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Abstract: Excessive carbon emissions lead to global warming, which has attracted widespread
attention in the global society. Carbon emissions and land use are closely related. An analysis of
land use carbon emissions and carbon fairness can provide guidance for the formulation of energy
conservation and emission reduction policies. This study uses data on agricultural production
activities, land use and energy consumption and uses the carbon emission coefficient method to
calculate carbon emissions and carbon absorption. The tendency value is used to analyze trends in
land use carbon emissions and carbon absorption. The Gini coefficient, ecological support coefficient
and economic contributive coefficient are used to analyze the fairness and difference of carbon
emissions. The results showed that: (1) During the study period, there were fewer provinces with
rapid growth in carbon emissions and carbon absorption and more provinces with slow growth.
(2) Cultivated land and woodland are the main carriers of land use carbon absorption, and most
provinces steadily maintain the type of carbon absorption to which they belong. (3) Carbon emissions
from construction land are the main source of total carbon emissions, and the high concentration
areas of carbon emissions are mainly located in the more economically developed areas. (4) There
are obvious regional differences in the net carbon emissions. By 2015, Shanxi–Shandong High–High
agglomeration areas and Yunnan–Guangxi Low–Low agglomeration areas were finally formed.
(5) The distribution of carbon emissions in different provinces is not fair, and the spatial distribution is
obviously different. Based on the analysis results, relevant suggestions are made from the perspectives
of carbon emission reduction and carbon sink enhancement.

Keywords: land use; carbon emission; fairness; carbon offset; economic contributive coefficient
(ECC); ecological support coefficient (ESC)

1. Introduction

China is in the process of rapid urbanization and industrialization, consuming a large
amount of various fossil energy sources. At present, China’s carbon dioxide emissions have
surpassed that of the United States, becoming the world’s largest carbon dioxide emitter [1].
With the rapid economic development and urbanization, the rapid population growth is
accompanied by the large-scale use of various fossil energy sources [2]. Greenhouse gases
continue to increase. Human activities emit large amounts of greenhouse gases, which
contribute to the greenhouse effect and, ultimately, to global warming. The increase of
carbon emissions will not only cause a series of problems, including global warming, but
also endanger the sustainable development of human beings. In recent years, the warming
of the climate system has become an indisputable fact. The issue of carbon emissions is
also becoming more and more important for individual countries [3]. The fifth report of the
IPCC of the United Nations Special Committee on Climate Change pointed out that, since
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industrialization, the increase in the carbon dioxide concentration has mainly been due to
emissions caused by the burning of fossil fuels and changes in land use. From 1850 to 1998,
the direct carbon emissions from land use and its changes accounted for one-third of the
total carbon dioxide emissions from human activities, which had a very important impact
on the global carbon cycle [4]. The impact of land use on carbon emissions has attracted
widespread attention from various countries [5].

The carbon emission effect of land use has also been studied deeply and systematically
by scholars in many countries [6]. Among them, some scholars have conducted in-depth
research on the development of an agricultural soil carbon inventory in Ontario, Canada; the
methods used to estimate carbon emissions range from simple empirical factors to complex
process-based ecosystem models [7]. Critical gaps have been identified and improvements
proposed that can be applied to developing countries in the future. Zuo et al. [8] deeply
studied the land carbon emissions in Guangdong Province and found that the marginal
carbon emission factor can reflect the real-time carbon emissions of the system more
accurately. The results showed a significant increase in the marginal carbon emission factor
for the peak demand time. Some researchers have studied the relationship between urban
sprawl and carbon emissions in the metropolitan area of Monterrey, Mexico [9]. Lai et al.
conducted research on carbon emission assessment and carbon reduction strategies in
newly urbanized areas, selecting three different new urban areas for analysis; relevant
emission reduction strategies were planned and implemented [10].

In terms of model methods and data, Lv et al. [11] used the panel data of 11 cities in
Jiangxi Province from 2007 to 2018, and Driscoll–Kraay estimation was used to explore
the impact and effect of econometrics on emissions. Studies have shown that population,
economy, energy and social urbanization play positive roles in promoting carbon emis-
sions, while ecological urbanization plays a positive role in blocking carbon emissions.
Luo et al. [12] used the AIM/ENDUSE model to analyze the changes and differences of the
Great Bay Area (GBA) installed capacity, power supply, energy consumption and carbon
emissions under different auction ratios and price combinations. The research also explores
the best way to carry out energy transformation in the power industry of GBA. Using
Landsat measurements to measure carbon emissions, which are also common, Chinese
scholars have calculated the number of urban agglomerations in the Yangtze River Delta.
Additionally, in the past 20 years, urban land carbon emissions increased about twice as
much as urban land area [13]. The quantification of the CO2 released by gases into the
atmosphere is relevant for the evaluation of the balance between deep derivation, biogenic
and anthropogenic contributions [14]. Zhang et al. [15] conducted in-depth research on the
Yellow River Basin of China. They analyzed the spatial and temporal distribution charac-
teristics of carbon emissions in the Yellow River from 2000 to 2019 by constructing a carbon
emission model, carbon footprint and Moran’s I index. Due to the size of China’s popula-
tion, the impact of China’s population aging problem on household carbon emissions is
also significant, Fan et al. [16] found that rural population aging has a significant positive
effect on household carbon emissions in northern heating regions. Through the analysis of
its potential mechanism, it is determined that the consumption structure and consumption
level are the mediating factors that influence the nonlinear relationship between urban
population aging and urban household carbon emissions.

This paper takes 30 provincial administrative units in China as the study area to explore
the spatial and temporal evolution of land use carbon emissions, carbon absorption and
net carbon emissions in China’s provinces from 2003 to 2016 and analyzes the fairness and
variability of carbon emissions through the Gini coefficient, ecological support coefficient
and economic contributive coefficient of land use carbon emissions based on a spatial and
temporal analysis. A relevant study on land use carbon compensation was also conducted.
This paper analyzes the pattern of land use carbon sources and carbon absorption in China
as a whole and provides a reference basis for advocating energy conservation and emission
reduction and developing a regional low-carbon economy in China. This paper is important
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for improving the efficiency of carbon emission reduction task allocation in each province
and further understanding the intrinsic mechanism of land use carbon emissions.

2. Materials and Methods
2.1. Data Sources

The data used in this study mainly includes: land use, GDP, population, energy con-
sumption and agricultural production activities from 30 provincial administrative regions
of China (excluding the Tibet Autonomous Region, Hong Kong Special Administrative
Region, Macao Special Administrative Region and Taiwan Province). The land use data
mainly came from the land survey results from the: “China Statistical Yearbook”, “China
Land and Resources Statistical Yearbook”, “China Environmental Statistical Yearbook” and
the National Land Use Planning Outline (2006–2020); energy consumption comes from the
“China Energy Statistical Yearbook”; agricultural production activities data are from the
“China Rural Statistical Yearbook”, “China Agricultural Statistical Data” and “Compilation
of Agricultural Statistical Data for 30 Years of Reform and Opening up” and the data of the
population and GDP are from the “China Statistical Yearbook”. The land use types in the
IPCC Good Practice Guide on Land Use, Land Use Change and Forestry include woodland,
grassland, farmland, wetland, residential area and other land. The data used in this study
mainly come from the China Statistical Yearbook. The data on factors such as climate and
soil are not recorded in the China Statistical Yearbook. This article does not consider soil,
climate, hydrology and topography. These statistical data are used to calculate various indi-
cators, such as land use carbon absorption, carbon emissions, ecological support coefficient
and economic contributive coefficient. Remote sensing imagery data were obtained from
the Resource and Environmental Science Data Center of the Chinese Academy of Sciences
(http://www.resdc.cn, accessed on 1 April 2022).

2.2. Research Methods

This paper uses a variety of calculation methods to conduct research, and the research
on carbon absorption is mainly for woodland, grassland and cultivated land [17]. The
research on carbon emissions is mainly for cultivated land and construction land. Through
the two spatial pattern analysis methods of spatial autocorrelation and local autocorrelation,
not only the degree of agglomeration of similar spatial attributes can be known, but the
spatial location of the agglomeration area can also be pointed out. The two methods
are complementary to each other. The calculation of the ecological support coefficient
(ESC) can reflect the carbon sink capacity of the area, and the relative level of the carbon
ecological capacity can be judged by determining the relationship between the ESC and 1.
We also calculated the SLOPE value to reflect the rate of increase in the carbon emissions.
In the following, we will describe how we calculate the SLOPE and ESC. The economic
contributive coefficient is used to measure the fairness of the regional carbon emission
contributions from an economic point of view. The calculation of the value of the land use
carbon compensation can be used as the benchmark value of land use carbon compensation,
and it is an important measure of the area’s access to compensation funds. It can effectively
understand and analyze China’s provincial carbon emissions in terms of time and space
and contain deeper research on the regional distribution of carbon compensation. Figure 1
shows the research framework of this paper.

2.2.1. Carbon Emission Coefficient Method

This study investigates the effect of land use carbon emissions at the national scale,
focusing on four major land use types: woodland, grassland, cultivated land and construc-
tion land. Figure 2 shows the land use of China from 2005 to 2015. Carbon absorption is
mainly calculated for land use types such as woodland, grassland and cropland. Land use
carbon emissions mainly include two types of carbon emissions from construction land
and cropland [18]. Among them, cropland is both a carbon source and a carbon sink [19].

http://www.resdc.cn


Sustainability 2022, 14, 7627 4 of 19Sustainability 2022, 14, x FOR PEER REVIEW 4 of 22 
 

 
Figure 1. The research framework of this paper. 

2.2.1. Carbon Emission Coefficient Method 
This study investigates the effect of land use carbon emissions at the national scale, 

focusing on four major land use types: woodland, grassland, cultivated land and construc-
tion land. Figure 2 shows the land use of China from 2005 to 2015. Carbon absorption is 
mainly calculated for land use types such as woodland, grassland and cropland. Land use 
carbon emissions mainly include two types of carbon emissions from construction land 
and cropland [18]. Among them, cropland is both a carbon source and a carbon sink [19]. 

Figure 1. The research framework of this paper.

(1) Carbon absorption in woodland and grassland

The calculation methods of carbon absorption in forest and grassland are as fol-
lows [20]:

Ci = Si × βi (1)

Ci is the carbon absorption of land type i, Si is the area of land type i and βi is the carbon
absorption coefficient of land type i. The carbon absorption coefficients of woodland and
grassland are 3.81 t/hm2 and 0.91 t/hm2 [21]. hm denotes hectares.

(2) Carbon absorption of cultivated land

CIcrop = ∑
i

CIcrop−i = ∑
i

Ccrop−i × (1− Pwater−i)×
Yeco−i

Hcrop−i
(2)

CIcrop is the photosynthetic carbon absorption of crop i during the reproductive period.
CIcrop-i is the carbon absorption of crop i. Ccrop-i is the carbon absorption rate per unit of
organic matter (dry weight) synthesized by the photosynthesis of crop i. Pwater-i is the water
content of crop i. Yeco-i is the economic yield of crop i. Hcrop-i is the economic coefficient
of crop i. In this paper, we mainly calculate the carbon absorption of rice, wheat, maize,
beans, potatoes, hemp, sugar beet, roasted tobacco, sorghum and grain crops. The crop
economic coefficients, carbon absorption rates and average water content are from previous
studies [22].

(3) Carbon emission from cultivated land

Farmland is a carbon source because of the crop cultivation methods and includes
the carbon emissions caused by the use of chemical fertilizers, agricultural irrigation,
agricultural machinery, pesticides and agricultural film consumption [23]. The formula is
as follows:

Et = G f A + TpB + (SmC + PmD) + FaE + AiF (3)

Et are carbon emissions from cropland; Gf, Tp, Pm, Sm, Fa and Ai are fertilizer use,
pesticide use, crop planting area, total agricultural machinery power, irrigated area and
agricultural film use. A, B, C, D, E and F are the conversion factors, A and B values are
from Oak Ridge Laboratory, USA: 0.8956 kg/kg and 4.9341 kg/kg, respectively. C, D and
E were 16.47 kg/hm2, 0.18 kg/kW and 266.48 kg/hm2 [24]. F was 5.18 kg/hm2 from
the Institute of Agricultural Resources and Ecological Environment (IREEA), Nanjing
Agricultural University.
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(4) Carbon emission from construction land

The human production and living activities carried out by the construction land
consume a large amount of energy, and the calculation of its carbon emission is done by
indirect estimation [25], which means that the energy consumption of coal, oil and natural
gas in the production and living process is converted into standard coal, and then, the
carbon emission of the construction land is calculated according to the carbon emission
coefficient of each type of energy. In this paper, eight main energy sources: namely, raw
coal, coke, crude oil, fuel oil, gasoline, kerosene, diesel and natural gas, are selected for
calculation according to the actual situation, and the formula is as follows.

Ep = ∑ ei = ∑ Ei × θi × βi (4)

Ep is the carbon emission from construction land, ei is the carbon emission from various
fossil energy sources, Ei is the consumption of various fossil energy sources, θi is the coeffi-
cient of conversion of various fossil energy sources into standard coal in the appendix of the
China Energy Statistical Yearbook and βi is the carbon emission coefficient of various fossil
energy sources in the IPCC Guidelines for National Greenhouse Gas Emission Inventories.

2.2.2. Tendency Value Calculation

Linear propensity estimation enables the analysis of temporal trends in land use
carbon emissions. A one-dimensional linear regression model of land use versus time was
developed. The SLOPE of temporal change from 2003 to 2016 was calculated to analyze the
linear tendency of land use CO2 emissions for each city [26].

SLOPE =

n×
n
∑

i=1
XiCi −

n
∑

i=1
Xi

n
∑

i=1
Ci

n×
n
∑

i=1
X2

i −
(

n
∑

i=1
Xi

)2 (5)

In this formula: n is the total number of years, equal to 14; Xi is the year i (2003
is the first year) and Ci represents energy CO2 emissions for year i. When SLOPE > 0,
increased over time t, carbon emissions are on the rise. When SLOPE < 0, increased over
time t, carbon emissions are on a downward trend. The SLOPE value reflects the rate of
increase or decrease in carbon emissions and indicates the degree of tendency to increase
or decrease. When the tendency value was calculated, we classified the change trends into
five categories: slow growth, slower growth, medium growth, faster growth and rapid
growth. The change types were classified according to the tendency value using the natural
breakpoint method.

2.2.3. Spatial Pattern Analysis Method

Spatial autocorrelation analyzes the correlation of the same variable in different spa-
tial locations and is a measure of the degree of agglomeration in the space domain [27].
Depending on the size of the spatial range analyzed, space self-correlation can be divided
into global spatial autocorrelation and local spatial autocorrelation [28].

The most commonly used global spatial self-correlation is Moran’s proposal Global
Moran′s I [29]. The calculation formula for Global Moran′s I is as follows:

I =

n
∑

i=1

(
Xi − X

) n
∑

j=1
Wij

(
Xj − X

)
S2

n
∑

i=1

n
∑

j=1
Wij

(6)

s2 =
1
n

n

∑
i=1

(
Xi − X

)2

(7)
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where n is the number of space units, Xi; Xj represents the sites on the property values
of space units i and j and Wij is the spatial weight coefficient matrix and represents the
proximity of each space unit.

Global Moran′s I is a comprehensive measurement of spatial autocorrelation self-
related to the research area. Although it can see the degree of aggregation of similar
properties of space, it cannot accurately indicate the spatial position of the aggregation area.
Global Moran′s I can make up for this defect very well. Local Moran’s I can be obtained by
Formulas (8) and (9):

I =
(
Xi − X

)
s2

n

∑
j=1

Wij
(
Xj − X

)
(8)

Ii =

n
(
Xi − X

) n
∑

j=1
Wij

(
Xj − X

)
∑
i

(
Xi − X

)2 = Zi
′∑

i
WijZj

′ (9)

In this formula: Xi and Xj represent the property values of the space units i and j, Wij
is a spatial weight coefficient matrix that represents the proximity of each space unit and
Zi
′ and Zj

′ are standardized observations by standard deviation.
When Ii > 0, the regional space unit i has a strong positive spatial self-correlation with

the observation properties of adjacent space units, local spatial aggregation; when Ii < 0,
there is a strong negative spatial self-correlation, which is a partial spatial dispersion.

2.2.4. Calculation of the GINI Coefficient of Carbon Emissions from Land Use

In this paper, 30 provincial-level administrative regions are used as evaluation units,
and the Lorenz curve (Figure 3) is defined as the land use carbon emission curve of different
units [30]; that is, the actual distribution curve of land use carbon emissions, and the
45 degree diagonal line is the absolute fairness curve of the land use carbon emissions [31].
The area between the absolute fair curve of land use carbon emissions and the actual
distribution curve is A, and the area between the actual distribution curve of land use and
the X-axis is B; the Gini coefficient = A/(A + B). When the Gini coefficient is larger, it means
the greater the inequality in income distribution. A Gini coefficient below 0.2 is for a high
average gap, 0.2 to 0.3 for a relative average gap, 0.3 to 0.4 for a typical gap, 0.4 to 0.5 for a
large gap and 0.5 or more for a very large gap. The Gini coefficient equal to 0.4 is usually
considered as a “red line” for carbon equity.
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Using the trapezoidal method to calculate the Gini coefficient of carbon emissions, the
formula is as follows [32]:

Gini coe f f icien = 1−
n

∑
i=1

(Xi − Xi−1)(Yi + Yi−1) (10)

Xi is the cumulative percentage of carbon absorption, and Yi is the cumulative emission
ratio of carbon emissions; when i = 1, both Xi−1 and Yi−1 are 0.

2.2.5. The Calculation of Ecological Support Coefficient and Economic
Contributive Coefficient

The ecological support coefficient is an indicator to measure the equity of the contribu-
tion of the carbon ecological capacity in each province and reflects the region’s carbon sink
capacity [33]. CAi and CA are the carbon absorption of each province and the country; Ci
and C are the provinces and the national carbon emissions.

ESC =
CAi
CA

/
Ci
C

(11)

If ESC > 1, the contribution rate of carbon absorption in one province is greater than
the contribution rate of carbon emissions, which indicates that it has a relatively high
carbon ecological capacity and contributes to other provinces. Conversely, if ESC < 1, the
carbon ecological capacity is relatively low.

The economic contributive coefficient is an economic measurement of the equity of
the contribution of carbon emissions between regions, reflecting in the region’s carbon
productivity [33]. Gi and G are the provinces and the national GDP; Ci and C are the
provinces and the national carbon emissions of land use.

ECC =
Gi
G

/
Ci
C

(12)

If ECC > 1, this indicates that the contribution rate of a province′s economy is greater
than that of carbon emissions, which shows that it has a high economic efficiency and
energy utilization efficiency, and the carbon productivity is strong. Conversely, if ECC < 1,
this indicates that its carbon productivity is weak.

3. Results and Discussion
3.1. Trends in Carbon Emissions and Carbon Absorption Time in Provinces

To further clarify the temporal trends of land use carbon emissions and carbon ab-
sorption in each province, this paper calculated the tendency values of the total land use
CO2 emissions and absorption in each province of China from 2003 to 2016 using a trend
analysis. The natural breakpoint method of ArcGIS was used to divide the growth trend
of CO2 emissions and total absorption of land use in each province into five types: slow
growth, slower growth, medium growth, faster growth and rapid growth.

The carbon emission results show (Table 1) that three provinces in China are of the
rapid growth type and four provinces are of the faster growth type, concentrated in the west,
as well as the middle reaches of the Yellow River (Figure 4), mainly due to the rapid growth
of arable land and construction land area in these areas. Seven provinces in China belong
to the slow growth type, and 12 provinces belong to the slower growth type concentrated
in the northwest, southwest and southern coastal areas, as well as the northeast, mainly
due to the relatively low level of economic development in these provinces and the land
use is mostly woodland and grassland. With the continuous expansion of the woodland
and grassland areas, carbon emissions grow slowly.

The results of the carbon absorption (Table 2) show that two provinces in China are of
the rapid growth type and three provinces are of the faster growth type, concentrated in
the middle reaches of the Yellow River and the northern coastal areas (Figure 4). Due to
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the development of agricultural production, scientific and technological progress, the crop
yield per unit area significantly increased; therefore, the carbon sequestration capacity of the
crops during the reproductive period also increased, and the rate of the carbon absorption
grew rapidly. Eleven provinces in the country are designated as slow growth, and nine
provinces are slower growth and are concentrated in the northwestern, southwestern,
southern coastal areas and northeastern regions. This is mainly because of the development
of the western development strategy back to forest, pasture and grass. However, because of
the slow increase in woodland and grassland areas, the growth of CO2 absorption is slow.

Table 1. Types of growth trends in the total CO2 emissions by provinces.

Class SLOPE Range Province Total

Slow growth 0.20–0.41 Qinghai, Gansu, Hainan, Beijing,
Chongqing, Shanghai, Tianjin 7

Slower growth 0.41–0.63
Sichuan, Yunnan, Guizhou, Guangxi,

Hunan, Hubei, Jiangxi, Fujian, Zhejiang,
Jilin, Heilongjiang, Ningxia

12

Medium growth 0.63–1.57 Liaoning, Henan, Anhui, Guangdong 4

Faster growth 2.57–2.8 Xinjiang, Shanxi, Hebei, Jiangsu 4

Rapid growth 2.8–5.6 Inner Mongolia, Shanxi, Shandong 3

Table 2. Types of growth trends in the total CO2 absorption by provinces.

Class SLOPE Range Province Total

Slow growth 0.11–0.21 Qinghai, Gansu, Sichuan, Yunan, Guangxi,
Hunan, Jiangxi, Fujian, Jilin, Hainan, Beijing 11

Slower growth 0.21–0.71
Guizhou, Heilongjiang, Ningxia, Xinjiang,

Chongqing, Guizhou, Hubei,
Zhejiang, Tianjin

9

Medium growth 0.71–1.27 Liaoning, Shanxi, Anhui, Guangdong,
Inner mongoria 5

Faster growth 1.27–2.12 Henan, Hebei, Jiangsu 3

Rapid growth 2.12–3.11 Shanxi, Shandong 2
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3.2. The Characteristics of Space–Time Distribution of Carbon Absorption in Land Use

The global Moran’s I index reflects the aggregate change of the national land use CO2
absorption distribution. The global Moran’s I indices for 2005, 2010 and 2015 were 0.162,
0.173 and 0.181. The index is positive at the 1% significance level and shows an upward
trend. Scatter plots, as shown in Figure 5, show that there was a spatial positive correlation
in CO2 absorption, and the correlation gradually increased during the study period.
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In order to analyze the spatial aggregation type of CO2 absorption in land use, the
LISA index of 30 provinces was calculated, and four types of High–High Cluster, High–
Low Outlier, Low–High Outlier and Low–Low Cluster were calculated according to the
LISA index.
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The results found a High–Low Outlier area in Inner Mongolia, a Low–Low Cluster
has formed in Shanghai and a High–High Cluster was formed in Yunnan in 2010 (Figure 6).
The Inner Mongolian grassland area is large and is seen as the main carrier of carbon
absorption. The area of cultivated land and woodland in Shanghai is small, and the carbon
absorption is relatively small. In 2010, the State Council approved an overall land use plan
for Yunnan Province, with special emphasis on strengthening the protection of cultivated
land, especially basic farmland, strictly controlling the occupation of cultivated land by
non-farm construction, increasing the intensity of supplementary cultivated land and
strengthening the protection and construction of basic farmland, stabilizing the quantity
and improving the quality so the CO2 absorption is higher.
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3.3. Space-Time Distribution Characteristics of Carbon Emissions from Land Use

As shown in Figure 7, the global Moran’s I indices of the 30 provinces in 2005, 2010
and 2015 were 0.278, 0.280 and 0.257, showing significant spatial clustering. The signifi-
cance showed a trend of increasing first and then decreasing. It can be seen that carbon
emissions show a positive spatial autocorrelation on the whole, and the clustering in the
sub-quadrants is more prominent. This shows that China’s provincial carbon emissions
mainly show High–High and Low–Low spatial agglomeration characteristics, indicating
that China’s provincial carbon has a high spatial dependence.

It was found (Figure 8) that high-value carbon emission communities were formed
in Liaoning, Shanxi, Shandong and Jiangsu. The high-value carbon emissions in 2015
were concentrated in Shanxi, Shandong and Inner Mongolia. Shanxi Province is a famous
coal-producing area in the country, and its energy structure is dominated by coal. Shanxi
Province is a typical coal-based energy economy. Rapid economic development has ac-
celerated the massive increase in carbon emissions. Shandong Province has experienced
rapid economic development in recent years, urbanization and industrialization have pro-
gressed rapidly and much cultivated land has been converted into construction land. The
increase in construction land is an important reason for the high concentration of carbon
emissions in Shandong Province. In 2005, the carbon emissions of Inner Mongolia showed
a high concentration, which was due to the fact that there are many industries with high
energy consumption in Inner Mongolia, and the construction land area of Inner Mongolia
is gradually expanding.
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3.4. Spatiotemporal Distribution of Net Carbon Emissions from Land Use

As shown in Figure 9, the global Moran’s I of the 30 provinces in 2005, 2010 and
2015 were 0.236, 0.241 and 0.241, showing significant spatial clustering. It can be seen
from Figure 9 that the total net carbon emissions show a positive spatial autocorrelation
on the whole, and the clustering in the sub-quadrants is more prominent. The provinces
are mainly concentrated in the first and third quadrants, and there are fewer provinces in
the fourth quadrant. This shows that the total net carbon emissions in China’s provinces
mainly show High–High and Low–Low agglomeration. When the Low–High situation
appeared in 2005, it indicated that there was a spatial connection form in which the low net
carbon emission area was surrounded by the high net carbon emission area, and there was
a strong negative spatial correlation and significant heterogeneity.
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It was found (Figure 10) that a Low-High Outlier was formed in Inner Mongolia in 2005.
It can be seen that Inner Mongolia is affected by the surrounding high agglomeration areas,
such as Liaoning and Shanxi. The High-High cluster of net carbon emissions was mainly in
Shanxi, Henan, Shandong and Liaoning. This is due to the large area of construction land
in these provinces, the rapid economic development in recent years and the large energy
consumption. By 2015, Liaoning and Henan were no longer high-value clusters. This is
because Liaoning and Henan Provinces have adjusted their energy-intensive industries
in response to the national emission reduction policy. In 2005, a Low-Low cluster was
formed in Sichuan and Yunnan. By 2015, the Yunnan-Guangxi Low-Low Cluster was finally
formed. This is because the two provinces of China, Yunnan and Guangxi, have vast forest
areas and a strong carbon absorption capacity.
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3.5. Gini Coefficient, Ecological Support Coefficient and Economic Contributive Coefficient

The Gini coefficient from 2003 to 2016 was calculated by Formula 10, and the trend
is shown in Figure 11. The Gini coefficient of carbon emissions from 2003 to 2016 was
concentrated between 0.2636 and 0.3522 and was relatively average from 2010 to 2012. As a
whole, the study period shows a decreasing trend followed by an increasing trend, using
2012 as the cut-off point. The Gini coefficient kept decreasing from 2003 to 2012, which
indicated that, with the implementation of national policies such as Western development
and the revitalization of old industrial bases in Northeast China, the synergy of regional
development has been enhanced. At the same time, the implementation of various forest
protection policies has promoted the continuous narrowing of the gap between the distri-
bution of carbon emissions and carbon absorption between regions. The Gini coefficient
increased slightly from 2013 to 2016, indicating a gradual widening of the gap between the
regional distribution of carbon emissions and carbon absorption.

Taking 2016 as an example, the ecological support coefficient of carbon emissions
in China’s provinces is analyzed. It is found in Figure 12 that the spatial distribution of
the ecological support coefficient is quite different. Inner Mongolia, Heilongjiang, Jilin,
Fujian, Jiangxi, Hubei, Hunan, Guangxi, Chongqing, Sichuan, Yunnan, Gansu, Qinghai,
Xinjiang and 14 other provinces exceeded 1.0, and the highest was Qinghai at 6.76. The
ecological support coefficients in Northeastern and Southwestern China are generally high,
most of which are above 2.0. This shows that the main grain-producing areas and forest-
rich areas have a high carbon sink capacity and relatively low carbon emission intensity.
The ecological support coefficients of Beijing, Tianjin, Shanxi, Shanghai, Ningxia, etc. are
lower than 0.3, causing inequity. This shows that the low carbon sink level of the above
regions struggles to offset the carbon emissions generated, causing other regions to bear
the burden. The ecological and environmental impacts caused by the greenhouse effect are
disproportionate to the carbon emissions.
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Figure 12 shows that the economic contributive coefficient is between 0.15 and 4.24.
Beijing’s economic contributive coefficient is the highest at 4.24. Shanxi’s is the lowest at
0.15. This shows that the economic contribution rate and carbon emission contribution
rate of each province are in an unbalanced state, and the spatial distribution is obviously
different. The overall spatial characteristics are that the economic contributive coefficients
of the Beijing-Tianjin region, the Yangtze River Delta, the two lakes and the Guangdong
region are high, which indicates that the above regions have a higher economic develop-
ment efficiency and energy utilization efficiency and stronger carbon productivity. Hebei,
Shanxi, Inner Mongolia, Liaoning, Heilongjiang, Guizhou, Shaanxi, Gansu, Ningxia and
Xinjiang are all below 0.7, along with most of these are western and northeastern provinces,
which are important areas that cause inequity. The above regional economic development
efficiency and energy utilization efficiency are low. As a result of generating a certain
percentage of carbon emissions, the regional GDP that matches the carbon emissions has
not been harvested.
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According to the 2016 economic contributive coefficient and ecological support coeffi-
cient, the divisions into different evaluation matrices are shown in Table 3.

Table 3. Classification results of the economic contributive coefficient and ecological carrying capacity.

Evaluation Coefficient ESC > 1 ESC < 1

ECC > 1 JL, FJ, JX, HN, HB,
GX, CQ, SC, YN

BJ, TJ, SH, JS, ZJ,
HA, GD, HI

ECC < 1 IM, HL, GS, QH, XJ HE, SX, LN, AH, SD, SN, NX, GZ

From Table 3, it can be seen that ECC > 1 and ESC > 1 accounted for 30% of the
study area. Jilin, Fujian, Jiangxi, Hunan, Hubei, Guangxi, Chongqing, Sichuan, Yunnan,
etc. have a moderate level of economic development compared with the other provinces.
These provinces have a relatively high economic development efficiency and high carbon
ecological capacity.

There are eight provinces in the areas of ECC > 1 and ESC < 1, accounting for 26.67%
of the research area. Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, Guangdong, etc. have
higher levels of economic development. Their ecological support coefficients are low, and
from an ecological perspective, that has harmed the interests of other regions.

Regions with ECC < 1 and ESC > 1 account for five provinces. The economic develop-
ment of Inner Mongolia, Heilongjiang, Gansu, Qinghai and Xinjiang and, in some other
more sparsely populated areas, is relatively backwards, and the economic contributive
coefficient is low, but the ecological support coefficient is high. Either the area of crop
planting is extensive or the woodland and grassland are rich in resources and the carbon
absorption is high. From an ecological perspective, that contributes to other regions.

Other provinces are “too-low” areas. These provinces have low ecological support
coefficients and economic contributive coefficients, and their carbon emission ratios exceed
the carbon sinks and GDP ratios at the same time. They are important areas that lead to
unfair carbon emissions. From the perspective of economic development and ecology, these
regions have harmed the interests of other regions.

4. Conclusions

During the study period, the provinces with rapid growth and faster growth carbon
emissions nationwide were concentrated in the west and the middle reaches of the Yellow
River. Slow growth and slower growth provinces are concentrated in the northwest,
southwest, southern coastal regions and the northeast. The provinces with rapid growth
and faster growth carbon absorption throughout the country are concentrated in the middle
reaches of the Yellow River and the northern coastal areas. The provinces with slow growth
and slower growth are concentrated in the northwestern, southwestern, south coastal and
northeastern areas.

From the perspective of carbon absorption, the amount of carbon absorbed by culti-
vated land has increased year by year, the amount of carbon absorbed by woodland has
increased slowly, with a small increase overall and the amount of carbon absorbed by
grassland has continued to its decrease. The degree of spatial agglomeration of carbon
absorption is obvious, forming a High-High agglomeration in Yunnan Province in 2010
and always a High-Low agglomeration in Inner Mongolia and a Low-Low agglomeration
in Shanghai during the study period from 2005 to 2015.

From the perspective of carbon emissions, the emissions from construction land are
the main source of total carbon emissions, and the proportion of carbon emissions from
cultivated land is relatively low. The degree of spatial concentration of carbon emissions has
become more and more noticeable. In 2015, a High-High Cluster area of Shanxi-Shandong-
Inner Mongolia was formed.

There are obvious regional differences in the net carbon emissions. From 2005 to 2015,
a Low-Low agglomeration was in Southwest China and a High-High agglomeration was
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in the central part of China and the Bohai Rim. By 2015, the Yunnan-Guangxi Low-Low
cluster and Shanxi-Shandong High-High cluster were finally formed.

Carbon emissions are unfairly distributed, and the spatial distribution is significantly
different. According to the carbon emission Gini coefficient, it was found that the regional
distribution gap between carbon emissions and carbon absorption increased from 2013 to
2016. The spatial differences of the ecological support coefficient and economic contributive
coefficient in 2016 were more obvious. The ecological support coefficient was relatively
high in Southwest and Northeast China and low in Shanxi, Beijing and Tianjin. The
highest economic contributive coefficient is in Beijing, and the main regional distribution of
inequitable economic contribution is concentrated in the northeast and northwest regions.

In the apportionment of carbon emission reduction responsibility, the spatial dis-
tribution characteristics of carbon emissions should be fully considered, and the carbon
emissions of each province under the perspectives of producer responsibility and consumer
responsibility should be comprehensively considered. The reasonable allocation of carbon
emission reduction responsibilities among provinces strengthen the collaboration of provin-
cial and regional carbon emission reduction and promote interprovincial carbon fairness.
The provinces should formulate interprovincial complementary emission reduction policies
to achieve their carbon reduction targets in collaboration.

Carbon compensation should be implemented in combination with land use carbon
emissions and carbon absorption, and the carbon compensation standard should be ad-
justed appropriately with the development of the economy and the changes of carbon
emissions and absorption. The existing national standards should be followed, combined
with different industries and different fields to make dynamic adjustments, and appropri-
ately improve the carbon compensation standards. Adjusting the carbon compensation
standards can improve the overall effectiveness of carbon compensation, and setting uni-
form standards is conducive to better control the environmental impact of carbon emissions.

Optimize the structure of land use. Reasonably control the total amount and develop-
ment of construction land, rationally plan construction land, improve land use efficiency
and realize the economical and intensive land uses. For developed cities, it is necessary to
increase the areas of green space and rationally plan urban plant configurations to enhance
the carbon sinks.

Improve the policies on carbon emissions. As the state implements policies such
as the large-scale development of the western region and the revitalization of the old
industrial bases in Northeast China, it has strengthened the regional development synergy.
However, the regional distribution gap between carbon emissions and carbon absorption
has gradually widened, indicating that the government should strictly implement various
forest protection policies and quota logging systems to promote the continuous narrowing
of the gap between regional carbon emissions and carbon absorption and distribution.
At the same time, the protection and management of grassland ecosystems should be
strengthened and cultivated land protection mechanisms established. The development of
unused land and idle land and shift to land use types such as woodland, grassland and
cultivated land should be encouraged.

Cultivate citizens’ low-carbon awareness. The fifth report of the United Nations
Intergovernmental Panel on Climate Change (IPCC) states that human activities have
caused more than half of the global warming since the 1950s. It is urgent to establish
the values of low-carbon environmental protection and the responsibility of low-carbon
emission reduction. It is necessary to strengthen the publicity of low-carbon life and make
every citizen an advocate of this.
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