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Abstract: In recent years, there has been a trend toward automation and data exchange in manufac-
turing processes through industrial cognitive computing, the Internet of Things (IoT), and artificial
intelligence. However, the human–machine interface plays a role in establishing a smart manufac-
turing system in any industry. It is necessary to develop a comprehensive model to identify the
risk factors that contribute to the loss of human performance and productivity and evaluate the
workplace for its compliance and agility toward safe human–machine systems. In this study, a
model is proposed that can be used as a measurement tool to design ergonomic workplaces in the
automotive industry. Several criteria have been classified under four enablers: physiological factors,
psychological factors, environmental factors, and safety factors. These were identified through a liter-
ature review. The proposed model integrates the applications of structural equation modeling (SEM),
interpretive structural modeling (ISM), and the multigrade fuzzy approach. ISM was employed to
demonstrate the applicability of the model to depict various ergonomic enablers considered in the
ergonomic measurement. SEM was used to validate the ergonomic measurement model statistically.
Physiological factors were found to be highly correlated with ergonomic practices. Physiological and
psychological factors were also highly correlated. The use of the multigrade fuzzy approach was
demonstrated to determine the human factor index for an automotive component manufacturing
industry. The proposed model can enable management to evaluate the various risk factors that
hamper the ergonomic level of a company and thereby allow the company to harness the benefits of
ergonomics to enhance safety and productivity.

Keywords: human factor index measurement; multigrade fuzzy approach; interpretive structural
modeling (ISM); structural equation modeling (SEM); automotive industry

1. Introduction

A manufacturing organization is a convoluted human–machine–environment organi-
zation system [1] Although the primary objective of such systems is to provide continuous
improvements in quality and productivity, thereby increasing profits, meeting this objective
largely depends on the wellness of employees and their willingness to actively engage
in production activity [2]. Worker fatigue and work-related musculoskeletal Disorders
(WMSDs) can lead to losses in overall productivity and efficiency [3]. WMSDs also ac-
counted for 4.1 million early deaths in 2015, an increase of 46% since 2000 [4]. WMSDs
have contributed to almost 400,000 injuries, costing industries over USD 20 billion per year.
In 2019, 9440 cases of work-related musculoskeletal disorders (WMSDs) were reported in
Korea, representing an increase of 2725 cases (40.6%) from the 6715 cases reported in the
previous year. The cases accounted for approximately two thirds (67.3%) of all occupational
diseases in that year [5]. The study of ergonomics plays a pivotal role in the design and
development of conducive working environments that optimize the wellbeing of operators,
thus increasing productivity safely [6]. Recently, Indian manufacturing industries have
undertaken initiatives to redesign their workplaces to overcome various occupational
injuries and musculoskeletal disorders (MSD) [7].
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Recent studies have explored the applications of ergonomic tools such as the Strain In-
dex (SI), the National Aeronautics and Space Administration Task Load Index (NASA TLX),
the Occupational Repetitive Actions Index (OCRA), the Rapid Upper Limb Assessment
(RULA), the Ovako Working posture Analysis System (OWAS) checklist, and the Rapid
Entire Body Assessment (REBA) to improve occupational health and safety in the areas of
machine design, task design, the working environment, and facility design. These tools
and techniques to derive benefits based on the theory of ergonomics require considerable
time and energy to implement. Present methods of evaluating postural risk are based
on observational techniques that requires an ergonomic analyst to observe the work in
real-time or from recorded video to manually segment the relevant body parts and evaluate
the risk associated with the posture [8]. Due to human error, however, these techniques
produce results with low consistency and repeatability, both of which can be reduced or
eliminated by using advanced technologies [9]. All the risk assessment methodologies are
used to evaluate the physiological level of risk that was associated with performance of
the job.

This study aims to develop a human factor index measurement tool that includes
physiological, psychological, environmental, and safety risk considerations based on how
these risks are interrelated. Moreover, the use of several indicators in a study requires
that these indicators themselves be understood and are easily measurable. However, these
limitations have not been addressed in many studies. The remainder of this paper is
organized as follows: Section 2 presents the research background in the areas of ergonomic
risk evaluation and assessment. The proposed methodology for workplace ergonomic
assessment is described in Section 3. The conceptual framework and analysis are presented
in Section 4. Finally, the results of this study are reported in Section 5.

2. Research Background

Ergonomic risks in manufacturing sectors can cause serious injuries and impact the
health and quality of life of workers [10]. This can contribute to losses of quality and pro-
ductivity. Different self-reporting methods such as rating scales, questionnaires, checklists,
and interviews have been used in the past to study ergonomic risks [11]. An effective
rapid-screening instrument was developed by Keyserling et al. [12] to identify the exposure
of workers to risky postures in cyclical jobs. Shikdar et al. [1] developed the “ErgoTech”
self-assessment software package to evaluate the ergonomic improvement potential of
production systems in the manufacturing industry. The application of this tool enabled
production managers to recognize ergonomic improvements in the workplace success-
fully. David [11] reported the use of several tools to assess the exposure to risk based
on self-reports, observational methods, and direct measurements. Laring et al. [13] pro-
posed the Ergo SAM tool, which can be used to optimize the workplace in terms of the
production time and physical load on the operator. This tool facilitates the detection of
high musculoskeletal loads early in the planning process.

The most widely used methods for ergonomic assessment are the Occupational Safety
and Health Administration (OSHA) checklist and the standard Nordic MSD question-
naire. The standard Nordic MSD questionnaire has been used in applications such as
furniture manufacturing [14] and LCD manufacturing [15]. The OSHA checklist has been
used for the analysis of semiconductor manufacturing [16]. The main weakness of these
self-reporting approaches is that the results are not always reliable, which can lead to
biased interpretations.

Observational methods such as the OWAS and the Strain Index (SI) involve direct
observation of the worker and the consequent tasks. Sonne et al. [17] devised an office
risk assessment tool, Rapid Office Strain Assessment (ROSA), to measure risks related to
computer work. This tool provides a report to the user detailing the need for modification
of discomfort associated with office work. Poochada and Chaiklieng [18] demonstrated
the use of the ROSA to evaluate the presence of risk elements for job-related MSD in a call
center office. The RULA method has been used to assess the risk of work-related upper
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limb disorders [19,20]. The OCRA method has been used to evaluate upper limb disorders;
the risk factors considered are repetition, strength, incorrect postures, and lack of rest
intervals [21]. REBA has been effectively used to analyze the exposure related to the upper
and lower limbs [22]. Chander and Cavatorta [23] proposed the postural ergonomic risk
assessment (PERA) method to assess the postural ergonomic risk of short cyclic assembly
jobs. The drawbacks of these observational methods are high intra- and inter-observer
inconsistency due to the data collection, which is generally performed through subjective
opinion or simple judgment from videos/pictures, and a lack of accuracy. To overcome
these limitations, Maman et al. [24] and Plantard et al. [25] recommended the use of sensors
attached to the worker’s body to collect data directly; however, this is difficult to implement
in real-world situations. Li et al. [26] proposed an improved physical demand analysis
(PDA) by integrating risk assessment tools such as REBA, RULA, and NIOSH; the proposed
method enables ergonomic risk identification and evaluation and proactively mitigates the
risk to workers by providing modified work. The four main ergonomic risks identified
in the case study were static whole-body posture, heavy material handling, sensory risks,
and awkward body postures. Bortolini et al. [27] developed a motion analysis system
(MAS) for the ergonomic analysis of operators during assembly tasks based on Motion
Capture (MOCAP) technology with ad hoc software. The applicability of the MAS was
discussed through a case study of a water pump assembly workstation. Using a deep
learning algorithm to predict RULA scores, Nayak et al. [5] created an automated, RULA-
based posture evaluation system. This will help to reduce the amount of time necessary for
postural evaluation while also producing highly reliable RULA scores that are similar to
the results obtained using the manual method.

In this study, an exhaustive literature review was conducted based on the factors
considered for ergonomic evaluation and the area of study, and the results are summarized
in Table 1. The literature review indicated that research on ergonomic assessments has
often considered physiological and/or psychological factors. Parsons, K.C. [28] discussed
the great deal of work on the effects of light, noise, vibration, and thermal environments
on the health, comfort, and working efficiency. Health, safety, and environment (HSE) at
the operational level will strive to eliminate injuries, adverse health effects, and damage to
the environment; enhance worker productivity, provide improved worker safety (physical
and mental), and job satisfaction [29]. However, significant factors such as environmental
and safety factors that could influence “the ergonomic conducive level” of the industry
have been neglected in most previous studies. Moreover, there appears to be a lack of
amalgamation of ergonomic assessment tools for better prediction of ergonomic levels in
any manufacturing industry. Hence, there is a need to develop a comprehensive evaluation
model for workplace ergonomic assessments. This study proposes a conceptual model
that facilitates the determination of a human factor index for workplace ergonomic mea-
surements. The application of the model is demonstrated using analytical tools such as
interpretive structural modeling (ISM), structural equation modeling (SEM), and a multi-
grade fuzzy approach to determine the ergonomic performance in the Indian automotive
industry. ISM methodology typically helps to create a well-defined visible model from
poorly articulated unclear mental model of experts. Since the factors cannot be directly
measured, the structural equation modelling (SEM) methodology is typically used to an-
alyze the structural relationship between factors for establishing either a theoretical or a
predictive relationship.
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Table 1. Summary of the literature review.

Factors Considered in the Ergonomic Evaluation Area of Study

Authors
Physiological

Factors
Psychological

Factors
Environmental

Factors
Safety
Factors

Technological and
Organizational

Factors
Other Factors Process/Technology Workplace Equipment

Keyserling et al. (1992) [12] X × × × × × × X ×
Parsons (2000) [28] × × X × × × × × ×
Sen and Das (2000) [30] × X × × × × × × X
Grzybowski (2001) [31] X X X × X × × X ×
Shikdar et al. (2002) [1] × × X X × X × X ×
Laring et al. (2005) [13] X × × × × × × X ×
Sonne et al. (2012) [17] X × × × × × × X ×
Maldonado et al. (2015) [32] X × X × X X X × X
Borah (2015) [33] X × × × × × X × ×
Matos and Arezes (2015) [34] X × × × × × × X ×
Poochada and Chaiklieng (2015) [18] X × × × × × × X ×
Chander and Cavatorta (2017) [23] X X × × × X × X ×
Li et al. (2019) [26] X × X X × × × X ×
Bortolini et al. (2020) [27] X × × × × × × X ×
Model presented in this study X X X X × × × X ×
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3. Methodology

This study aims to determine a human factor index for ergonomic workplace assess-
ment in automotive industries, as shown in Figure 1.

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 16 
 

 

3. Methodology 
This study aims to determine a human factor index for ergonomic workplace assess-

ment in automotive industries, as shown in Figure 1. 

 
Figure 1. Proposed research scheme for ergonomic assessment. 

A total of 379 documents were obtained from the core collection database on 30 
March 2020. Of the 379 articles, 365 were journal articles, and 14 were review articles. A 
literature review of workplace ergonomic assessments and expert opinions obtained from 
the automotive industry enabled us to identify the list of factors to be considered in this 
study. The factors, criteria, and variables to be included in the ergonomic measurement 
model were carefully selected. ISM was used to identify and describe the relationships 
among the factors. The comprehensive model constructed from ISM was verified using 
partial least squares (PLS)-based SEM. SEM-based statistical analyses do not allow for a 
comprehensive inference of the interconnectivity relationship. Therefore, to determine the 
direction of the relationships among factors, ISM was used. In this study, SEM was ap-
plied to a first-order four-factor structure for fifteen performance variables. After the the-
oretical model was verified using SEM, an ergonomic quantification tool was developed 
using the multigrade fuzzy approach. A demonstration of the proposed model in a work-
place ergonomic measurement study was carried out in the Indian automotive industry. 

Figure 1. Proposed research scheme for ergonomic assessment.

A total of 379 documents were obtained from the core collection database on
30 March 2020. Of the 379 articles, 365 were journal articles, and 14 were review arti-
cles. A literature review of workplace ergonomic assessments and expert opinions obtained
from the automotive industry enabled us to identify the list of factors to be considered in
this study. The factors, criteria, and variables to be included in the ergonomic measurement
model were carefully selected. ISM was used to identify and describe the relationships
among the factors. The comprehensive model constructed from ISM was verified using
partial least squares (PLS)-based SEM. SEM-based statistical analyses do not allow for a
comprehensive inference of the interconnectivity relationship. Therefore, to determine the
direction of the relationships among factors, ISM was used. In this study, SEM was applied
to a first-order four-factor structure for fifteen performance variables. After the theoretical
model was verified using SEM, an ergonomic quantification tool was developed using
the multigrade fuzzy approach. A demonstration of the proposed model in a workplace
ergonomic measurement study was carried out in the Indian automotive industry. The
computation of the human factor index facilitates evaluation of the “ergonomic conducive
level” of the industry.
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4. Ergonomic Assessment Model

The conceptual framework for the design of the ergonomic measurement tool is
presented in Table 2. The ergonomic assessment model is divided into three stages. The
first stage comprises 4 factors, the second stage contains 15 ergonomic criteria, and the
third stage entails 40 ergonomic variables [35].

Table 2. Conceptual framework for ergonomic assessment.

Factors Criteria Variables Sources

Physiological
factors (PHY)

Biomechanical aspects (phy1)

Access to machine and clearance Maldonado et al. (2013) [32]

Horizontal/vertical reach Maldonado et al. (2013) [32]

Adjustability of design Maldonado et al. (2013) [32]

Postural comfort of design Maldonado et al. (2013) [32]

Physical work/endurance and design Maldonado et al. (2013) [32]

Usability (phy2)

Compatibility of design and control Maldonado et al. (2013) [32]

Physical distribution of controls Maldonado et al. (2013) [32]

Visual workplace design Maldonado et al. (2013) [32]

Error tolerance Maldonado et al. (2013) [32]

human–machine function allocation
of design Maldonado et al. (2013) [32]

Energy expenditure (phy3)

Worker movement Borah (2015) [33]

Material handling Saleem et al. (2003) [36]

Basal metabolic rate Vianna and quaresma (2013) [37]

Psychological
factors (PSY)

Work–rest schedule (psy1)

Body heat Keyserling et al. (1992) [12]

Heart rate Keyserling et al. (1992) [12]

Work and rest periods Keyserling et al. (1992) [12]

Human skills and training
capability (psy2)

Skill level compatibility Maldonado et al. (2013) [32]

Training level compatibility Maldonado et al. (2013) [32]

Human error (psy3)

Training Sanders and mccormick (1993) [38]

Design of equipment Sanders and mccormick (1993) [38]

Worker selection Sanders and mccormick (1993) [38]

Communication (psy4)
Information flow Sanders and mccormick (1993) [38]

Speech intelligibility Sanders and mccormick (1993) [38]

Environmental
factors (ENV)

Temperature/climate (env1)
Acclimatization Åstrand et al. (1986) [9];

parsons (2000) [28]

Limits of tolerance Åstrand et al. (1986) [9];
parsons (2000) [28]

Noise (env2)
Sound intensity Parsons (2000) [28]

Sound categories Parsons (2000) [28]

Housekeeping (env3)
Maintenance Parsons (2000) [28]

Level of cleanliness Parsons (2000) [28]

Illumination (env4)
Nature of light Parsons (2000) [28]

Light distribution Parsons (2000) [28]

Motion (vibration) (env5)
Interference with activities parsons (2000) [28]

Motion sickness Parsons (2000) [28]

Safety factors
(SAF)

Personal safety (saf1)
Personal protective equipment Botti et al. (2017) [39]

Safety training Karwowski (2007) [40]

Organizational safety (saf2)
Hazards Botti et al. (2017) [39]

Regulations and norms Siemieniuch and sinclair (2014) [41]

Risk management (saf3) Risk assessment Sonne et al. (2012) [17]
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4.1. Identifying Relationships among Factors: ISM Approach

This study aimed to explore the use of ISM to recognize the associations among the
factors that affect the ergonomic assessment of an industry.

ISM is used as a tool in decision making, in which a group of factors affecting the
application of a system are identified in an organized manner. ISM utilizes the practical
experience of professionals currently working in the area to develop a multilevel organi-
zational model that emphasizes the key aspects involved in the application of a specific
system [42]. These features make this a more suitable tool for the present study.

The working mechanism of the ISM technique is as follows [42].
A circumstantial relationship between the factors and the structural self-interaction

matrix (SSIM) of factors is developed. This matrix indicates the pairwise association among
the factors analyzed, as presented in Table 3. To indicate the direction of the association
between two factors (i and j), the following symbols are defined:

• V denotes that factor i affects factor j;
• A denotes that factor j impacts factor I;
• X denotes that factors i and j affect each other;
• X denotes that factors i and j are unrelated.

Table 3. Structural self-interaction matrix (SSIM).

PHY PSY ENV SAF

PHY 1 V A A
PSY 1 A A
ENV 1 X
SAF 1

The SSIM is developed using expert opinions and is improved to create a reachability
matrix by changing each entry in the SSIM into binary digits 1 and 0.

The initial reachability matrix is derived from the SSIM matrix. After checking the
transitivity, the final reachability matrix is obtained, and the final reachability matrix is
partitioned into different levels by listing the factors in the antecedent set, intersection set,
reachability set, and partition level, as presented in Table 4.

Table 4. Level partitions for ergonomic contributory factors.

Factors Reachability Set Antecedent Set Intersection Set Level

PHY PHY, PSY PHY, ENV, SAF PHY

I
PSY PSY PHY, PSY, ENV, SAF PSY
ENV PHY, PSY, ENV, SAF ENV, SAF ENV, SAF
SAF PHY, PSY, ENV, SAF ENV, SAF ENV, SAF

PHY PHY PHY, ENV, SAF PHY
IIENV PHY, ENV, SAF ENV, SAF ENV, SAF

SAF PHY, ENV, SAF ENV, SAF ENV, SAF

ENV ENV, SAF ENV, SAF ENV, SAF
IIISAF ENV, SAF ENV, SAF ENV, SAF

A directed graph of the interactions listed in Table 4 is then drawn. The ISM model
thus constructed is shown in Figure 2.

The model shown in Figure 2 is subsequently used for SEM analysis.



Sustainability 2022, 14, 7635 8 of 16Sustainability 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 2. ISM model. 

The model shown in Figure 2 is subsequently used for SEM analysis. 

4.2. SEM Validation of the Relationships among Factors 
SEM analyzes the hypotheses for unmeasurable variables by considering independ-

ent and dependent variables using statistical analysis [42]. The theoretical model obtained 
from the ISM was validated using PLS-SEM. After a careful literature review, a question-
naire was used in discussions with experts working in the automotive industry. The ques-
tionnaire was administered via email to 150 experts from different firms. At the end of the 
survey, 101 complete and usable responses were received from 40 automotive manufac-
turing firms. This represents a response rate of 67.30%, which is sufficient for this empir-
ical study [43]. This sample size is adequate for evaluating the hypotheses developed in 
this study [43]. Our respondents consisted of an ergonomics engineer, head supply chain 
managers, maintenance engineers, operations managers, and risk assessment specialists. 
Of the respondents, 67% were between 27 and 50 years of age, and only 12% were over 50 
years of age. The model representation of the factors, along with the tests of the hypothe-
ses considered in this study, are shown in Figure 3. 

 
Figure 3. Representations of factors and tests of hypotheses. 

Figure 2. ISM model.

4.2. SEM Validation of the Relationships among Factors

SEM analyzes the hypotheses for unmeasurable variables by considering independent
and dependent variables using statistical analysis [42]. The theoretical model obtained from
the ISM was validated using PLS-SEM. After a careful literature review, a questionnaire was
used in discussions with experts working in the automotive industry. The questionnaire
was administered via email to 150 experts from different firms. At the end of the survey,
101 complete and usable responses were received from 40 automotive manufacturing
firms. This represents a response rate of 67.30%, which is sufficient for this empirical
study [43]. This sample size is adequate for evaluating the hypotheses developed in
this study [43]. Our respondents consisted of an ergonomics engineer, head supply chain
managers, maintenance engineers, operations managers, and risk assessment specialists. Of
the respondents, 67% were between 27 and 50 years of age, and only 12% were over 50 years
of age. The model representation of the factors, along with the tests of the hypotheses
considered in this study, are shown in Figure 3.
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The hypotheses tested in this study are described below:

Hypothesis 1 (H1). Psychological factors and the ergonomic assessment are correlated.

Hypothesis 2 (H2). The ergonomic assessment and physiological factors are correlated.

Hypothesis 3 (H3). The ergonomic assessment and safety factors are correlated.

Hypothesis 4 (H4). Psychological factors and physiological factors are correlated.

Hypothesis 5 (H5). Environmental factors and physiological factors are correlated.

Hypothesis 6 (H6). Safety factors and physiological factors are correlated.

Hypothesis 7 (H7). Environmental factors and safety factors are correlated.

The convergent validity was evaluated by assessing Cronbach’s α, the average vari-
ance extracted (AVE), and the composite reliability, which is used to analyze the level
of correlation/convergence of different variables of the same construct. The composite
reliability is greater than the acceptable limit of 0.7 for all constructs, and the convergent
validity [44] of the constructs is confirmed if the AVE is greater than or equal to 0.50. More-
over, the Cronbach’s α value for the ergonomic factors is above 0.5, and hence, the factors
are found to be reliable, as indicated in Table 5.

Table 5. Construct validity.

Construct Composite
Reliability AVE Cronbach’s α

Ergonomic Practice 0.887 0.728 0.827
Physiological Factors 0.886 0.723 0.805
Psychological Factors 0.805 0.500 0.727

Environmental Factors 0.846 0.500 0.798
Safety Factors 0.767 0.687 0.767

In this study, discriminant validity measures were evaluated using a confirmatory
factor analysis. It can be found that correlation values of factors such as physiological,
psychological, environmental, and safety were less than the square root of the AVE [45].
Hence, it was found that the factors considered in this model have discriminant validity, as
indicated in Table 6.

Table 6. Discriminant validity.

Construct Ergonomic
Practice

Physiological
Factors

Psychological
Factors

Environmental
Factors Safety Factors

Ergonomic Practice 0.853
Physiological Factors 0.151 0.850
Psychological Factors 0.192 0.457 0.707

Environmental Factors 0.771 0.480 0.457 0.701
Safety Factors 0.135 0.647 0.629 0.471 0.829

The bootstrapping test (Table 7) was performed using the PLS-SEM to determine the
t-test values. Based on the bootstrapping results presented in the Table 7. Materials and the
hypothesis testing, all of the hypotheses were supported by the survey results (p < 0.05).
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Table 7. Bootstrapping results.

Construct Indicator Original
Sample

Sample
Mean

Standard
Deviation t-Statistic

Ergonomic Practice
EP1 0.968 0.887 0.205 4.713
EP2 0.897 0.812 0.242 3.701
EP3 0.666 0.608 0.273 2.44

Physiological Factors
PHY1 0.742 0.739 0.041 17.985
PHY2 0.907 0.907 0.014 66.47
PHY3 0.892 0.893 0.021 43.195

Psychological Factors

PSY1 0.291 0.283 0.171 1.705
PSY2 0.782 0.783 0.038 20.652
PSY3 0.652 0.638 0.082 7.917
PSY4 0.928 0.924 0.018 51.241
PSY5 0.721 0.717 0.059 12.143

Environmental Factors

ENV1 0.399 0.423 0.169 2.36
ENV2 0.772 0.725 0.16 4.81
ENV3 0.723 0.674 0.166 4.352
ENV4 0.81 0.788 0.095 8.548
ENV5 0.845 0.815 0.09 9.431
ENV6 0.551 0.518 0.125 4.392

Safety Factors
SF1 0.923 0.923 0.012 77.955
SF2 0.889 0.89 0.02 44.844
SF3 0.647 0.634 0.076 8.509

The standard errors and t-test values are listed in Table 8.

Table 8. Ergonomic measurement model t-test results.

Hypothesis
Number Hypothesis Entire Sample

Estimate
Mean of

Subsamples Standard Error t-Statistic

H1 PSY-EP 0.455 0.481 0.042 10.87
H2 PHY-EP 0.879 0.878 0.018 49.652
H3 SAF-EP 0.11 0.131 0.012 9.167
H4 PHY-PSY 0.948 0.948 0.009 107.55
H5 ENV-PHY 0.48 0.507 0.043 11.128
H6 SAF-PHY 0.927 0.926 0.016 58.634
H7 ENV-SAF 0.471 0.5 0.044 10.781

Based on the “t” statistic, it can be inferred that there is a significant correlation between
each of the verified factors and the ergonomic practices. Among these, the physiological
factors have very high correlation with the ergonomic practices in the manufacturing
industry, with a “t-stat” result of 49.652. It is also observed that there is a significant
correlation between psychological and physiological factors, with a “t-stat” value of 107.55.

4.3. Determination of Human Factor Index Measurement

The ergonomic factors and their relationships, which were validated using the ISM-
SEM approach, are considered to measure the human factor index using a multigrade
fuzzy approach. The multigrade fuzzy approach overcomes the drawbacks associated with
conventional crisp approaches. The major advantage of using the multigrade fuzzy method
is that the average weights are multiplied by the responses given by experts for each
variable. This method avoids fluctuations in the values, and extreme responses and their
biases are neutralized as constant weights in the calculation. Fuzzy approaches provide a
useful tool to deal with problems in which attribute phenomena are imprecise and vague.
Most ergonomic measurements are characterized by ambiguity and multiple possibilities.
The scoring of existing techniques is always criticized because the scales used to score
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ergonomics have limitations. In this context, a multigrade fuzzy approach was used to
evaluate ergonomics in the automotive industry.

The application of the multigrade fuzzy approach was validated through a case
study. The case study was conducted in an original equipment manufacturer (Sarang Auto
Parts Pvt. Ltd., Chennai, India) located in Chennai, India. This organization produces
a shaft lower link, nut-driving pinion, bearing lock, rod hydraulic lift connection, and
support reverse cluster. They manufacture the following parts under the broad category of
automotive components: electrical parts, drive transmission and steering parts, nut-driving
pinion, bearing locks, rod hydraulic lift connections, shaft power take-off (PTO) drives,
shaft lower links, support reverse clusters, and shaft front PTOs.

The human factor index (HFI) of a workplace is represented by the multiplication of
the weight (W) and assessment factor (F).

HFI = W × F

The assessment has been divided into five scales because every ergonomic factor
involves the fuzzy determination I = (10, 8, 6, 4, 2). “Excellent”, “good”, “fair”, “poor”,
and “very poor” ergonomic levels correspond to scores of 8–10, 6–8, 4–6, 2–4, and 0–2,
respectively. Four experts (L1, L2, L3, L4) were involved in the ergonomic evaluation
discussion. The weightages assigned for each enabler is 0.4 for physiological factors
(HFI1), 0.2 for psychological factors (HFI2), 0.2 for environmental factors (HFI3), and 0.2 for
safety factors (HFI4). The physiological factors include the following criteria, including
biomechanical aspects (HFI11), usability (HFI12), and energy expenditure (HFI13). The
weightages assigned for each criterion are 0.5, 0.25, and 0.25, respectively. Similarly,
the distribution of fuzzy weighting to the ergonomic attributes, criteria, and enablers is
summarized in Table 9.

4.3.1. Primary Assessment Calculation

The calculations pertaining to biomechanical aspects are shown below.

W11 =
[

0.2 0.2 0.2 0.2 0.2
]

F11 =


7 9 8 7
8 8 8 7
8 8 8 8
6 9 8 7
9 8 9 8


The index pertaining to biomechanical aspects is given by HFI11 = W11 × F1.
HFI11 = (7.6, 8.2, 8.4, 7.4)
Similarly, the index for each criterion is calculated and listed below.
HFI12 = (8.4, 8, 8.4, 7.8)
HFI13 = (7, 7, 6, 6.5)
HFI21 = (8.5, 7.25, 8.25, 8.25)
HFI22 = (8.5, 9, 9, 9)
HFI23 = (8.25, 7, 7.75, 7.75)
HFI24 = (9, 8.5, 9, 8)
HFI31 = (7.5, 8, 8, 6.5)
HFI32 = (7.5, 8, 8, 7.5)
HFI33 = (6, 6, 6.5, 5.5)
HFI34 = (8, 7.5, 8, 7.5)
HFI35 = (9, 8, 9, 8)
HFI41 = (7.5, 8, 6, 5.5)
HFI42 = (9, 8, 9, 8)
HFI43 = (8.5, 8, 8.5, 8.5)
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Table 9. Fuzzy index.

Enabler Criteria Attributes L1 L2 L3 L4 Wjk Wij Wi

HFI1

HFI11

HFI111 7 9 8 7 0.2

0.5

0.4

HFI112 8 8 8 7 0.2

HFI113 8 8 8 8 0.2

HFI114 6 9 8 7 0.2

HFI115 9 8 9 8 0.2

HFI12

HFI121 9 8 9 9 0.2

0.25

HFI122 9 9 9 8 0.2

HFI123 7 5 6 6 0.2

HFI124 8 9 9 8 0.2

HFI125 9 9 9 8 0.2

HFI13

HFI131 6 5 6 5 0.25

0.25HFI132 6 5 6 7 0.25

HFI133 8 9 6 9 0.5

HFI2

HFI21

HFI211 8 6 7 7 0.25

0.25

0.2

HFI212 8 7 8 8 0.25

HFI213 9 8 9 9 0.5

HFI22
HFI221 9 9 9 9 0.5

0.25
HFI222 8 9 9 9 0.5

HFI23

HFI231 8 9 9 8 0.25

0.25HFI232 9 7 8 8 0.5

HFI233 7 5 6 7 0.25

HFI24
HFI241 10 8 9 9 0.5

0.25
HFI242 8 9 9 7 0.5

HFI3

HFI31
HFI311 8 8 8 7 0.5

0.15

0.2

HFI312 7 8 8 6 0.5

HFI32
HFI321 8 8 8 8 0.5

0.15
HFI322 7 8 8 7 0.5

HFI33
HFI331 6 7 7 6 0.5

0.4
HFI332 6 5 6 5 0.5

HFI34
HFI341 8 8 8 8 0.5

0.15
HFI342 8 7 8 7 0.5

HFI35
HFI351 9 8 9 8 0.5

0.15
HFI352 9 8 9 8 0.5

HFI4

HFI41
HFI411 7 7 3 4 0.5

0.33

0.2

HFI412 8 9 9 7 0.5

HFI42

HFI421 9 8 9 8 0.25

0.33HFI422 9 8 9 8 0.25

HFI423 9 8 9 8 0.5

HFI43
HFI431 8 8 8 9 0.5

0.34
HFI432 9 8 9 8 0.5
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4.3.2. Secondary Assessment Calculation

The index pertaining to physiological factors is calculated as shown below.

HFI1 = W1 × F1

W1 = [0.5,0.25,0.25]

HF1 =

7.6 8.4 8.2 7.4
8.4 8 8.4 7.8
7 7 6 7.5

.

HFI1 =
[
7.65 7.95 7.69 7.92

]
Similarly, the indexes for other enablers are calculated below.

HFI2 = (8.56, 7.93, 8.5, 8.25)

HFI3 = (7.2, 7.125, 7.55, 6.625)

HFI4 = (8.335, 8, 7.88, 7.345)

4.3.3. Tertiary Assessment Calculation

Finally, the total HFI is calculated as shown below.

W =
[
0.4 0.2 0.2 0.2

]
F =


7.65 7.95 7.69 7.92
8.56 7.93 8.5 8.25
7.2

8.335
7.125

8
7.55
7.88

6.625
7.345


HFI = W × F

HFI =
[
7.879 7.791 7.862 7.612

]
The HFI is the average of (7.879, 7.791, 7.862, 7.612), which is equal to 7.786.

HUMAN FACTOR INDEX = 7.786 ε (6, 8)

A human factor index of 7.86 was determined using a multigrade fuzzy approach,
which means that the organization is ERGONOMIC.

5. Results and Discussion

The observations made in this study are presented below.
A cross-impact matrix multiplication applied to classification (MICMAC) analysis was

used to study the dependence power and driving power of the variables considered in
the study [46]. The results indicate that two independent performance variables, namely,
the safety factors and environmental factors, show a strong driving power and weaker
dependence power. Hence, these were identified as the “key factors” in this ergonomic
assessment study. In addition, it was found that the dependent variables, i.e., the physio-
logical and psychological factors, are weak trainers and depend strongly on one another.
The results of the MICMAC analysis are shown in Figure 4.

The fit indices for the current case were determined as follows: a value of 0.91 is
found for the goodness of fit, indicating that the model is a good fit [47]. The normed-fit
index value was 0.70. A value as low as 0.80 is recommended for this index [47]. The
relative/normed χ2 ratio (χ2/df) value was 10.45. The Cronbach’s ∝ for the ergonomic
performance variables was acceptable and indicates that the variables are reliable.



Sustainability 2022, 14, 7635 14 of 16
Sustainability 2022, 14, x FOR PEER REVIEW 14 of 16 
 

 

 
Figure 4. MICMAC analysis. 

The fit indices for the current case were determined as follows: a value of 0.91 is 
found for the goodness of fit, indicating that the model is a good fit [47]. The normed-fit 
index value was 0.70. A value as low as 0.80 is recommended for this index [47]. The rel-
ative/normed χ2 ratio (χ2/df) value was 10.45. The Cronbach’s ∝ for the ergonomic perfor-
mance variables was acceptable and indicates that the variables are reliable. 

The ergonomic assessment was performed using the multigrade fuzzy approach. A 
human factor index of less than 5 indicates that the organization cannot be considered a 
good candidate to implement an ergonomic work environment that would contribute to 
better quality and maximum productivity [3]. The human factor index of 7.786 determined 
for the automotive industry case in this study reveals that the industry is a suitable can-
didate for operating in a good ergonomic environment. However, it was found that there 
is scope for improving the work environment of the organization. 

It was found that a major gap is perceived for the criterion “biomechanical aspects”. 
This is followed by “housekeeping”, “temperature/climate”, and “energy expenditure”. 
Management can take measures to improve the ergonomic conditions, such as the use of 
material handling equipment to prevent the manual movement of materials, equipment 
designs that would allow for comfortable reaches and posture, the use of personal protec-
tive equipment while working, application of the 5S (sort, set in order, shine, standardize, 
sustain) scheme to improve the housekeeping facilities, and providing proper a work–rest 
schedule for workers to sustain a normal heart rate and basal metabolic rate. 

6. Conclusions 
Ergonomic risks and bad work postures can lead to various types of MSDs and 

worker fatigue, which hamper the efficiency of manufacturing organizations and lead to 
a loss in productivity. This study aims to provide insight into the modeling and analysis 
of ergonomic risk factors in the Indian automotive industry. A combined ISM, SEM, and 
multigrade fuzzy approach was proposed to determine the human factor index for ergo-
nomic evaluation of industries. The ISM model reveals the driving and dependence 
among the ergonomic factors, which enables managers to understand the interrelation 
among ergonomic factors in the automotive component sector. Moreover, management 
should also consider the dependence among factors in the ISM. Therefore, survey data 

PHY

PSY

ENV, SAF

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Dr
iv

in
g 

po
w

er

Dependence Power

MIC MAC

I

IIIIV

Figure 4. MICMAC analysis.

The ergonomic assessment was performed using the multigrade fuzzy approach. A
human factor index of less than 5 indicates that the organization cannot be considered a
good candidate to implement an ergonomic work environment that would contribute to
better quality and maximum productivity [3]. The human factor index of 7.786 determined
for the automotive industry case in this study reveals that the industry is a suitable candi-
date for operating in a good ergonomic environment. However, it was found that there is
scope for improving the work environment of the organization.

It was found that a major gap is perceived for the criterion “biomechanical aspects”.
This is followed by “housekeeping”, “temperature/climate”, and “energy expenditure”.
Management can take measures to improve the ergonomic conditions, such as the use of
material handling equipment to prevent the manual movement of materials, equipment
designs that would allow for comfortable reaches and posture, the use of personal protective
equipment while working, application of the 5S (sort, set in order, shine, standardize,
sustain) scheme to improve the housekeeping facilities, and providing proper a work–rest
schedule for workers to sustain a normal heart rate and basal metabolic rate.

6. Conclusions

Ergonomic risks and bad work postures can lead to various types of MSDs and
worker fatigue, which hamper the efficiency of manufacturing organizations and lead to
a loss in productivity. This study aims to provide insight into the modeling and analysis
of ergonomic risk factors in the Indian automotive industry. A combined ISM, SEM,
and multigrade fuzzy approach was proposed to determine the human factor index for
ergonomic evaluation of industries. The ISM model reveals the driving and dependence
among the ergonomic factors, which enables managers to understand the interrelation
among ergonomic factors in the automotive component sector. Moreover, management
should also consider the dependence among factors in the ISM. Therefore, survey data
were analyzed using VPLS software. The SEM-PLS technique was used to verify the seven
hypotheses. Furthermore, evaluating the various ergonomic performance factors using the
multigrade fuzzy approach facilitated an understanding of the contribution of these factors
to safety and productivity improvement. A case study demonstrated the practicability
of implementing these approaches in an industrial situation. Manual computation using
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a multigrade fuzzy approach is time-consuming and error-prone, and a computerized
decision-support system (DSS) can be developed. The application of an integrated model
for ergonomic assessment is not limited to the manufacturing industry and can be extend
to evaluation in industries such as the software and healthcare. In addition to that, several
other forms of ergonomic risks factors such as technological factors and process factors can
be added to the measurement model to obtain more robust results.
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