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Abstract: The agro-food industry, while critical for establishing food security, is the most environ-
mentally impactful industry since it causes biodiversity loss and the conversion of natural land to
farms and pastures, requires pesticide and fertilizer use as well as high water consumption, and
leads to greenhouse gas emissions as well as soil and environmental degradation. This impact can be
mitigated through proper policy design. Environmental policy in agriculture, however, is inherently
complex, due to the conflict between actors in the system, namely policy makers and farmers. This
article introduces a bilevel linear programming (BLP) approach for the development of subsidy
policies with the upper-level objective being the minimization of the environmental impact of the
agricultural sector. Both levels of the model are formulated as linear programs and by considering
the Water-Energy-Food-Climate Nexus, a general-purpose model is introduced. The methodology of
the model formulation is spelled out. Finally, different approaches for fine tuning the BLP model are
discussed in order to adjust it to each case study’s needs, and the model is applied to the case study
of the region of Thessaly, Greece.

Keywords: water-energy-food nexus; bilevel linear programming; agricultural sector; subsidy policy;
environmental impact

1. Introduction

One of biggest global challenges is balancing agricultural production with environ-
mental and ecological preservation. The food industry has far-reaching effects on all
environmental and sustainability sectors, including water availability and quality, energy
use and production, biodiversity, greenhouse gas emissions and global warming. These
interlinkages have been a recent research focal point called the Water-Energy-Food-Climate
Nexus [1], while the worldwide goals and key performance indicators are provided by the
United Nation’s 17 Sustainable Development Goals (SDGs) [2,3]. Visualizing, modeling,
and optimizing the interactions between actors in the agricultural system, including farm-
ers and policy-makers, can be done with a plethora of tools, such as heuristic algorithms [4],
System Dynamic Models (SDMs) [5], empirical statistical models, etc. However, the appli-
cation of multi-level optimization with operations research principles in the Nexus field
of research has not been well explored in recent years. Multi-level linear programming
models, while powerful tools to model interactive systems, are rarely used today due to
their inherent complexity in their implementation and solution. The purpose of this article
is to introduce a baseline bilevel linear programming (BLP) model that seeks to minimize
the environmental impact of the agricultural sector through a subsidy policy.

An early attempt to apply BLP techniques to modeling government structures and
decision making is discussed in [6], where the relationship between central government
and government ministries represents the two levels of an optimization problem. Several
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decades ago, Candler and Norton [7] applied BLP between the government and the private
sector for an economic policy application where the government uses taxes and subsidies
to achieve pre-determined goals, and the private sector reacts to those measures by forming
an optimal plan of action. As a result, the authors showed that when individuals’ objectives
are recognized as part of the problem, the profit for the community could be doubled.
In a recent study, Bostian et al. [8] use BL optimization in a different way, to include not
only two levels of actors or institutions, but also the spatial aspects—agricultural nonpoint
source pollution and spatial heterogeneity of both production and pollution—accounting
for the interlinked nature of farm-level management decisions and their relation to agri-
environmental policy incentives.

Anandalingam and Apprey [9] examined a method of conflict resolution by proposing
adding a “referee” in so-called “Stackelberg games” [10]. They modelled such problems
as linear and multilevel and suggested various solver algorithms. As an example, they
presented a water dispute between India and Bangladesh, showing that both countries
would benefit from a third party overseeing the deal, such as the United Nations.

The effect that incentives might have on the decisions that individual farmers take
in terms of crop selection and farmland allocation, while considering price and yield risk
has also been studied with different methodologies. Basnet et al. [11] employ a Bayesian
econometrics risk-programming approach and a micro-economics analysis for the impact
of decoupled payments on the agricultural sector in the European Union. Compared to
BLP, such analysis is based on a statistical approach and includes risk assessment, while
the former identifies and optimal solution while satisfying a series of constraints. In recent
research, Barnhart et al. [12,13] applied a bilevel optimization model in two different case
studies, one in Iowa, USA [12], and one in the Tully catchment in Australia [13], using
policy maker and farmer interaction to both optimize water quality and minimize fertil-
izer use. Finally, Whittaker et al. [14] apply a hybrid of bilevel optimization and genetic
algorithms to create a multi-objective optimization model with spatial components for
Oregon, USA. This article aims to develop a mathematical modeling analysis of the interac-
tion between government subsidy policy and individual farmer crop allocation and the
associated environmental impact of agricultural practices. While individual vectors of the
agricultural sector have been modeled and optimized through bilevel models and policies,
this article introduces a baseline bilevel model with an interchangeable “environmental
impact” parameter, designed to be easily adaptable to each case study’s needs of optimiza-
tion and allow interchangeability of ecological optimization parameters, including energy
use, water quality and consumption, fertilizer use, pesticide use, greenhouse gas emissions
and soil quality. To achieve this, the article provides a step-by-step approach to creating
a BLP model for the agricultural sector, while it recommends solution methods, possible
implementations, as well as improvements that can make it adaptable for a broad number
of applications. The approach consists of two levels of optimization models: a lower-level
model (LLM) aiming to capture the behavior of the individual farmer and an upper-level
model (ULM) that models the policy-maker’s strategy in issuing subsidies. The main goal
of the model (at the upper level) is to minimize the environmental impact of the agricultural
sector while anticipating the crop diversity employed by the individual farmers, as they
are adjusting it to the issued subsidies to maximize their profits. The model is applied for
the case study of the region of Thessaly, Greece, but it is setup in such a generic way that it
can be modified by the user to minimize whichever environmental impact the case study
requires, such as water depletion, greenhouse gas emissions, pesticide use and associated
pollution, and others.

In this article, we present BLP fundamentals, the two levels of the model and the
methodology used to transform the BLP model into a single level model in Section 2. The
details of the case study are also described in Section 2.4. In Section 3, we present the
unified baseline single level optimization model, as well as supplementary constraints used
for the case study. Finally, discussion of the results and the relevance of this methodology
in a WEF Nexus analysis are presented in Section 4. The limitations and applicability of this
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methodology are also discussed. The article ends with conclusions and recommendations
for future study.

2. Materials and Methods

Bilevel programming is similar to standard mathematical optimization [15], except
that the constraint region is modified by including a defined linear objective function; it is
a nested optimization model involving two problems, an upper one and a lower one [16].
Such models can be depicted as in Equations (1)–(6):

min f 1(x, y∗) (1)

s. t g1(x, y∗) ≤ 0 (2)

h1(x, y∗) = 0 (3)

y∗ ∈ argmin f 2 (x, y) (4)

s. t g2(x, y) ≤ 0 (5)

h2(x, y) = 0 (6)

where the decision variables are split into two groups: the ULM variables x and the LLM
variables y. There are also two groups of constraints: Equations (2) and (3) are constraints
of the ULM, and Equations (5) and (6) constraints of the LLM. The bilevel model is also
hierarchical; the ULM contains the optimal solutions of the LLM, without necessarily the
opposite being true. In the LLM, the decision variables of the ULM are parameters, not
variables. If f 1, f 2, g1, g2, h1, h2 are linear functions, then the model in Equations (1)–(6) is a
BLP model, which makes its solution considerably easier [17].

In the model constructed in this article, each level of optimization is modelled as a
linear programming model, with the LLM for the individual farmer maximizing his profit
and the ULM for the governmental body minimizing environmental impact. In order to
simplify the resulting BLP model, this article uses a subsidy policy that fixes the subsidy
amount per crop to a predefined level, while leaving the maximum subsidized farmland as
a decision variable for the ULM.

2.1. The Lower Level Model

The LLM is constrained by the farmer’s available farmland and the subsidies given
by the ULM, while its objective function seeks to maximize the individual farmer’s profit.
Therefore, the LLM is modelled as such:

max ∑
i∈S

(pi − ci)oixk
i + ∑

i∈S
(si + (pi − ci)oi)Xk

i (7)

s.t ∑
i∈S

(
xk

i + Xk
i

)
≤ Lk (8)

Xk
i ≤ Yi , ∀i ∈ S (9)

where:

Sets

S: Set of available crops i
K: Set of all farmers k

Parameters

pi: Profit of crop i per unit of product
ci: Cost of crop i per unit of product
oi: Yiel d of units of product of crop i per unit of farmland
si: Subsidy per unit of farmland with crop i
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Lk: Available units of farmland of farmer k
Yi: Maximum subsidized units of farmland per crop i

Variables

xk
i : Units of farmland of non-subsidized crop i of farmer k

Xk
i : Units of farmland of subsidized crop i of farmer k.

Note that Yi is considered a parameter for the LLM but is derived by the ULM, where it
is a decision variable, whereas xi

k and Xi
k are decision variables for the LLM but parameters

for the ULM.

2.2. The Upper Level Model

The ULM captures the decision-making process of the governmental body that issues
the subsidy policy and seeks to minimize the environmental impact of the LLM in its
objective function. As shown in Figure 1, the ULM seeks to optimize the agricultural
environmental impact of the LLM. However, since the government cannot directly control
the actions of the farmers, a multi objective optimization problem is required. The ULM is
constrained by the total budget available for subsidies. Additional constraints can be added
conditionally depending on each case study’s needs. Therefore, the ULM is modelled as
such:

min ∑
i∈S,k∈K

ei

(
xk

i + Xk
i

)
(10)

s.t ∑
i∈S,k∈K

siXk
i ≤ B (11)

where:

Sets

S : Set of available crops i
K: Set of all farmers k

Parameters

xk
i : Units of farmland of non-subsidized crop i of farmer k

Xk
i : Units of farmland of subsidized crop i of farmer k

ei: Environmental impact of crop i per unit of farmland
si: Subsidy per unit of farmland with crop i
B: Total available budget for subsidies

Variables

Yi: Maximum subsidized units of farmland per crop i.
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The parameter ei denotes the environmental impact of crops and can be replaced with
the metric to be minimized in each case, such as water usage, energy usage, greenhouse
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gas emissions, or pesticide use. Of course, due to the Water-Energy-Food-Climate Nexus,
minimizing one resource’s usage in the agricultural sector might positively influence all
other interlinked resources. For example, minimizing the water usage for irrigation would
also reduce the overall energy usage, since a majority of the energy used in agriculture
is used for pumping out groundwater. Of course, more conditional constraints could be
added to the ULM depending on each case’s needs, as discussed later.

2.3. Formulation of Single Level Model

As shown in Figure 1, the ULM, the government, does not directly impact the environ-
mental effects of the LLM. In order to optimize for the ULM directly while also predicting
the response of the LLM, the multi-objective function problem is combined into a single-
level optimization model. The two levels of the model are combined into an equivalent
single level by employing the complementary slackness conditions (or Kuhn-Tucker condi-
tions) of the LLM [18]. The complementary slackness conditions are added as constraints,
denoting that the product of the primal decision variables with the corresponding dual
constraints equal zero, while the product of the decision variables of the dual with the cor-
responding primal constraints equal to zero. According to the Kuhn-Tucker conditions, if a
mathematical model’s primal constraints, dual constraints, and complementary slackness
conditions are all fulfilled, then the solution is the optimal solution for the model. This way
it is possible to optimize the LLM without including its objective function, by adding the
LLM’s primal constraints, dual constraints, and complementary slackness conditions into
the ULM, basically formulating the BLP model into a unified model. In Equations (12)–(17),
the dual constraints and the complementary slackness conditions of the LLM are presented.

uk ≥ (pi − ci)oi, ∀i ∈ S, ∀k ∈ K (12)

vk
i + uk ≥ si + (pi − ci)oi, ∀i ∈ S, ∀k ∈ K (13)

(∑
i∈S

(
xk

i + Xk
i

)
− Lk) ∗ uk = 0, ∀k ∈ K (14)

(Xk
i −Yi) ∗ vk

i = 0, ∀i ∈ S, ∀k ∈ K (15)(
uk − (pi − ci)oi

)
∗ xk

i = 0, ∀i ∈ S, ∀k ∈ K (16)(
vk

i + uk − si − (pi − ci)oi

)
∗ Xk

i = 0, ∀i ∈ S, ∀k ∈ K. (17)

where:

Sets

S: Set of available crops i
K: Set of all farmers k

Parameters

pi: Profit of crop i per unit of product
ci: Cost of crop i per unit of product
oi: Yield of units of product of crop i per unit of farmland
si: Subsidy per unit of farmland with crop i
Yi: Maximum subsidized units of farmland per crop i
Lk: Available units of farmland of farmer k

Variables

xk
i : Units of farmland of non-subsidized crop i of farmer k

Xk
i : Units of farmland of subsidized crop i of farmer k

uk: First dual variable of LLM
vk

i : Second dual variable of LLM.
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Finally, adding Equations (12)–(17) as constraints to the ULM (Equations (10) and (11))
formulates the unified bilevel model between governmental subsidies and the agricultural
system.

2.4. Case Study

The model developed and presented in this article was also applied to the case study
of Thessaly, Greece, optimizing the regional agricultural system through subsidy policy in
order to minimize energy expenditure of the overall system. According to a 2018 study [19],
intense agricultural activity in the area has depleted the aquifer level of the region, which is
predicted to only worsen with further climate change expected. Due to the Water-Energy-
Food-Climate Nexus [20], reducing the overall energy expenditure, which is in large part
attributed to water pumping for irrigation, will reduce both the water expenditure and
greenhouse-gas emissions [4]. Data for this case study were extracted from the Hellenic
Statistical Authority as well as publications [5,21]. All data refers to 2010. All data used is
presented in Table 1, where crops annotated with (I) are irrigated and crops annotated with
(NI) are not irrigated.

Table 1. 2010 Data for Crops of Thessaly, Greece.

Crops Total
Farmland (m2)

Yearly
Production

(kg)

Total Product
Value (€)

Crop Yield per
Farmland
(kg/m2)

Value per Kilo
of Crop (€/kg)

Crop Value per
Farmland (€/m2)

Water Use
(m3/m2)

Energy Use
(kJ/m2)

Rice 1,823,146 1,511,072 453,321.55 0.829 0.3 0.25 1.134 2866.7

Corn 224,804,489 264,718,258 47,649,286 1.178 0.18 0.212 0.547 1851

Other Cereals (I) 42,558,786 335,204,399 2,007,327 0.635 0.2 0.127 0.5 1769.6

Vegetables (I) 70,909,286 248,468,992 268,163,519 3.227 0.8 2.58 0.658 2042.9

Fruit (I) 112,216,852 717,649 223,622,093 2.214 0.9 1.99 0.7 2115.82

Citrus (I) 755,589 25,201,356 215,294 1.45 0.3 0.435 0.755 2211.84

Olives (I) 129,807,752 22,334,289 58,467,144 0.194 2.32 0.45 0.409 1611.81

Potatoes 10,940,576 2,816,550 7,817,001 2.04 0.35 0.71 0.4 1596.43

Lentils 24,299,555 49,097,293 4,506,479 0.116 1.6 0.18 0.31 1440.06

Sugar beets 7,115,935 247,865,051 1,472,918 6.9 0.03 0.2 0.551 1857.56

Cotton (I) 915,527,563 3,755,551 148,719,030 0.27 0.6 0.16 0.613 1965.63

Tobacco 10,628,109 425,891,847 13,144,430 0.353 3.5 1.24 0 903

Wheat 1,358,529,260 67,321,529 51,107,021 0.313 0.12 0.03 0 903

Other Cereals
(NI) 88,896,717 10,036,637 13,464,305 0.312 0.2 0.06 0 903

Vegetables (NI) 215,531,784.3 2,874,543 2,299,634 1.13 0.8 0.9 0 903

Fruit (NI) 2,552,328.26 148,621,518 133,759,366 0.67 0.9 0.6 0 903

Citrus (NI) 278,591.23 264,602 7,938,073,442 0.95 0.3 0.28 0 903

Olives (NI) 218,642,706.2 42,448,100 98,479,594 0.194 2.32 0.45 0 903

Nuts 39,950,885.66 13,588,696 23,100,784 0.34 1.7 0.58 0.51 1786.32

Cotton (NI) 1,605,045.55 327,213 196,328 0.2 0.6 0.12 0 903

3. Results

In Equations (19)–(28) the unified model is formulated and presented.

min ∑
i∈S,k∈K

ei

(
xk

i + Xk
i

)
(18)

s.t ∑
i∈S,k∈K

siXk
i ≤ B (19)

∑
i∈S

(
xk

i + Xk
i

)
≤ Lk, ∀k ∈ K (20)

Xk
i ≤ Yi , ∀i ∈ S, ∀k ∈ K (21)
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uk ≥ (pi − ci)oi, ∀i ∈ S, ∀k ∈ K (22)

vk
i + uk ≥ si + (pi − ci)oi, , ∀i ∈ S, ∀k ∈ K (23)(
∑
ι∈S

(
xk

i + Xk
i

)
− Lk

)
∗ uk = 0 , ∀k ∈ K (24)

(Xk
i −Yi) ∗ vk

i = 0, ∀i ∈ S, ∀k ∈ K (25)(
uk − (pi − ci)oi

)
∗ xk

i = 0, ∀i ∈ S, ∀k ∈ K (26)(
vk

i + uk − si − (pi − ci)oi

)
∗ Xk

i = 0, ∀i ∈ S, ∀k ∈ K. (27)

where:

Sets

S: Set of available crops i
K: Set of all farmers k

Parameters

pi: Profit of crop i per unit of product
ci: Cost of crop i per unit of product
oi: Yield of units of product of crop i per unit of farmland
si: Subsidy per unit of farmland with crop i
Lk: Available units of farmland of farmer k
B: Total available budget for subsidies

Variables

xk
i : Units of farmland of non-subsidized crop i of farmer k

Xk
i : Units of farmland of subsidized crop i of farmer k

uk: First dual variable of LLM
vk

i : Second dual variable of LLM
Yi: Maximum subsidized units of farmland per crop i.
As shown in Equations (18)–(27), the subsidy value si is treated as a parameter and

not a variable. To achieve this, the subsidy value is set as the break-even point where
the subsidized crop is more profitable than the most profitable non-subsidized crop. This
relationship between subsidy value si and most profitable non-subsidized crop is shown in
Equations (28) and (29).

(pi − ci)oi + si = A + m , ∀i ∈ S− {I} (28)

(pI − cI)oI = max [(pi − ci)oi], ∀i ∈ S = A (29)

where:
I: Most profitable non-subsidized crop in set S.
m: A small amount
As shown in Equations (29) and (30), with this subsidy policy utilizing a subsidized

crop as a farmer will yield a profit of m over the most profitable non-subsidized crop,
ensuring it is always more profitable to take advantage of available subsidies.

4. Discussion

In order to apply the model to the case study, certain modifications had to be made
to the baseline model presented in order to accommodate available data. First off, an
additional constraint was added, signifying a minimum production of each crop, so as to
maintain a baseline crop production in the region. The constraint appears in Equation (30):

∑
k∈K

oi

(
xk

i + Xk
i

)
≥ Pmini, ∀i ∈ S. (30)
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where Pmini is the minimum production of crop i.
Additionally, since there was insufficient data for each individual farmer, farmers

were separated into 5 categories, according to available farmland, and each category was
treated as an individual farmer. For this modification, Equations (18)–(20) and (28) were
multiplied by parameter ak, which denotes the number of individual farmers that belong
in each category k. Finally, parameter ei of Equation (18) is the energy expenditure of crop i.

Our analysis shows that government subsidy policies, when scientifically and systemi-
cally designed, considering all actors and elements of the system, can indeed determine
optimal agricultural production and can successfully direct the individual farmer to crop
selection and farmland allocation that is more sustainable, taking into account local re-
source availability. Other than systemic and inclusive subsidies, subsidies that are targeted
can be used to direct farmers to specific behaviors and crop choices that will maximize
their profit on the one hand, while also minimizing their associated environmental impact.
At the same time, as shown specifically in Equation (30), the model allows the user to add
constraints that adapt the model to a specific case study’s need; for Thessaly, the constraint
that was introduced could support food security and work towards satisfying SDG #2
by maintaining a baseline national production, while also satisfying the aforementioned
criteria. It should be noted that, in this article, a proof-of-concept is presented, and in order
to achieve reliable real-world results, both a stochastic analysis of the parameters and an
extensive historical agricultural dataset of the region would be required.

The model was constructed in the software GAMS IDE (General Algebraic Modeling
System Integrated Development Environment) [22] and was solved using the Branch and
Bound method [23] for nonlinear Equations (22)–(25). The budget used was 500,000,000 €.
Solving the model showed an overall reduction in the energy expenditure of 339 terajoule or
94.17 GWh yearly. Examining the marginal values of Equation (19) showed a reduction of
energy expenditure by 677.59 kJ per additional € spent in subsidies, while the most energy
inefficient crop was found to be lentils. This application demonstrates the flexibility of the
model, since it can be easily modified to adapt to the requirements and data availability of
each case study, while also being able to optimize for any required environmental metric,
since parameter ei can be substituted for any metric required without affecting the model’s
useability.

5. Conclusions

In this article, we develop and present a baseline BLP model to describe and minimize
the environmental impact of the agricultural sector and its interlinkage with government
subsidy policy. We specifically explored the effects of policies and subsidies implemented
at the upper-government level on the lower individual farmer level and the mutual inter-
actions. This way we assess the issue of scale in subsidy policies; essentially, we quantify
how government-level decisions, such as subsidies, affect the farmer, and how farmer-level
decisions, such as crop selection, might affect policy implementation with the goal of
minimizing the environmental impact of the overall system. We provide a unified baseline
BLP model depicting the two levels and their interaction as well as an application of the
model on the regional-scale case study of Thessaly, Greece. The result was a minimization
of the energy consumption of the agricultural system, a large part of which was associated
with water pumping for irrigation via a Water-Energy-Food-Climate Nexus analysis. The
advantage of this specific model is that it does not rely on statistical analysis such as linear
regression or on heuristic algorithms but presents a stricter optimization approach to an
important issue through a vector that is not well explored. To expand this work, an eco-
nomic analysis can be implemented to also model the changes in crop prices with different
crop productions, further modifying the objective functions and constraints and produce
more accurate results. A multi-objective optimization approach can also be considered in
order to minimize many different environmental-impact parameters simultaneously while
also considering their Nexus interlinkages. Finally, the temporal structure of the model
can be altered to be monthly, in order to enable the “flattening” of environmental-impact
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parameters throughout the year; this would, for example, enable us to consider each crop’s
water usage “spikes” in specific months and produce a more uniform consumption and
impact assessment, where it is relevant.
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