCSC or without any FACTS devices at all.

3.2. Optimal Operation and Control of FACTS Controllers

The optimal sizing and location of the FACTS devices are very important, especially
for economic reasons [55]. The optimal operation and control of these devices for the
technical enhancement of the entire power system is also very important [69]. Therefore,
the optimal operation and control of FACTS devices to improve power system quality,
reliability, and security have also been a further focus of research. Yavari et al. [70] utilized
the combination of sliding mode control and instantaneous active and reactive power
theories to design a non-linear controller for unified power quality conditioner (UPQC)
that proved to be more effective in compensating current and voltage distortion than the
conventional proportional-integral controller. Acharjee [71] presented a model with param-
eter setting of UPFC considering losses of both converters, losses of coupling transformers,
and transmission losses in UPFC using a self-adaptive differential evolutionary algorithm.
The use of UPFC improved power flow and minimized line losses simultaneously. Varma
et al. [72] demonstrated the application of photovoltaic solar-based FACTs devices for
stabilizing critical induction motor the first of its kind in Canada. Such stabilization of in-
duction motors helps to minimize disturbance in a power system. It was observed the new
PV-STATCOM is about 50 times less expensive than a normal STATCOM of similar sized.

The management of the power loop in the power system network is crucial to avoid
losses and make the protection layer easy to set up [73,74]. Li et al. [75] proposed a
sensitivity-based coordination model for the optimal setting of multiple UPFCs to determine
the controllable range of active power settings to avoid active power loop flows.
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The impact of high penetration of distributed renewable energy sources (DREs) in
power systems requires sustained controllability. FACTS controllers can be utilized to
curtail the high penetration of DREs [76,77]. Substation reconfiguration with voltage source
converter of the UPFC to accommodate DREs for enhancing AC optimal power flow using
sparse tableau formulation was considered in [76]. The impact and merits of UPFC to
wind power integration in unit commitment is discussed in [77], where different dispatch
strategies were considered. Elattar et al. [78] and Shaheen [79] formulated models for
optimal power flow in hybrid AC-multiterminal DC grid with the integration of VSC for
minimizing fuel cost, total environmental emission, and power losses. Similar objectives
were also presented in [80,81].

Furthermore, flexibility and dynamic control provided by FACTS controllers in fault
handling can be seen in the amplitude-based directional relaying scheme during single-pole
tripping utilizing UPFC as detailed in [82]. A transient control scheme of the UPFC is
designed to mitigate generator tripping of power systems by controlling the time derivative
of Lyapunov function to be negative towards asymptotic stability [83]. The impact of this is
that the system’s attraction region is reshaped to align with the state point at fault clearing
time for security.

Tables 1 and 2 highlights a summary survey of some literature focused on optimal place-
ment and operation of FACTS and D-FACTS controller used in the power system network.

Table 1. Summary of optimal placement and operation of some FACTS/D-FACTS in power system network.

FACTS Devices Optimization Approach Power System Problem Solved as
Objective Function Outlook

TCSC & UPFC Operational
optimization model.

To maximize the social welfare for consumers
and profit for utility while minimizing the

effect of wind uncertainty.

TCSC and UPFC deployment
successfully maximized social

welfare in the face of
imbalance due to wind
intermittency [18,84,85].

SVC
Modified Newton-Raphson
model, Adaptive differential

search algorithm, ABC.

To minimize voltage, real, and reactive
power losses.

To minimize the cost of energy loss.
To maximized hosting capacity

of Photovoltaic.

SVC enhances voltage profile
and improved overall power

system performance [40,86–91].

STATCOM
Genetic algorithm (GA)
and Bacteria foraging

algorithm (BFA).

To minimize voltage fluctuation by
compensating reactive power.
Load margin enhancement.

Improvement of voltage
stability [41,92–94].

TCSC

Sequential Quadratic problem
SQP, Newton-Raphson model

and Whale optimization
algorithm (WOA),

Catastrophe Theory.

To determine power system security margin.
To increase transmission line capacity.

To improve stability margin.

Bus voltage violation and
losses can be reduce

concurrently [20,95–98].

SSSC

Structure preserving energy
function method, Multi-objective

biogeography-based
optimization (MOBBO),

and WOA.

Transient stability and damping oscillation.
To maximize system predictability while

reducing system active power loss.

Improvement of system
stability and

reliability [99–101].

UPFC
Hybrid immune algorithm,

Adaptive Grasshopper
Optimization Algorithm.

To increase power system loadability and
congestion management.

To reduce power loss and enhance
voltage profile.

The production cost
of the generator and

installation cost of UPFC was
minimized [57,58,102,103].

IPFC Firefly optimization algorithm.
To improve power system security while

minimizing cost.
Congestion management.

IPFC is effective in power
system security

improvement [104–106].
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Table 2. Summary of optimal placement and operation of some D-FACTS in power system network.

D-STATCOM Variation technique and
stability index.

To minimize line losses and
total harmonic

distortion (THD).

Optimal placement of D-STATCOM can
improve voltage profile and reduce

THD [107–109].

UPQC Variation technique.
To enhance voltage profile

and reduce power loss.
Cost minimization.

Unified power quality conditioner
(UPQC) has both shunt and series

controllers, therefore, have an advantage
over other D-FACTS [110–112].

D-STATCOM

Direct load flow technique,
Rooted tree optimization

(RTO) and Lighting search
algorithm (LSA).

Voltage profile
improvement.

Maximum voltage profile improvement can
be achieved when D-STATCOM is optimally

placed alongside DG [113–115]

D-SSSC Particle Swarm Optimization. To enhance voltage profile
and reduce line loss.

D-SSSC effectively improved power quality
in a radial distribution system [116].

D-SVC & D-STATCOM Variation technique Economic feasibility

Wind farm stability improvement as
D-STATCOM minimized the complexity
of regulating the wind turbine-generators

and improves the time response of
reactive power compensation [117].

4. Cyber-Physical Power System and the Future Outlook of FACTS Integration

Yaacoub et al. [118] describe cyber-physical system (CPS) as interconnected systems
with the ability to monitor and manipulate real objects and processes. The CPS and the IoT
concepts are closely related except that the CPS deals with the interaction between physical
networking and computational processes. It was further stated by Yaacoub et al. [118]
that the integration of CPS and IoT birthed a new comprehensive concept, the internet of
cyber-physical things (IoCPT). From these concepts, the idea of IOE and CPPS is derived.
Hence, CPPS is a modern day smart grid power system with a network of traditional power
system components, DGs, and computed aided automated devices, such as sensing and
communicating technology [119]. “The strong interactions between systems in a CPPS
introduce new challenges in maintaining high supply security, as new factors can affect the
overall security of the power system. Such factors include cybersecurity, the behavior and
constraints of neighboring energy systems, and the dynamics of interactions between the
various systems” [120].

Most energy distribution utilities currently control their network with a supervisory
control and data acquisition (SCADA) system. It is a centralized system that monitors
and controls the distribution network’s behavior utilizing available data from the network
system parameters. The current utilization of the SCADA in the distribution network limits
response time, which can be improved upon by emerging advanced distribution system
automation (DSA) [121]. Some of the new DSA devices employ sensing and intelligent
system to provide fault prediction and enhance system protection. Figure 10 illustrates the
integration of a cyber-system to a physical power grid.

The transition of power from the long exiting traditional network to CPPS involves
a paradigm shift from the old model of a network structure of generation-transmission-
distribution-utilization to a new approach of skipping transmission network by bringing
generators to distribution centers [3]. This modernization of the traditional power system
to a decentralized and sophisticated CPPS is accompanied by the increasing introduction
of small DGs, RES, and different smart, automated devices [122]. These new technologies
introduced associated power system reliability challenges that required modifications to
the system operations, such as real-time power balance and control of bi-directional power
flow. Apart from its convectional application to enhance voltage profile and maintain
power system steady-state by dynamic control, D-FACTS technologies are finding new
applications in the current CPPS environment. One such application is the controlling
of “parallel flow” or “loop flow” [29]. Loop flow yields an involuntary cut down in
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transmission capacity that may belong to some other utility and hence foreclose beneficial
transaction through that line [29]. Moreover, FACTS and D-FACTS have been considered
to address economic and cyber-security threat of power system network concurrently as
demonstrated by Liu et al. [123] using a newly develop interior-point solver for AC optimal
power models. In the vine, Parastvand et al. [124] presented a novel topological perspective
of location of FACTS devices considering the cyber-security of associated data exchange
being critical for the controllability of wide area power system networks.
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Padhy [125] proposed the modification of FACTS with an adaptive time delay com-
pensation scheme that requires the signal modal information, such as frequency, amplitude,
and damping. With this information, the latency can be compensated by predicting fu-
ture trajectories of oscillatory response. According to Bibhu, this scheme can serve as
a Wide-Area damping controller designed to address the issue of sampled-data control.
Furthermore, D-FACTS has been considered for deployment in a CPPS for coordinated
protection against false data injection cyberattacks (FDI) in a moving target defense (MTD)
strategy [126–128]. The proposed defense strategy by Zhang et al. [126] works by actively
perturbing the branch parameters needed to make up the false data injection attacks and
thwart any further attack with optimally deployed D-FACTS device at each branch. The
strategy protects the state estimation from being independently modified. The protection
of state estimation against cyberattacks is very important, considering “its fundamental
function of the energy management system, which calculates the optimal estimate of sys-
tem’s state variables with explicit model and sensor measurement collected by SCADA
system” [126]. To further the effectiveness of MTD strategy, Liu and Wu [127] presented
an expanded MTD-based AC optimal power flow model. The reactance of D-FACTS lines
is considered as decision variables to find a trade-off between MTD effectiveness and the
system losses. Then, a new algorithm for optimal placement of the D-FACTS devices was
developed and utilized to maximize the composite matrix rank of the MTD strategy in
detecting false data injection attacks. On the other hand, Li et al. [128] investigated the
feasibility and limitation of using D-FACTS devices as a proactive false data detection
strategy. The investigation was conducted considering three types of FDI attacks; single-
bus FDI, uncoordinated multiple-bus FDI, and coordinated multiple-bus FDI attacks. It
was concluded that the strategy is capable of detecting all three types of FDI attacks on
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buses or super-buses with degrees large than 1, if the D-FACTS controllers are placed to
at appropriate branches but the strategy failed to detect FDI attacks targeted on buses or
super-buses with degrees equaling 1. Figure 11a,b depicts a conceptual and sectional view
of modern CCPS.
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enhance over all power system security. (b) Showing the different element of a Cyber-Physical Power
System [120,122].
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5. Research Trends and Future Prospect

Research output and trends in CPPS and integration of FACTS/D-FACTS were in-
vestigated with the VOSviewer software version 1.6.17 applied to data extracted from
Scopus. The collection of data from Scopus was due to it being one of the largest
databases with a focus on scientific research. It has searched indentation with some
other science database. The data extraction was performed by searching the keywords
“Flexible AC transmission system (FACTS)” OR “Distributed flexible AC transmission
system (D-FACTS)” OR “Cyber-physical power system” in Scopus search space. The
search was limited to only the engineering study area, a ten-year period of 2011–2021,
considering only published journal articles and conference proceedings. This resulted
in a total number of 1118 publications, but to further filter the available literature to
specifics and sizeable number for easy analysis, a criterion was set to consider publi-
cation with five occurrences of keywords; 62 meet the threshold. Table 3 shows the
details of the search output. The initial keywords generated further keywords co-
occurring at least five times in the selected publications. The number of co-occurrence
and times these words are linked are used to categorize the keywords into four clus-
ters of relativity which by extension can be used to determine focus areas in the pub-
lications. Figure 12a represent a network visualization map that shows the links of
the keywords, while Figure 12b represent a density visualization of the keywords for
further clarity.

Furthermore, Figure 13a–e depicts overlay visualization of the keywords in the focus
areas, which can be utilized to determine research trends within the period under consid-
eration. From 2014 to 2015, the focus of research in the area of CPPS and FACTS/D-FACTS
was on the network overlay of keywords with purple color in Figure 13a. The keywords
network overlay with green color were the dominant focus of research between 2015
and 2018. From 2017 to 2019, the research focus shifted gradually towards the network
overlay of keywords with yellow color. The purple color keywords are listed as cluster 2
in Table 3. Also, in Figure 13b, “power systems” is highlighted as a reference keyword to
show the strongest links that determine the focus area of cluster 2. The strongest links
of this cluster points to the integration of D-FACTS in power system for optimal power
flow, power control, and power system stability. Similarly, “D-FACTS” was highlighted
in Figure 13c, and the links show its application in the power system during the period
(2014–2019) and, hence, the direction of future application. Figure 13d,e highlighted
“electric power system control” and “cyber-physical power system”, respectively; the
outputs show a closely related network overlay of similar keywords the formed cluster 1,
3, and 4 of Table 3. These clusters are mainly green and yellow colors. The link between
Figure 13d,e points towards the transition of research focus from convection electric
power system control to electric power control in a cyber-physical power system. The
network overlays of Figure 13c–e show that “electric power system control” (Figure 13d)
is the common dominant factor between “D-FACTS” (Figure 13c) and “cyber-physical
power system” (Figure 13e). However, there is a very weak link between “D-FACTS” and
“cyber-physical power system”. This weak link shows a research gap to be explored in
the future.
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Table 3. Summary of search output of keywords in relation to CPPS and FACTS/D-FACTS.

Network Cluster Keyword Occurrences Total Link Strength

Cluster 1

Complex network 5 33
Computer crime 22 144

Cyber-physical power system 54 324
Cyber-physical system 66 438

Cyber security 9 49
Cyber attacks 17 123

Electric power system 6 33
Embedded systems 22 120

False data injection attack 6 23
Monte Carlo methods 5 24

Network security 25 150
Outages 20 134

Power system reliability 5 33
Reliability 10 58

Reliability analysis
Smart grid 12 58

Smart power grids 11 74

Cluster 2

D-FACTS 10 48
Distributed flexible AC transmission systems 7 41

Electric load flow 14 92
Electric power system control 21 155
Electric power transmission 14 92

Electric power transmission network 36 214
Flexible AC transmission systems 5 33

Flow control 5 36
Optimization 5 37
Power control 11 78

Power electronics 10 38
Power flows 6 34

Power system operation 5 23
Power systems 6 36

Renewable energy resources 6 37

Cluster 3

Cyber-physical power system 54 324
Damping 8 81

Discrete event simulation 6 52
Eigen analysis 21 236

Eigenvalue and Eigen functions 8 84
Electric power system measurement 12 118

Small signal stability 7 90
Spectral discretization 7 79

System stability 6 44
Time delay 13 125

Wide-area damping control 13 153
Wide-area measurement system 9 106

Cluster 4

Cascading failure 20 129
Cyber-physical power system 54 324

Dynamics 5 36
Hybrid systems 5 19
IEEE standards 5 33
Physical power 8 45

Real-time systems 5 24
Topology 7 48
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6. Conclusions

This study presents a review of optimal placement and operation of FACTS/D-FACTS
in a CPPS. The review covers a brief overview of the generational transition of FACTS
devices to their placement and operation in power systems. Furthermore, the concept of
CPPS was highlighted, and the relevance of its integration with D-FACTS technology was
brought to light. A bibliometric analysis was carried out using VOSviewer software and
data extracted from the Scopus database on research output considering FACTS/D-FACTS
and CPPS. The important findings of this review, as well as the recommendations for future
work, are summarized below:

1. It is predicted that going into the future, say 2050, a very large amount of energy
will be generated by RES, while there will be a drastic reduction in fossil fuel power
generation [129]. This implies that there will be more DGs penetration in power
systems, bringing generation closer to distribution centers; hence, D-FACTS will
be more required than convectional FACTS devices. This is also considering the
minimized advantage of D-FACTS devices over FACTS devices;

2. CPPS of the future will be built with automated systems to include sensors, smart
meters and communication systems to enable attributes, such as self-control, self-
optimizing, and self-healing to guarantee autonomous power systems. Therefore, the
future design of FACTS/D-FACTS devices must consider and appreciate interactions
with the automated systems of CPPS to enhance effective integration. To this end,
design modification of the operational configuration of FACTS/D-FACTS with sensors
for real-time synchronized control and interaction with other CPPS technologies is an
area that requires more research attention in the future;
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3. Cyberattack has been identified as the common most feared challenge of future CPPS
as it has the potential of causing a total system breakdown and a worldwide blackout.
Therefore, the new trend of research toward the use of D-FACTS in an MTD strategy
against FDI must be expanded to improve power system security;

4. In future, the advancement of optimal control capacity of FACT/D-FACT devices
can be explored using cloud computing technology of the CPPS to store adequate
data necessary to train the controllers with artificial intelligence required for dynamic
control and protection of the system;

5. Research and discussion about FACTS/D-FACTS have been extensive and stretch
over a long time, but the main focus remained on their optimal location and operation.
Extensive research on the actual cost of installing and operating FACTS/D-FACTS
devices is limited in the literature. This area requires more detailed research to
determine the exact economic implication of the use of FACTS/D-FACTS technologies.
This has the potential to enhance proper power system planning in the future;

6. Moreover, the real implementation or utilization of the FACTS/D-FACTS device is
still very limited in several regions around the world. Countries that have them
installed have only very few in their power grid. This low usage, especially in regions
like Africa, is yet to be investigated. Few studies point towards limited production of
these devices globally, but extensive research to ascertain the root cause leave room
for further research;

7. Since CPPS is consumer-centered, it will be interesting for demand-side manage-
ment to be considered along with optimal placement and operation of DGs and
D-FACTS devices in such a deregulated system. This will possibly enhance con-
sumers’ participation in microgrid planning and decision-making regarding power
system infrastructure, especially considering economic implications.
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Nomenclature

CP Custom power
CPPS Cyber-physical power system
DG Distributed generator
DSA Distribution system automation
D-SSSC Distributed Static Synchronous Series Compensator
D-STATCOM Distributed synchronous static compensators
D-FACTS Distributed Flexible ac transmission system
FACTS Flexible ac transmission system
GUPFC Generalized Unified Power Flow Controller
ICT Information and communication technology
IOT Internet of things
IOE Internet of energy
IoCPT Internet of cyber-physical things
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IPFC Interline Power Flow Controller
PMU Phasor Measurement Unit
PSS Power System Stabilizer
PST Phase Shifting Transformer
RES Renewable energy sources
SCADA Supervisory control and data acquisition
SSSC Static Synchronous Series Compensator
SVC Static Var Compensator
STATCOM Synchronous static compensators
TCSC Thyristor Controlled Series Compensator
TCR Thyristor Controlled Reactor
TSC Thyristor Switched Capacitor
TSR Thyristor Switched Reactor
VSC Voltage source converter
UPFC The Unified power flow controller
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