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Abstract: Accurate load forecasting is an important issue for the reliable and efficient operation
of a power system. In this study, a hybrid algorithm (EMDIA) that combines empirical mode
decomposition (EMD), isometric mapping (Isomap), and Adaboost to construct a prediction mode
for mid- to long-term load forecasting is developed. Based on full consideration of the meteorological
and economic factors affecting the power load trend, the EMD method is used to decompose the
load and its influencing factors into multiple intrinsic mode functions (IMF) and residuals. Through
correlation analysis, the power load is divided into fluctuation term and trend term. Then, the key
influencing factors of feature sequences are extracted by Isomap to eliminate the correlations and
redundancy of the original multidimensional sequences and reduce the dimension of model input.
Eventually, the Adaboost prediction method is adopted to realize the prediction of the electrical load.
In comparison with the RF, LSTM, GRU, BP, and single Adaboost method, the prediction obtained
by this proposed model has higher accuracy in the mean absolute percentage error (MAPE), mean
absolute error (MAE), root mean square error (RMSE), and determination coefficient (R2). Compared
with the single Adaboost algorithm, the EMDIA reduces MAE by 11.58, MAPE by 0.13%, and RMSE
by 49.93 and increases R2 by 0.04.

Keywords: power load forecasting; Isomap; Adaboost; differential empirical mode decomposition

1. Introduction

Power load forecasting is an important link in the optimal dispatching of power
systems. Accurate and timely forecasting can provide auxiliary decision support for the
construction progress of power supplies and power grids. At the same time, it is of great
significance to formulate an economic and reasonable power allocation plan, reduce the
operation cost of the power grid and ensure the power production and life. Mid- to long-
term load forecasting generally refers to forecasts in years and months [1]; load refers to
the change rate of energy with time, that is, demand or power. Load also refers to the total
amount of electricity sold by power enterprises, that is, electricity consumption. In view of
the large amount of stored electric energy, changes in load in the future should be predicted
in advance, that is, load forecasting [2]. According to the purpose and time of forecasting,
load forecasting is classified into short-term, medium-term, and long-term forecasting [3,4].
This study aims at medium-term load forecasting, which lasts one month to two years.

However, since the power load is affected by various external factors such as macroe-
conomics and meteorological conditions, medium- and long-term load forecasting is a
complex multidimensional problem [5]. Power grids and power corporations are facing
the replacement of power generation equipment as a result of the aggressive marketing
of new energy power generation. Accurate power demand forecasting can assist power
grids and power firms in locating low-load periods to connect new energy to the system.
As a result, proposing a medium- and long-term power load forecasting model with higher
forecasting accuracy is a pressing issue.
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Many articles have used the idea of machine learning to predict power load due to
the widespread application of machine learning in artificial intelligence [6,7]. Mr. Ling
proposed an Adaboost-based power system load forecasting method and demonstrated
its effectiveness [8]. The support vector regression (SVR) model is used to predict using
meteorological factors and historical related electric load data, proving the superiority of
the EMD method in short-term prediction [9]. In manifold learning, Isomap is an important
representative algorithm. It is primarily used to reduce data dimensionality and extract
features [10]. Electricity load data are complex and are affected by many economic and
meteorological factors. Semero et al. used EMD to decompose power load data into several
simple IMFs and then predicted the IMFs separately [11]. EMD is decomposed into multiple
IMFs to forecast separately, which increases the forecast time and breaks the regularity of
the power load data to a certain extent [12–15]. Short-term variations in power load are
affected by meteorological elements, whereas long-term trends in power loads are affected
by economic factors. The forecasting effect can be improved by effectively separating
meteorological and economic loads [16–19].

In order to improve the accuracy of power load forecasting, so that power companies
and power grids can build generation and supply facilities rationally, a new EMD-Isomap-
Adaboost power load forecasting model is proposed. First, meteorological and economic
data are decomposed by EMD, and the Isomap algorithm is used to reduce the dimension
of the decomposed data to select high-quality features. Second, EMD is used to decompose
the original power load data sequence into several simple data sequences. The decomposed
data are divided into meteorological item and economic item by correlation analysis.
The overall meteorological item presents a cyclic fluctuation trend, which is called the
fluctuation item. The trend item is an economic item that has an impact on the overall
trend of the electricity load. Finally, the Adaboost algorithm and the features chosen by
EMD–Isomap are used to predict the trend and fluctuation items, and the two predictions
are superimposed.

The main contributions and originalities of this paper are as follows:

(1) By applying the idea of “decomposition and integration”, EMD is used to decom-
pose the load and obtain the features of load at different frequency. Through cor-
relation analysis, multiple IMFs are integrated into two categories: trend item and
fluctuation item.

(2) This is the first study to suggest using EMD–Isomap to decompose meteorological
and economic features, then reducing the dimension to select high-quality features.

The following is the content arrangement of this study. The second part of the article
describes related work. The theoretical knowledge of EMD, Isomap, Adaboost, and the
EMDIA process is introduced in Section 3. Data and the experimental settings are intro-
duced in Section 4. The results and analysis are introduced in Section 5. Section 6 provides
a conclusion.

2. Related Work

Many researchers believe that machine learning methods have promising applications
in the field of energy prediction because they have demonstrated good performance in
finding potential rules and complex characteristics of data. Arash et al. used support
vector regression (SVR) to predict electrical load loads with high accuracy [20,21]. To
estimate power loads, Jihoon et al. used random forests and multilayer perceptrons and
achieved good results [22]. Li et al. combined and projected power load forecasts using
the XGboost approach and other methods and demonstrated XGboost’s superiority [23,24].
In addition, deep learning algorithms have been widely used in the field of electric load
forecasting, including deep neural networks (DNN) [25,26], long short-term memory
networks (LSTM) [27,28], and convolution neural networks (CNN) [29,30]. However, these
methods necessitate a large amount of data, a more complex model input, and a lengthy
training period. AdaBoost has a high level of accuracy, and the training error decreases
exponentially. AdaBoost, unlike the bagging and random forest algorithms, fully considers
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the weight of each classifier [31]. The AdaBoost technique has a substantially faster training
speed than deep learning and uses less data.

As a hot research topic in recent years, the “decomposition and integration” method
involves the decomposition of the original series into several components, the processing
of each component, and finally the integration of the prediction results for each component
to obtain the final result [32,33]. Li et al. decomposed the load series by wavelet transform
and then used the improved artificial bee colony optimization extreme learning machine
(ELM) to predict the power load [34]. After using wavelet decomposition, Peng et al. used
random forest to predict each component and then added them together [35]. The wavelet
analysis needs to select a certain wavelet base, and the selection of the wavelet base has
a great influence on the result of the whole wavelet analysis. Zhang et al. decomposed
the load data by EMD, predicted each IMF separately after decomposition, and achieved
good results [36,37]. After the EMD is decomposed and then predicted individually, a large
number of IMFs will increase the prediction time and may destroy the inherent regularity
of the power load to a certain extent.

Due to the nonlinear change of power load and multiple environmental and eco-
nomic information variables, with the increase inof network input variables, the model
convergence will slow down, and there will be an overfitting problem [38–41]. Zhang et al.
proposed using empirical mode decomposition (EMD) to decompose the sequence of
environmental factors to obtain the changes in data signals on different time scales and
reduce the non-stationarity of the sequence of environmental factors, followed by using
principal component analysis (PCA) to extract feature sequences [42]. Meteorological and
economic data are highly nonlinear data. The isometric mapping (Isomap) algorithm is
better than PCA for processing nonlinear data [43]. Isomap is an important representative
algorithm in manifold learning. It is mainly used for data dimensionality reduction and
feature extraction [44]. Therefore, this study proposes using EMD to decompose meteo-
rological and economic data, and then using Isomap to reduce and filter the decomposed
multidimensional data.

We may conclude from the preceding related work that employing the “decomposition
and integration” concept to forecast the load sequence is effective in separating the trend
and fluctuation items; on the other hand, EMD–Isomap is used to decompose meteorologi-
cal economic information, and dimensionality reduction is then used to choose high-quality
features, which are subsequently utilized to increase forecast accuracy. As a result, we
must decompose and combine the load, optimize the features, and then use the optimized
features to predict the separated trend term and fluctuation term separately, before adding
them all.

3. Applied Methodologies
3.1. The Principle of Adaboost

The Adaboost algorithm is an important feature classification algorithm in machine
learning that mainly solves the classification problem and the regression problem. The
algorithm has currently been applied to power system load forecasting [45] and traffic
volume forecasting [46], with promising results.

In this research, the Adaboost algorithm is adopted that takes a decision tree as a weak
learner. The specific steps of the Adaboost are as follows:

(1) First, a weak learning algorithm and a training set are given:
(x1, y1), (x2, y2), (x3, y3), . . . . . . , xi ∈ X, yi ∈ Y, where X and Y represent a domain or
instance space.

(2) Initialize the weights of N samples, assuming that the sample distribution Dt(i) is
uniform, Dt(i) = 1/ N. Dt(i) represents the weight of samples in the T times iteration,
and N is the number of samples in the training set.

(3) Under the probability distribution of training samples, the weak learner h3(x) is trained.
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(4) Calculate the error of the weak learner under each sample εi and average error

εt, εt =
1
N

N
∑

i=1
εi.

(5) Update sample weight:Dt(i) = Dt−1(i)βt
−εi

Zt
. Weak learner weight Wt = 1

2 ln(1/βt),

βt =
εt

1−εt
. Zt is the normalization factor of

N
∑

i=1
Dt(xi) = 1.

(6) Skip to step 3 and continue the next iteration until the number of iterations is T.
(7) According to the trained weak learners, the strong learners are combined

H(x) =
T
∑

t=1
wtht(x).

3.2. Empirical Mode Decomposition

Many factors influence the electricity load, including economic development, demo-
graphic changes, gross value of construction projects completed in that year, GDP, per
capita pay level, and the local working population. Temperature and precipitation are the
two parameters that have the greatest impact on meteorology. As an outcome, the overall
trend will be nonlinear and variable, disrupting the accuracy of power demand prediction.
Empirical mode decomposition (EMD), a data decomposition method proposed by Huang
in 1998, is applied in this study [47]. In recent years, the EMD method has been widely used
in various fields such as power load forecasting, power fault diagnosis, stock forecasting,
and photovoltaic energy generation forecasting [48–50]. The key idea of empirical mode
decomposition is to decompose the nonlinear fluctuation data into a residual term and a
relatively stable IMF through empirical identification. The IMF component should meet
two requirements:

(1) In the whole-time range of the function, the number of local extreme points and zero
crossings must be equal or at most one difference.

(2) At any time point, the mean of the upper envelope of the local maximum and the
lower envelope of the local minimum must be zero.

The decomposition process is as follows:
Step 1: Initial extraction.
The cubic spline interpolation function is used to fit the upper and lower envelope,

which is connected with the local maximum and minimum value and covers all the data be-
tween them. Let the first average value of the envelope be h11, the original data signal be M,
and the m11 component be the difference between the original data and the average value:

M− h11 = m11 (1)

Step 2: Repeat filtering.
Repeat the filtering until the components meet the IMF standard, that is, the number

of extreme values and zero crossings must be equal or at most 1, and then the envelope
average value must be 0. Mi(K−1) is the component of (K−1) filtering, hik is the mean of the
K filtering, and mik is the ith component that meets the IMF conditions after K filtering. It is
defined as the ith IMF component Li. The process of repeated s filtering is as follows:

mi(k−1) − hik = mik (2)

li = mik (3)

Step 3: module integration.
The filtering process will be repeated until the component or residual value is less

than the predetermined value or the residual becomes a monotonic function. When all
IMFs are extracted from the original data signal, the residual term R has the characteristics
of a long period and an obvious trend.
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Through this filtering process, the original data are divided into I empirical modes Li
(i = 1,......, n) and a residual term R, and Q is the final integration results, in which the value
of i is determined by the fluctuation nature of the data itself:

Q =
n

∑
i=1

Li + R (4)

3.3. The Principle of Isometric Mapping (Isomap)

The dimensionality reduction algorithm is applied in many fields, among which the
PCA algorithm is widely used, but the PCA algorithm is not effective for dealing with
nonlinear data, while the Isomap algorithm has good results in dealing with nonlinear data
such as meteorological and economic data. Isometric mapping (Isomap) is one of the most
representative manifold learning methods. It is mainly used to reduce the dimension of
nonlinear data and find out the low-dimensional structure hidden in high-dimensional
data [51]. Isomap is based on multiple dimensional scaling (MDS). The main idea of
Isomap is to calculate the shortest distance in the nearest neighbor graph to obtain the
geodesic distance and then use the MDS algorithm to obtain the representation of the
low-dimensional smooth manifold embedded in the high-dimensional space [52].

The steps of the Isomap algorithm are as follows:
Step 1: Calculate the Euclidean distance matrix between sample points and establish

the neighborhood relation graph G (V, e). For each Xi (i = 1, 2, . . . , N), calculate its
k-nearest neighbor Xi1, XI2, . . . , Xik, which is recorded as Nj. Take point Xi as the fixed
point and Euclidean distance D (Xi, Xij) as the edge to establish the neighborhood relation
graph G (V, e).

There are two methods of determining the nearest neighbors:

(1) Using ε-nearest neighbor, if ||Xi -Xj||2≤ ε, then the point pair Xi, Xj can be regarded
as the nearest neighbor.

(2) Using k-nearest neighbor, the number of nearest neighbor’s K is given in advance,
and then the nearest neighbor points are determined.

Step 2: Calculate the geodesic distance a to achieve the goal of finding the shortest
path in the nearest neighbor graph G (V, e)

dij =

{
dij

min
{

dij, dik + dkj

} ∀ Xj ∈ Ni or Xi ∈ N
otherwise

(5)

Step 3: The classical MDS method is used for distance D = (dij)N × N to obtain the
lowest dimension embedding Y = {y1, y2, . . . , yN}

3.4. The Full Procedure of the EMDIA Model

Since the prediction accuracy of the Adaboost algorithm depends on the choice of
eigenvalues [53], this study first uses EMD–Isomap to decompose and reduce the dimen-
sions of the economic and environmental data, remove the redundancy and noise of the
features, and generate new high-quality features for Adaboost. Second, this study cites the
idea of “decomposition and integration”. Using EMD to decompose the power load data,
the correlation is used as the basis for reconstruction. After the EMD decomposition, the
power load data are divided into trend items and fluctuation items, and the two items are
studied and forecasted separately. Based on the above two aspects, this paper proposes the
EMDIA method to predict the power load data.

The overall procedure of the proposed EMDIA model is presented as follows and
illustrated in Figure 1.

(1) The power load data are decomposed into IFM and residual by EMD.
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(2) The IMF and residual, meteorological factors, and economic factors are divided into
two groups through correlation analysis, with the trend term related to economic
factors and the fluctuation term related to meteorological factors.

(3) IMF and residual are formed by decomposing economic factors and meteorological
factors through EMD.

(4) All decomposed data are normalized. The normalization process is shown in Equation (6):

Xa(t) =
Xa(t) − minj{Xa(j)}

maxj{Xa(j)}− minj{Xa(j)}
(6)

(5) Isomap dimensionality reduction is used to select new high-quality features for
Adaboost using the normalized data.

(6) The Adaboost method, paired with the features after Isomap dimensionality reduction,
predicts the trend and fluctuation terms.

(7) Integrate the values predicted by the trend and fluctuation terms, as appropriate.
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Figure 1. Overall process of the proposed EMDIA model.

3.5. Model Evaluation Indicators

In this study, four evaluation indices were used to evaluate the prediction effect. The
four indices are the coefficient of determination (R2), the mean absolute error (MAE), the
mean absolute percentage error (MAPE), and the root mean square error (RMSE) where Lt
and are the actual and forecasted values of the load at time t and M is the total number of
data points used. The formulas of the four evaluation indicators are as follows:

R2 = 1−

M
∑

t=1

(
Lt − L̂t

)2

M
∑

t=1

(
Lt − Lt

)2
(7)

MAE =

M
∑

t=1

(
Lt − L̂t

)2

M
(8)

MAPE =

M
∑

t=1

|(Lt−L̂t)|
Lt

M
× 100% (9)

RMSE =

√√√√√ M
∑

i=1

(
Lt − L̂t

)2

M
(10)
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4. Data and Experiment Settings
4.1. Data Sources

The datasets used in the EMDIA algorithm include power load data, meteorological
data, and economic data. The power load statistics represent Hong Kong’s total electricity
consumption from 2000 to 2021. It is from the Hong Kong Census and statistics department
(https://www.censtatd.gov.hk/, accessed on 27 April 2022). Meteorological data include
four factors that have a great impact on power load: maximum temperature, minimum
temperature, average temperature, and precipitation. These are from the Hong Kong
Observatory (https://www.hko.gov.hk, accessed on 27 April 2022). Economic data include
four factors: GDP (million HKD), gross construction value in this quarter (million HKD),
per capita wages that year, and working population (10,000). These are from the Hong
Kong Census and statistics department.

4.2. Experiment Settings

The proposed model was evaluated on the Hong Kong dataset. Cross-validation was
adopted for performance evaluation, i.e., the dataset was partitioned into two isolated
subsets: the training dataset and the test dataset. The test data were not used in the training
model for fair performance comparison. The partition ratio of the training data and test
data was 7:3. Several classic algorithms and combinatorial algorithms were also simulated
for reference, including random forest, BP, GRU, LSTM, pure Adaboost, EMD–Adaboost,
EMD–PCA–Adaboost, EMDIA, and S-EMDIA (S-EMDIA: EMD-only decomposes economic
factors and meteorological factors and does not decompose power load data). Experiments
were conducted on 64-bit Windows 10 using MATLAB R2018a with an i7-7700hq CPU and
a GTX-1050 graphics card.

5. Results and Analysis
5.1. Results of EMD Decomposition Electric Load

Both economic and meteorological variables have a major influence on long-term
power load patterns, making them unpredictable. In general, the electrical loads can be
decomposed into trend term, fluctuation term, and stochastic term [54]. In this study, EMD
is used to decompose the original data of power load and decompose the trend term and
fluctuation term. Stochastic term represents an accidental error, and the actual value is very
small, which is not considered in this study.

Figure 2 clearly describes the original power load data and the four IMF terms and
residual terms after decomposition. The original power load data can be seen to be regular
and fluctuate with the monthly cycle to a certain extent. The overall pattern shows an
upward trend, which means that the power load is increasing with time. In order to
separate fluctuation items and trend items more accurately, the EMD method is used in
this study. The preceding steps show that the EMD method is employed to decompose the
load at low and high frequencies, respectively. We stacked the four high-frequency IMF
following EMD decomposition by correlation, which is referred to as the fluctuation term,
in this work. A “trend item” is the name for the residual term. The original power load
data are separated into fluctuation and trend terms in this manner.

5.2. Analysis of the Factors Affecting Power Load

The correlation coefficients among the attributes in use are shown in Figure 3. (O-original
load, P-periodic term, T-trend term, X-maximum temperature, N-minimum temperature,
A-average temperature, E-precipitation, G-GDP, C-gross construction, W-per capita wage,
K-working population)). There is a correlationare correlations between the initial power
load data, meteorological data, and economic data, as can be observed. In the correlation
study using the meteorological and economic data, however, the fluctuation and trend terms
following EMD decomposition were considerably improved. After EMD decomposition,
the correlation values with X, N, A, and E increased by 0.03, 0.02, 0.02, and 0.03 respectively.
After EMD decomposition, the correlation values with C, W, and K increased by 0.6, 0.5,

https://www.censtatd.gov.hk/
https://www.hko.gov.hk
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and 0.6 respectively. These findings show that EMD is effective in separating trend terms
and fluctuation terms.
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The meteorological and economic series data in the experimental samples are non-
stationary signals that are affected by weather changes and economic policies and have
certain randomness and mutation. To emphasize the local features of the original mete-
orological and economic series, EMD is used to decompose the original meteorological
and economic series data to obtain the IMF component and residual component of each
environmental and economic factor data.

5.3. EMD-Isomap for Feature Decomposition and Dimensionality Reduction

Figure 4 shows that after EMD decomposition, at least four IMF subsequences and
one trend item sequence are obtained for each feature. Obviously, the frequency of each
subsequence is different. The original sequence of meteorological factors shows a periodic
fluctuation with time. For the original sequence of economic factors, there is no definite
cycle fluctuation, but the trend fluctuates. First, eight influencing factors are decomposed
through EMD decomposition. Second, through EMD decomposition, the original influenc-
ing factors are decomposed into 8 residuals and 40 IMFs. On the one hand, these 48 features
increase the amount of feature sequences, but they also increase the size of the input vari-
ables. On the other hand, when making a forecast, the calculation time is increased. In
order to improve prediction accuracy, preserve the Adaboost model’s calculation speed,
and address the problem of over-fitting, dimension reduction is required.
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Figure 4. Results of the EMD decomposition of factors affecting power load. (A) is the EMD
decomposition result of A, X, P, K (A-average temperature, X-maximum temperature, P-periodic term,
K-working population). (B) is the EMD decomposition result of N,E,G,W(N-minimum temperature,
E-precipitation, G-GDP, C-gross construction, W-per capita wage).
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5.4. Feature Importance Analysis

The decision tree is employed as the basic learner for Adaboost in this study. People
can explain the prediction findings of a decision tree model, which is a type of white
box model. As a part of interpretability attributes, feature importance is an index of the
contribution of each input feature to the prediction results of the model, that is, how small
changes in a feature change the prediction results. Figure 5 demonstrates the contrast of
feature importance before and after EMD–Isomap. Before Isomap dimensionality reduction,
there are eight features, and only two features with feature importance greater than 10%.
The importance of X is 30%, and the importance of A is 50%. The importance of W, C, and
E is close to zero, which has little impact on the prediction results.
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The environmental and economic sequence data in the experimental samples are non-
stationary signals, are affected by weather changes and economic policies, and have certain
randomness and sudden change. There are strong correlations between environmental
data A, E, X, and N. There are also correlations between economic data G, C, W, and K. To
emphasize the characteristics of the different time frequencies of the original data, this study
utilized EMD to decompose the original environmental and economic data and obtain the
IMF component and residual component for each piece of environmental and economic
factor data. Eight features are extracted following EMD decomposition and Isomap dimen-
sionality reduction, and each feature’s relevance is larger than 10%, demonstrating that
each feature value after Isomap has enormous implications for the prediction results. These
eight features are orthogonal to each other and are not related to each other. The above
results show that after EMD decomposition and Isomap dimensionality reduction, each
new feature is important for predicting results.

5.5. Prediction Results and Analysis of Different Algorithms

The algorithm parameters involved in the comparison in Table 1 are set as follows:

• Random forest settings: number of trees = 100, maximum depth of tree = 30, maximum
number of leaf nodes = 50.

• BP settings: learning rate = 0.1; number of iterations = 1000, number of hidden layer
neurons = 100.
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• GRU settings: hidden layer = 2, number of neurons = 64, stride = 7, epoch = 120,
learning rate = 0.01.

• LSTM settings: LSTM network = 1, number of neurons = 20, learning rate = 0.001.
• Adaboost settings: base learner = decision tree, number of base learners = 100, learning

rate = 1.

Table 1. Comparison of Evaluation Indicators between EMDIA and Other Algorithms.

Algorithm MAE MAPE (%) RMSE R2

RF 476.42 3.85 574.46 0.91
BP 1041.74 7.62 1048.14 0.84

LSTM 624.93 4.59 912.62 0.87
GRU 438 3.49 563.80 0.95

Adaboost 16.58 0.13 57.83 0.95
EMD-Adaboost 10.69 0.1 37.33 0.96

S-EMDIA 11.2 0.08 24.27 0.99
EMD-PCA-Adaboost 426.53 3.35 573.90 0.95

EMDIA 5.0 0.0003 7.9 0.99

Table 1 lists the simulation results, from which we can observe that the proposed
model outperforms all reference forecast models in all simulated scenarios, which verifies
the effectiveness of the proposed model.

(1) When the Adaboost method is compared with the RF, BP, LSTM, and GRU algorithms,
the results show that the RMSE, MAE, and MAPE indicate that the error is smaller.
The R2 of Adaboost is higher than any other algorithms, and it is the closest to 1. The
MAE of Adaboost is 16.58, the MAPE is 0.13%, and the RMSE is 57.83. The MAE of
RF was 476.42, the MAPE was 3.85%, and the RMSE was 574.46. The MAE of BP was
1041.74, the MAPE was 7.62%, and the RMSE was 1048.14. The MAE of the LSTM
is 624.93, the MAPE is 4.59%, and the RMSE is 912.62. The MAE of GRU was 438,
the MAPE was 3.49%, and the RMSE was 563.80. The three evaluation indicators of
Adaboost are lower than RF, BP, LSTM, and GRU. The above shows that the Adaboost
algorithm is the most applicable in this study.

(2) When comparing the EMD–Adaboost algorithm to Adaboost, the results in Table 1
reveal that Adaboost after EMD has a better prediction impact than Adaboost alone.
EMD–Adaboost reduces MAE by 5.9%, MAPE by 0.02%, and RMSE by 20.5% and
improves R2 by 0.01, demonstrating that EMD is crucial in power load forecasting.

(3) When the MAE index is nearly comparable, the S-EMDIA algorithm improves R2 by
0.03, MAPE by 0.02%, and RMSE by 13.06% when compared with EMD–Adaboost.
The findings of the comparison reveal that after EMD–Isomap, new features are chosen
to participate in the prediction, which can improve the accuracy of the prediction
results to some extent.

(4) The approaches in the literature [42] were also compared in this study. In contrast
to EMDIA, EMD–PCA–Adaboost reduces feature dimensionality using PCA rather
than Isomap. The experimental results are shown in Table 1. The R2 of EMD–PCA–
Adaboost is 0.95, MAE is 426.53, MAPE is 3.35%, and RMSE is 573.90. Each indicator
of EMD–PCA–Adaboost has a disadvantage when compared with EMD–Adaboost,
implying that PCA may not be suitable for nonlinear data dimensionality reduction.
The prediction accuracy of Adaboost was not improved by the new features after
EMD–PCA. In comparison with EMDIA, the indicators’ disadvantages are more clear,
demonstrating the usefulness and necessity of Isomap in this method.

(5) Compared with S-EMDIA, the MAE of EMDIA is decreased by 6.2, the MAPE is
decreased by 0.08%, and the RMSE is decreased by 16.37. The R2 of EMDIA and
S-EMDIA are both 0.99. Table 2 illustrates the forecast results for the IMF, the trend
term, and the fluctuation term. Compared with IMF1-IMF4, the prediction result of
the fluctuation term reconstructed by correlation analysis shows a great improvement
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in R2, and the effects of the other three evaluation indicators (MAE, MAPE, and RMSE)
all decrease to a certain extent. In this study, the trend term is the residual term, the
value of R2 is 0.93, the value of MAE is 111.68, the value of MAPE is 41.6%, and the
value of RMSE is 39.52. These show that after EMD, the trend and fluctuation terms are
produced by correlation analysis, which considerably increases prediction accuracy.

Table 2. Forecast results for IMF, trend term, and fluctuation term.

Forecast Target MAE MAPE (%) RMSE R2

IMF1 372.24 471.64 473.01 −0.28
IMF2 658.27 79.94 1030.86 0.84
IFM3 201.35 3761.89 912.62 0.83
IMF4 47.37 407.3 73.94 0.82

Residual (trend term) 3.14 0.02 5.58 0.99
fluctuation term 111.68 41.6 39.52 0.93

The MAPE results for specific RF, BP, LSTM, GRU, and Adaboost are 3.85%, 7.6%,
4.59%, 3.49%, and 0.12%, respectively. The MAPE of EMDIA is 0.0003%. The MAE
results for RF, BP, LSTM, GRU, and Adaboost are 476.42, 1041.74, 624.93, 438, and 16.58,
respectively. The MAE of EMDIA is 5.0. The RMSE results for RF, BP, LSTM, GRU, and
Adaboost are 574.46, 1048.14, 912.62, 563.80, and 57.83, respectively. The RMSE of EMDIA is
7.9. The R2 results for RF, BP, LSTM, GRU, and Adaboost are 0.91, 0.84, 0.87, 0.95, and 0.95,
respectively. The R2 of EMDIA is 0.99. Figure 6 shows the prediction results for EMDIA,
BP, RF, Adaboost, LSTM, and GRU. The forecast time is in months. The results show that
the predicted value of EMDIA has the best fitting effect with the original value, and the
error is also the smallest, while the fitting effect of BP is the worst. The Adaboost algorithm
is optimized for smoother curve fitting and higher accuracy.
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6. Conclusions

Power load forecasting is of great significance to smart grids. In this study, a prediction
model based on the idea of “decomposition and integration” and “feature decomposition
and dimensionality reduction” is proposed, that is, EMDIA. The model combines Adaboost,
EMD, correlation analysis, and Isomap. Through the comparison of the proposed method
with other algorithms, we draw conclusions as follows:

(1) The EMD of the load sequence can effectively separate the complex information
contained in the original sequence, and the decomposition quantity is divided into
trend items and fluctuation items by correlation analysis. This effectively reduces the
model calculation time and improves the prediction accuracy.

(2) Using the EMD–Isomap algorithm, the nonlinear meteorological and economic data
are decomposed to obtain multidimensional features. Then, the Isomap algorithm is
used to reduce the dimensions and select the features to obtain new features. This
effectively removes noise and redundancy in the features. The experimental results
verify the effectiveness of EMD–Isomap.

(3) The EMDIA approach has excellent accuracy in power load forecasting and can better
predict the load trend, indicating that it has a promising future application in medium-
and long-term power load forecasting.

The experimental results show that the MAPE of the EMDIA decreases to 0.0003%,
MAE decreases to 5.0, RMSE decreases to 7.9, and R2 increases to 0.99, which shows much
better performance than traditional Adaboost. In the meantime, compared with the BP,
RF, LSTM, and GRU algorithms, the four evaluation indexes of the proposed method
are superior, which proves that the proposed method is potentially useful for power
load forecasting.

This study estimates Hong Kong’s medium- and long-term power load, with the goal
of addressing the challenging issue of new energy grid connection in Hong Kong. Accurate
load forecasting data can be used to guide the installation time, installed capacity, power
grid design, and building of new energy-generating units in Hong Kong.

In future work, we will continue to study the decomposition and dimension reduction
selection of eigenvalues. On the premise of not destroying the regularity of eigenvalues
as much as possible, we will remove noise and redundancy in eigenvalues to obtain new
features, which will further improve the accuracy of the model.
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