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Abstract: Each year, massive amount of construction waste is generated that needs proper attention
in terms of its disposal without deteriorating surrounding environment. A significant portion of
this waste comprises bricks. Besides, large number of new construction works are resulting in
the depletion of natural resources rapidly. Intuitively, a sustainable solution demands to consume
this construction waste in the best way possible. This study targeted brick waste as a potential
material to be used as a partial replacement of natural aggregates in structural concrete. It has
been known that the concrete constructed with recycled brick aggregates possesses substandard
mechanical properties. Traditionally, synthetic FRPs are known to strengthen recycled aggregate
concrete. However, recognizing high costs associated with them, this study proposed the use of
natural hemp fiber ropes to strengthen recycled aggregate concrete constructed with brick aggregates.
To assess the efficacy of hemp ropes in strengthening mechanical properties of the concrete with coarse
aggregates partially replaced with recycled brick aggregates (B-waste), an experimental framework
was conducted. Sixteen cylindrical specimens were tested in two groups depending upon the concrete
strength. Within each group, 2 specimens each were strengthened with 1, 2, and 3 layers of hemp
fiber ropes. Axial monotonic compressive loading was applied to each specimen. Results revealed
that hemp fiber ropes significantly improved ultimate compressive strength and the corresponding
strain. A substantial improvement in axial ductility was observed. For the sake of performance-based
non-linear modelling, accurate constitutive modelling at material level is necessary. For this purpose,
several existing analytical stress-strain models were tested in this study to predict ultimate confined
compressive strength and strain. It was found that several models predicted confined compressive
strengths with reasonable accuracy. However, very few models were able to predict confined peak
strain with good accuracy.

Keywords: hemp fiber rope; recycled aggregate concrete; cement-clay interlocking brick aggregates;
stress-strain models

1. Introduction

Concrete has been utilized in construction works for decades ascribing to its easy
preparation, availability, and durability. It has been reported that concrete is the second
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most used material on Earth after water. Roughly, up to three tonnes of concrete is used
annually for each person [1]. Old concrete structures often require rehabilitation works or
complete demolition to pave way for new constructions. This generates colossal concrete
waste each year that requires proper disposal without leaving significant carbon footprints.
For residential buildings and other low-rise structures, bricks are widely used and have
been an important constituent. In addition, brickwork is often found in the construction of
boundary walls of buildings (see Figure 1).
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It has been reported that approximately 15.5 million tonnes of construction waste
comprising concrete and bricks is produced annually in China [2]. The report of the
European Union in 2011 concluded that approximately 1 billion tons of construction
and demolition waste is produced in the European Union annually with bricks as a key
component [3]. Production of huge waste each year in combination with quick depletion of
natural resources have resulted in natural urge to reuse in construction works. A critical
query arises probing the impact of recycled brick aggregates on mechanical properties of
concrete. Following paragraphs highlight previous works on examining the properties of
recycled aggregate concrete (RAC) in comparison to natural aggregate concrete.

Research works on recycling of brick aggregates (B-waste) were initiated in 1990s [4–6].
Vrijders & Desmyter [7] suggested that the tendency of recycled aggregates to absorb more
water than natural aggregates play a crucial role in determining mechanical properties
of RAC. It was suggested that the mortar adhered to recycled aggregates increases their
porosity resulting in 5–10 times higher water absorption than natural aggregates. Novakova
& Mikulica [8] concluded that RAC exhibits five to fifteen times lower particle density as
compared to natural aggregate concrete attributed to the lower density of surface adhered
mortar in recycled aggregates. Debieb & Kenai [9] reported that the compressive strength
of RAC reduced by 30% of that of the natural aggregate concrete when 100% of natural
aggregates were replaced by recycled aggregates. Yang et al. [10] reported 11 and 20%
reduction in concrete compressive strength when 20 and 50% natural aggregates were
replaced by fired-clay brick aggregates. Medina et al. [11] found that compressive strength
reduced up to 39% when 40% of natural aggregates were replaced by recycled aggregates.
Cachim P [11] concluded that concrete properties were not affected by the replacement
ratio up to 15%. For 30% replacement ratio, concrete properties were reduced up to 20%.
González et al. [12] concluded that maximum reduction in compressive strength is 28%
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when 100% of natural aggregates were replaced by recycled brick aggregates. Tensile
strength of concrete was maintained up to the replacement ratio of 35%. A sharp decline in
tensile strength was observed up to 30% of its initial strength at 100% replacement ratio.
Authors suggested that lower resistance to fragmentation, lower density, and higher water
absorption that natural aggregates are the catalysts for these inferior properties of recycled
brick aggregate concrete. Jiang et al. [13] also concluded from monotonic axial compression
tests on recycled brick aggregate concrete that an upper limit of 30% on the replacement
ratio of natural aggregates (with recycled brick aggregates) must be imposed to sustain the
strength and stiffness suitable for structural applications. Other works have also reported
similar observations [14–16].

Literature presented in preceding paragraphs suggest that concrete produced from re-
cycled brick aggregates exhibits inferior properties than those of natural aggregate concrete.
However, the difference is minimal when the replacement ratio of natural aggregates by
recycled brick aggregates is below 30%. Acknowledging this, current study aims to improve
the substandard and inferior mechanical properties of recycled brick aggregate concrete
for replacement ratios higher than 30%. A prevalent solution to improve substandard
compressive strength of concrete fabricated with recycled brick aggregates can be practiced
by wrapping it using different synthetic and natural fiber reinforced polymer (FRP) sheets.
Although now-a-days, readily available synthetic FRPs are common in structural strength-
ening works [17–22] and improving structural properties of RAC [23–28], their expensive
cost is a major concern [29–31]. Further, these FRPs are synthesized using chemicals that
are capable of imparting skin issues such as irritant and allergic contact dermatitis for
concerned personnel [32–34]. Recently, a possible solution was proposed to replace these
synthetic fibers using natural fibers [35,36]. Salient features of natural FRPs include their
substantial low costs in comparison to synthetic FRPs and do not carry risk to skin diseases
as associated with synthetic FRPs [37–40]. There are several drawbacks of natural FRPs
such as higher moisture absorption, inferior fire resistance, lower mechanical proper-ties
and durability. Many researchers have been working to address these issues, with particular
attention paid to the surface treatment of fibers and improving the fiber/matrix interface.

In contrast to natural FRPs, Rousakis T.C. [41,42] proposed the use of ropes made
of natural fibers as means of external confinement. Low-cost, easy availability, simple
application, and environment friendly attributes of fiber ropes were emphasized. It was
found that dry vinylon and polypropylene fibers were effective in improving ultimate
strength and strain of concrete. Hussain et al. [43] investigated the effect of sisal, jute,
and hemp fibers on ultimate compressive strength and corresponding strain of concrete.
It was found that specimens confined with hemp fiber ropes exhibited highest gain in
ultimate compressive strength. Fragoudakis et al. [44] examined the efficacy of hemp ropes
to enhance bending strain and deflection of concrete beams and significant improvement
in these parameters was reported. Ghalieh et al. [45] wrapped concrete columns with
hemp ropes in three layers. Different slenderness ratios of columns were considered.
Confined columns were found to demonstrate increased axial strength and ductility than
their corresponding reference columns.

This study aims to improve the substandard mechanical properties of recycled aggre-
gate concrete comprising brick aggregates (RAC-BA) replacing natural aggregates in excess
of 30% replacement ratios. Low-cost, environmentally friendly, and easy-to-use hemp fiber
ropes are chosen for this purpose. Research parameters included strength of concrete and
the quantity of external hemp fibers (i.e., the number of hemp rope layers). Confinement
efficacy of hemp fiber ropes on RAC-BA was assessed in terms of the gain in axial strength
and ductility.

2. Experimental Program
2.1. Test Matrix

Sixteen concrete cylinders of standard size of 150 mm × 300 mm (diameter × height)
were cast in this study in two batches. Eight cylinders were cast in each batch. Concrete
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strength for the 1st and 2nd batches was 15 and 35 MPa, respectively. Depending upon the
concrete strength, cylinders were grouped in groups A and B, respectively. For each group,
two cylinders were tested in as-built condition i.e., serving as reference. Two cylinders
each were strengthened with 1, 2, and 3 layers of hemp fiber ropes. Therefore, each group
comprised 4 different cylinder configurations and two cylinders for each configuration type.
The construction and strengthening cost is very high for these specimens at laboratory levels,
therefore, in this study only 2 specimens were prepared and tested for each configuration.
Table 1 presents details of the test matrix adopted in this study. Nomenclature of test
specimens was chosen to represent their geometrical shape (“CIR” for circular), concrete
strength (i.e., LSC and HSC for low and high strength, respectively), external strengthening
configuration (i.e., CNT, 1HR, 2HR, and 3HR for the control, 1, 2, and 3 layers of hemp
ropes, respectively) and specimen number in each configuration type (i.e., 01 and 02 for the
two specimens tested in each configuration type).

Table 1. Details of test specimens.

Group Specimen Strength (MPa) Layers of Hemp RFRP

A

CIR-LSC-CNT-01 Low strength concrete -

CIR-LSC-CNT-02 Low strength concrete -

CIR-LSC-1HR-01 Low strength concrete 1

CIR-LSC-1HR-02 Low strength concrete 1

CIR-LSC-2HR-01 Low strength concrete 2

CIR-LSC-2HR-02 Low strength concrete 2

CIR-LSC-3HR-01 Low strength concrete 3

CIR-LSC-3HR-02 Low strength concrete 3

B

CIR-HSC-CNT-01 High strength concrete -

CIR-HSC-CNT-02 High strength concrete -

CIR-HSC-1HR-01 High strength concrete 1

CIR-HSC-1HR-02 High strength concrete 1

CIR-HSC-2HR-01 High strength concrete 2

CIR-HSC-2HR-02 High strength concrete 2

CIR-HSC-3HR-01 High strength concrete 3

CIR-HSC-3HR-02 High strength concrete 3

2.2. Material Properties

Two concrete batches were used to cast 8 cylinders each corresponding to target
strength of 15 and 35 MPa. Type-I Portland cement was used. Required amount of
water was estimated to yield slumps of 90 and 70 mm for low and high strength concrete,
respectively. Cement-clay interlocking bricks were used to replace natural coarse aggregates.
For each concrete batch, 50% of natural aggregates were replaced with recycled brick
aggregates. Figure 2a shows the cement-clay interlocking brick whereas Figure 2b presents
brick crushing machine to yield aggregates with maximum size of 25 mm. The mechanical
properties of bricks such as density, compressive strength and water absorption were found
as per ASTM standards [46,47]. Density, compressive strength, and water absorption of the
bricks were 145 (kg/m3), 6.26 (MPa), and 12.30%, respectively. Mix proportions of concrete
are presented in Table 2.
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Figure 2. (a) Cement-clay interlocking brick (b) brick crushing machine (c) crushed brick aggregates
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Table 2. Mix proportions of concrete.

Mix Ingredients (kg/m3) Low Strength Concrete (15 MPa) High Strength Concrete (35 MPa)

Cement 242 444

Fine aggregates 726 605

Natural coarse aggregates 605 504

Clay brick aggregates 605 504

A two-part epoxy was used to bond hemp ropes to specimen. Resin and hardener
were mixed in 2:1. Resulting epoxy can easily be applied to bond hemp ropes and concrete
surface using either a hand brush or roller. Physical properties of epoxy resin are given in
Table 3. Tensile properties of hemp fiber ropes were determined in accordance with ASTM
A931-18 [48] and ASTM E8/E8M-13 [49]. Sample ropes were tested under a displacement-
controlled loading of 1.5 mm/min. Peak tensile stress was calculated from the nominal
area of ropes. Nominal diameter of hemp ropes was 2.1 mm and its ultimate tensile stress
was approximated as 137.4 MPa corresponding to a strain of 3.5%.
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Table 3. Mechanical Properties of epoxy (as provided).

Property Value

Ultimate Elongation (%) 2.5

Flexural Strength (MPa) 75

Tensile Strength (MPa) 50

Curing Time (hours) 6–10

2.3. Strengthening Process

Hemp fiber ropes were applied to concrete cylinders after 28 days of curing. Hus-
sain et al. [43] found that inherent stress-strain response of hemp ropes constituted a flat
plateau up to a stress of 10 MPa. This followed a slight transition into a steep stress-strain
curve. Therefore, a pretension stress of 10 MPa was applied to the ropes during strengthen-
ing process. For this purpose, a special mechanical system was designed analogous to the
one used by Hussain et al. [43]. At the start, a super glue was used to fix one end of the rope
to concrete surface. Then the rope was carefully attached to the surface. Special care was
practiced avoiding any gap between consecutive ropes around the circumference. Figure 3a
shows the wrapping process of hemp rope. Once full height of the cylinder was wrapped
with the rope, end of the rope was fixed to the surface using super glue. At this point,
the two-part epoxy was applied as shown in Figure 3b. It was made sure that the ropes
were impregnated with sufficient epoxy and that it penetrated well to the concrete surface.
A break of at least 12 h was taken before the application of 2nd hemp rope layer. Similar
procedure was followed to apply subsequent hemp rope layers. It is to be mentioned that
hemp ropes were applied in the same direction as that of the underneath layers. A fully
wrapped and epoxy dried cylinder is shown in Figure 3c.
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2.4. Instrumentation & Loading Setup

Three Linear Variable Displacement Transducers (LVDTs) were applied around the
circumference of specimens to record their axial deformations. A Universal Testing Machine
(UTM) of 2MN capacity was used to apply monotonic compressive load on each specimen.
Applied loading was displacement-controlled at a rate of 4000 N/s. To prevent accidental
load transfer to the rope fiber shell at large axial deformations, two steel plates were
attached to each cylinder’s top and bottom side. Applied load intensity was monitored
using a calibrated load cell placed at the top of specimen. Figure 4 presents typical test
setup.
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3. Experimental Results
3.1. Ultimate Failure Modes

Ultimate failure modes observed for each specimen type are shown in Figure 5. Failure
of control cylinders accompanied crushing and splitting along the height of cylinders. More
crushing was observed in high-strength control cylinder CIR-HSC-CNT as compared to that
in low-strength cylinder CIR-LSC-CNT. Further, failure of high-strength control specimen
was more explosive as compared to its counterpart low-strength specimen. Failure of
all strengthened specimens occurred due to the tensile rupture of hemp ropes in hoop
direction. No debonding of hemp ropes was observed indicating that the strength of
epoxy was sufficient to bond hemp ropes and concrete surface throughout the load history
without experiencing failure. For specimens strengthened with more than single layers
of hemp ropes, snapping sounds were heard indicating progressive fracture of hemp
ropes in underlying layers. Similar observations have been reported elsewhere [50,51].
For specimens confined with 1 and 2 layers, tensile fracture of hemp ropes was mainly
concentrated within the middle zone. Whereas tensile fracture of hemp ropes in case of 3
layers was distributed over larger area and propagated along the full height of cylinders.
This observation has also been reported in previous research works [43,52].
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3.2. Axial Stress-Strain Response

Table 2 provides summary of experimental results in terms of ultimate axial strength,
corresponding strain, increase in ultimate strength, and corresponding strain for all spec-
imens. The results are reported in Figure 6 for each specimen along with the average
results. During the test, the data was collected for a specific load intervals and average
was calculated by adding up stress and axial strain data, then dividing the total by the
count of numbers. It is evident that control specimens in both groups experienced brittle
failure at their peak compressive loads recognized by sudden drop in their axial carrying
capacities. Whereas all strengthened specimens demonstrated a bilinear axial stress-strain
response. From Figure 6, it is also shown that ultimate strength and corresponding strain
increased as the number of hemp rope layers increased. However, the onset of second
branch of axial stress-strain of strengthened specimens occurred at similar axial strain
levels. Further, initial slope of all specimens could not be differentiated. From Table 4, for
group A specimens, increase in ultimate strength over that of control specimen was 83, 157,
and 209% for 1-, 2-, and 3-layer confinement of hemp ropes. Similarly, strain at ultimate
strength increased by 321, 477, and 539% for 1-, 2-, and 3-layer confinement. A similar
trend in the increase in ultimate strength and corresponding strain was observed for group
B specimens. It can be established that hemp ropes were able to impart substantial ductility
to the concrete irrespective of the number of their layers.

Table 4. Summary of experimental results.

Group Specimen Ultimate Stress
(MPa)

Increase in Ultimate
Stress (%) Ultimate Strain Increase in

Ultimate Strain (%)

A

CIR-LSC-CNT 13.02 - 0.0044 -

CIR-LSC-1HR 23.77 83 0.0187 321

CIR-LSC-2HR 33.39 157 0.0256 477

CIR-LSC-3HR 40.18 209 0.0283 539

B

CIR-HSC-CNT 24.34 - 0.0041 -

CIR-HSC-1HR 36.22 49 0.0132 219

CIR-HSC-2HR 43.58 79 0.0193 368

CIR-HSC-3HR 56.03 130 0.0229 454
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3.3. Effect of Hemp Rope Layers & Concrete Strength

Figure 7 presents increase in ultimate compressive strength and corresponding strain
of hemp rope confined specimens. It can be seen that the increase in ultimate strength and
corresponding strain in low-strength concrete specimens was higher as compared to the
increase in high-strength concrete specimens for same amount of hemp rope confinements.
For ultimate strength, low-strength concrete specimens experienced up to 79% higher
increase as compared to high-strength concrete specimens. Similarly, up to 109% higher
increase ultimate strain was observed for low-strength concrete specimens for similar
amount of hemp confinement. Nonetheless, a positive correlation is observed in the
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increase in ultimate strength and strain with the number of hemp rope layers. This trend
existed irrespective of the type of constituting concrete i.e., low or high strength.
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3.4. Analytical Investigations
3.4.1. Peak Axial Strength Models

Numerous equations in literature exist that relate to axial strength enhancement of
concrete due to the externally wrapped FRPs [53,54]. The confined peak strength is often
stated in the following form:

fch
f ′c

= 1 + k1
fl
f ′co

(1)

where fch represents peak compressive strength due to hemp rope confinement, k1 is a
constant that varies in different models and fl is the passive pressure applied by external
wraps. It can be approximated by establishing equilibrium between outward bursting
pressure and resulting confining stresses in external wraps in hoop direction as shown in
Figure 8 and given in Equation (2).

fl =
2 ftt
D (2)

where ft and D are tensile strength of external wraps and diameter of the specimen, re-
spectively. For hemp confined concrete, ultimate tensile strength of hemp rope is used
whereas thickness “t” corresponds to the nominal diameter of a single hemp rope. Confin-
ing pressure on cylinders confined with more than single hemp fiber ropes was estimated
by multiplying Equation (2) by the number of hemp fiber ropes. Several existing peak axial
strength models are given in Table 5.
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3.4.2. Peak Axial Strain Models

One of the initial studies on lateral confining on concrete was presented by Richart
et al. [55]. Ultimate axial strain can be related to externally applied pressure fl using
Equation (3).

εcc
εco

= 1 + k2
fl
f ′co

(3)

where εco is the axial peak strain of unconfined concrete. Richart et al. [55] proposed a value
of 5k1 for k2 in the case of steel confined concrete. It has been established that the same
form of Equation (2) can be extended to FRP confined concrete [53,56–58]. In this study,
existing ultimate strain models are assessed by assuming that hemp fiber ropes provide
confinement in a similar manner as other FRP confinement systems. Table 5 presents
several ultimate stress and strain models for externally confined cylinders.

Table 5. Existing stress-strain models.

ID Model Expression for Peak Stress f’
cc Expression for Peak Strain ε’

cc

1 Richart et al. [55] f ′cc
f ′co

= 1 + 4.10 fl
f ′co

ε′cc
εo

= 1 + 5
(

f ′cc
fo
− 1

)
2 Ghernouti and Rabehi [59] f ′cc

f ′co
= 1 + 2.038 fl

f ′co

ε′cc
εo

= 1 + 10.56
(

fl
fo

)
3 Benzaid et al. [60] f ′cc

f ′co
= 1 + 2.20 fl

f ′co

ε′cc
εo

= 2 + 7.6
(

fl
fo

)
4 Al-Salloum [61] f ′cc

f ′co
= 1 + 2.312 fl

f ′co

ε′cc
εo

= 1 + 0.024
(

fl
fo

)
5 Bisby et al. [62] f ′cc

f ′co
= 1 + 2.425 fl

f ′co
-

6 Wu et al. [63] f ′cc
f ′co

= 1 + 3.20 fl
f ′co

ε′cc
εo

= 1 + 9.5
(

fl
fo

)
7 Teng et al. [64] f ′cc

f ′co
= 1 + 3.50 fl

f ′co

ε′cc
εo

= 1 + 17.5
(

fl
fo

)1.2

8 Ahmad and Shah [65] f ′cc
f ′co

= 1 + 4.2556 fl
f ′co

-

9 Hussain et al. [66] f ′cc
f ′co

= 1 + 6.40 fl
f ′co

-

10 Karbhari and Gao [67] f ′cc
f ′co

= 1 + 2.1
(

fl
f ′co

)0.87 -

11 Samaan et al. [68] f ′cc
f ′co

= 1 + 6.0 f 0.70
l
f ′co

-

12 Miyauchi et al. [56] f ′cc
f ′co

= 1 + 3.50 fl
f ′co

ε′cc
εo

= 1 + 10.6
(

fl
fo

)0.373

13 Saafi et al. [69] f ′cc
f ′co

= 1 + 2.20
(

fl
f ′co

)0.84 -

14 Ilki and Kumbasar [70] f ′cc
f ′co

= 1 + 2.227 fl
f ′co

ε′cc
εo

= 1 + 15.15
(

fl
fo

)0.735

15 Spoelstra and Monti [71] f ′cc
f ′co

= 0.2 + 3
(

fl
f ′co

)0.50 ε′cc
εo

= 1 + 1.25
(

fl
fo

)0.5

16 Mirmiran [72] -

17 Pimanmas et al. [73] f ′cc
f ′co

= 1 + 3.0 fl
f ′co

ε′cc
εo

= 2 + 6.7
(

fl
fo

)
18 Yan [74] f ′cc

f ′co
= 1 + 1.86 fl

f ′co
-

19 Hussain et al. [43] f ′cc
f ′co

= 1 + 2.7 fl
f ′co

ε′cc
εo

= 2 + 10
(

fl
fo

)

Figure 9 presents the comparison between analytically predicted peak axial strengths
and corresponding strains. For clarity, the comparison is plotted for each specimen type
separately. Figure 9a presents the comparison of analytical and experimental peak ax-
ial strengths for group A specimens. It is noticed that several analytical models were
able to predict experimental axial strength with good accuracy. However, the models of
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Wu et al. [63], Teng et al. [64], Richart et al. [55], Ahmad and Shah [65], Hussain et al. [66]
significantly overestimated axial strengths. Same models also overestimated peak axial
strengths of group B specimens. Remaining models demonstrated close agreement with
experimental values and other statistical indicators were required to quantify their accuracy.

In general, most of the existing ultimate strain models overestimated experimental
ultimate axial strains for group A specimens (see Figure 9c). For three specimens in group
A, the model of Pimanmas et al. was able to provide close agreement with experimental
results. Ultimate axial strain for group B specimens was closely predicted by the models of
Ghernouti and Rabehi [59], Benzaid et al. [60], Pimanmas et al. [73], and Hussain et al. [43].
The model of Hussain et al. was proposed for hemp rope confinement on natural aggregate
concrete. It is interested to note that this model predicted experimental peak axial strains
for high strength concrete recycled aggregate concrete specimens only.

Statistical indicators of average absolute error (AAR%) and average ratio (AR) were
used to assess the performance of considered analytical models in this study. AAR pro-
vides an estimate of the average of absolute value of the difference between experimental
and analytical value. AR provides an average value that quantifies the extent of over-
/underestimation of the predicted value in comparison to the corresponding experimental
result. An AR value greater than 1 means overestimation whereas underestimation is
related to an AR value smaller than 1. AAR and AR are calculated using Equations (4) and
(5), respectively [75].

AAR =
∑N

i=1

∣∣∣ Theoretical−Experimental
Theoretical

∣∣∣
N

(4)

AR =
∑N

i=1
Theoretical

Experimental
N

(5)

where N is the total number of observations. Table 6 provides calculated AAR and AR
values for all analytical models. Last two rows of Table 6 summarize those models that
resulted in AAR and AR less than 10% and 0.90 ≤ AR ≤ 10, respectively. For ultimate
strength of group A specimens (i.e., low strength concrete), the models of Benzaid et al. [60],
Al-Salloum [61], Bisby et al. [62], Karbhari and Gao [67], Saafi et al. [69], Saafi et al. [69],
Spoelstra and Monti [71], and Hussain et al. [43] provided results within considered
thresholds. In addition to these models, the models of Wu et al. [63], Samaan et al. [68],
and Pimanmas et al. [73] also resulted in analytical values within thresholds for group B
specimens. Interestingly, none of the considered models resulted AAR value less than 10%
for peak strain of group A specimens. Whereas the model of Pimanmas et al. [73] was
found to be the only model resulting in AR value between 0.9 and 1.1 for the same group.
For group B specimens, the models of Ghernouti and Rabehi [59], Benzaid et al. [60], and
Pimanmas et al. [73] provided analytical peak strains with reasonable accuracy.

It can be established that the model of Benzaid et al. [60] and Pimanmas et al. [73] were
standout among other models and consistently predicted experimental peak axial strengths
and strains with reasonable accuracy. Further, it can also be noted that the performance of
existing models was better in predicting experimental peak strengths than their tendency
to predict experimental peak axial strains. Another observation can be made regarding
the strength of inherent concrete. For low-strength concrete specimens, performance of
existing models was found inferior that that for high-strength concrete.
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Table 6. Summary of statistical indicators for each model.

Model

Ultimate Compressive Stress f’
cc Ultimate Compressive Strain ε’

cc

Group #1 Group #2 Group #1 Group #2

AAR (%) AR AAR (%) AR AAR (%) AR AAR (%) AR

Richart et al. [55] 34.93 0.90 22.30 0.75 88.66 2.83 18.54 1.88

Ghernouti and Rabehi [59] 11.78 0.88 11.30 0.89 29.53 1.27 11.81 0.95

Benzaid et al. [60] 8.11 0.92 8.66 0.91 15.84 1.16 3.37 0.98

Al-Salloum [61] 5.58 0.94 6.83 0.93 81.00 0.19 76.27 0.24

Bisby et al. [62] 4.39 0.97 6.83 0.95 - - - -

Wu et al. [63] 14.55 1.14 7.63 1.07 23.53 1.17 12.84 0.88

Teng et al. [64] 21.34 1.21 12.52 1.12 82.35 1.83 24.66 1.18

Ahmad and Shah [65] 38.45 1.38 24.83 1.24 - - - -

Hussain et al. [66] 87.03 1.87 59.77 1.59 - - - -

Karbhari and Gao [67] 6.97 0.93 4.81 0.95 - - - -

Samaan et al. [68] 16.23 1.16 8.60 1.08 - - - -

Miyauchi et al. [56] 21.34 1.21 12.52 1.12 73.95 1.74 76.77 1.77

Saafi et al. [69] 3.66 0.96 3.15 0.98 - - - -

Ilki and Kumbasar [70] 7.50 0.92 8.22 0.92 98.09 1.98 63.68 1.64

Spoelstra and Monti [71] 1.51 0.99 4.45 0.99 64.31 0.36 61.03 0.39

Mirmiran [72] 15.73 0.84 14.35 0.86 - - - -

Pimanmas et al. [73] 10.01 1.10 4.99 1.04 10.74 1.06 7.42 0.93

Yan [74] 15.81 0.84 14.35 0.86 - - - -
Hussain et al. [43] 4.23 1.03 2.86 0.99 40.48 1.40 14.95 1.15

AAR (%) ≤ 10 [41,58–60,65,67–69] [41,58–61,65–69,71] N/A [58,71]

0.90 ≤ AR ≤ 10 [41,58–60,65,67–69] [41,58–61,65–69,71] [71] [57,58,71]

4. Discussion

Natural fibers in the form of hemp ropes used in this study have shown their potential
to enhance axial compressive strength of the concrete made with recycled brick coarse
aggregate. Though the application of hemp ropes in this study was limited to cylindrical
specimens, their application by no means is limited to small scale specimens. An existing
study [36] has already extended the use of natural fibers to full scale shear deficient RC
columns. It was found that the columns strengthened with natural fibers demonstrated
similar improvement in shear strength as that of the columns strengthened with CFRP
wraps.

5. Conclusions

Each year, massive amount of construction waste is generated that needs proper atten-
tion in terms of its disposal without deteriorating surrounding environment. A significant
portion of this waste comprises bricks. Besides, large number of new constructions works
resulting in the depletion of natural resources rapidly. Intuitively, a sustainable solution
demands to reuse the construction waste in the best way possible. This study targeted
brick waste as a potential material to be used as a partial replacement of natural aggregates
in structural concrete. It has been known that concrete constructed with recycled brick
aggregates possess substandard mechanical properties. Traditionally, synthetic FRPs are
known to strengthen recycled aggregate concrete. However, recognizing high costs asso-
ciated with them, this study proposed the use of natural hemp fiber ropes to strengthen
RAC constructed with brick aggregates. To assess the efficacy of hemp ropes in strengthen-



Sustainability 2022, 14, 7673 15 of 18

ing mechanical properties of the concrete with coarse aggregates partially replaced with
recycled brick aggregates, an experimental framework was conducted. Sixteen cylindrical
specimens were tested in two groups depending upon the strength of concrete. Within
each group, 2 specimens each were strengthened with 1, 2, and 3 layers of hemp fiber
ropes. Axial monotonic compressive loading was applied to each specimen. Resulting
axial stress-strain curves were compared with those of the reference specimens. Following
important conclusions can be drawn.

1. Reference specimens exhibited typical concrete failure under compression. Negligible
axial ductility was observed in stress-strain response.

2. For specimens strengthened with hemp fiber rope specimens, a bilinear axial stress-
strain response was observed. This bilinear hardening behavior persisted irrespective
of the number of external hemp rope layers resulting in significant improvement of
axial ductility over that of the control specimens. By increasing the number of hemp
rope layers, both peak axial strength and corresponding strain increased. Further,
irrespective of the concrete strength, maximum peak compressive strength and strain
were noticed for the case of 3-layer hemp rope confinement. Failure of hemp rope
strengthened specimens was characterized by tensile rupture of hemp ropes in hoop
direction. However, this was not before imparting significant ductility to the bare
concrete.

3. Concrete strengths of 15 and 35 MPa were considered in this study. The performance
of hemp ropes in improving peak strength and corresponding strain was found
superior in low-strength concrete specimens for the same configurations of hemp
ropes.

4. For the sake of performance-based non-linear modelling, accurate modelling at mate-
rial level is necessary. For this purpose, several existing analytical stress-strain models
were tested in this study to predict ultimate confined compressive strength and strain.
It was found that a number of models predicted confined compressive strengths with
reasonable accuracy. However, very few models were able to predict confined peak
strain with good accuracy. It was established that the model of Benzaid et al. [60] and
Pimanmas et al. [73] were standout among other models and consistently predicted
experimental peak axial strengths and strains with reasonable accuracy.

5. Future studies are required to further enhance the data base and to develop more
accurate strength models by considering more approximate number of specimens and
number of strengthening layers.
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