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Abstract: In this paper, we apply game theory to study the price competition between drugstores and
hospitals in China’s pharmaceutical supply chain. Motivated by drug shortages and price disparity
problems, we build a simplified model with one supplier, one hospital, and one drugstore in which
the sellers sell one kind of drug and compete on price. The hospital receives a discount from the
government when ordering the drug and both sellers face a price-sensitive and uncertain demand.
The existence and uniqueness of a Nash equilibrium are proved and closed-form solutions are found
for linear demand cases. We characterize the pricing and ordering decisions of the hospital and
drugstore. The analysis shows that high ex-factory price, high price sensitivity, and a small discount
are three factors contributing to drug shortages. We consider two special kinds of linear demand to
obtain insights into the drug price disparity problem.

Keywords: pharmaceutical supply chain; pricing; game theory; price-sensitive and uncertain demand

1. Introduction

In 1987, the World Commission on Environment and Development proposed the con-
cept of “sustainable development”, which refers to development that meets the needs of the
present without compromising the ability of future generations to meet their own needs [1].
This statement declares that sustainable development is a balanced strategy among prof-
itability, environmental protection and social responsibilities [2]. It involves many aspects
of human activities which have brought ever-lasting awareness among government, indus-
try, and the general public [3]. As a system involved in supplying products or services to
consumers [4], the sustainable performance of a supply chain has been discussed in recent
years. Facing the challenge of environmental dynamism, various collaboration mechanisms
are needed in industrial supply chains to achieve sustainable goals such as emission peak
and carbon neutrality, which are urgently required in developing economies [5–8].

Compared to other industries, the pharmaceutical industry is not only responsible
for the development and manufacturing of medications, but also improving healthcare
access. Thus, apart from pursuing maximum profits, the accessibility of medical prod-
ucts is also taken into consideration for participants in the pharmaceutical supply chain.
This study mainly focuses on China’s pharmaceutical supply chain. In 2000, China had
16,318 public hospitals [9]. This number increased rapidly to reach 37,000 in 2020. The
growing need for healthcare also led to a thriving pharmaceutical industry. At the end of
2020, the number of medical manufacturer has reached 8170, with an annual gross output
of 228.682 billion yuan [10]. In response to the development of the pharmaceutical industry,
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China’s government has promoted the reformation of the pharmaceutical supply chain.
Traditionally, pharmaceutical retailers at different levels purchased drugs from different
wholesalers, so the supply chain lacked competitive mechanisms, resulting in bureaucratic
behavior, inefficiencies, and an imbalanced supply [11]. In the reformed pharmaceutical
supply chain (see Figure 1), drug manufacturing firms can directly sell medical products to
hospitals and drugstores [12]. This reformation has gradually changed the supply chain
from a government-controlled system to a market-oriented one, which has improved its
flexibility and reliability.

Figure 1. Reformed pharmaceutical supply chains in China.

1.1. Motivations

Despite the improvements in China’s pharmaceutical chain, some problems have
occurred in recent years. A social media user called Renmin Zixun reported that some drugs
were out of stock in hospitals [13]. The situation was even worse when methimazole, which
is the first choice for treating hyperthyroidism, began to go out of stock in some major
cities [14]. In addition to shortages, the price gap between drugstores and hospitals for the
same kinds of drugs is also noteworthy. Due to the lower operational cost, drugstores often
sell drugs at lower prices than hospitals do. However, in some cases a drugstore’s selling
price can be four or five times as expensive as that of a hospital [15]. This can make drugs
unaffordable for people who do not have time to see a doctor, which has led to several
complaints from the public.

Motivated by such issues, we address the following questions in this paper:

• How can a mathematical model be developed to depict pricing and production de-
cisions in China’s pharmaceutical supply chain with price-sensitive and uncertain
demand?

• How do factors such as price sensitivity, ex-factory cost or governmental discounts
influence the optimal decisions of drug retailers?

• Which factors have contributed to the drug shortage problem?
• Why do drugstores sometimes charge much more for a drug than hospitals do?

Ref. [16] has provide an excellent discussion of the newsvendor pricing game, we
apply their methodologies to depict the competition between drugstores and hospitals in
China’s pharmaceutical supply chain. In this paper, we consider the price competition
between one hospital and one drugstore that obtain a single kind of drug from one drug
wholesaler. Each of the two retailers faces a price-sensitive and uncertain demand and
needs to decide both the order quantity and price to maximize its profit. As public hospitals
in China are often state-owned and regarded as social welfare agencies, they may receive
government discounts when purchasing drugs.

This study derives a strategic model to analyze the drug shortage and price disparity
problems. The research objectives could be stated as follows:

• Describing the drug pricing competition between drugstores and hospitals in China’s
pharmaceutical supply chain.
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• Obtaining the optimal strategies of participants in pharmaceutical supply chain and
analyzing the influential factors of optimal prices, order quantities, profits and satis-
faction rates.

• Identifying the main reasons for drug shortage and price disparity problems in China
and providing suggestions for solving the problems.

1.2. Contributions

In this study, we investigate the existence and uniqueness of the pricing equilibrium
and obtain the closed form of optimal prices in a linear demand case. This result depicts the
pricing strategies of hospitals and drugstores and thus provides some insights into drug
shortage and price disparity problems.

The main contributions of this paper are as follows:

• Building a pricing model in China’s pharmaceutical supply chain with price-sensitive
and uncertain demand considering governmental discount.

• Proving the existence and uniqueness of a pure-strategy Nash equilibrium in the game
and deriving the closed form of two sellers’ optimal prices under the assumption of
linear uniformly distributed demand.

• Analyzing the impacts of ex-factory price and government discounts on optimal prices
and satisfaction rates to obtain insights on the drug shortage problem.

• Analyzing the impacts of price sensitivity on optimal prices, order quantities, expected
profits, and satisfaction rates in two special cases of linear demand to provide insights
into the price disparity problem.

• Providing suggestions for how the government can act to avoid drug shortage and
price disparity problems.

After elaborating on the motivations and contributions of our research, the remainder
of this paper is organized as follows. In Section 2, we review some important works
that describe the present situation of China’s pharmaceutical industry and the strategic
newsvendor model that we use in our analysis. Section 3 presents research methods of
the paper together with model descriptions and assumptions. Section 4 contains model
formulation and equilibrium analysis. Two kinds of linear demand function are discussed
and some insights into the drug shortage and price disparity problems are provided.
Section 5 provides a numerical analysis of the results in Section 4 and further explains
the causes of the problems. Section 6 presents our conclusions, implications and some
suggestions for future research.

2. Literature Review

A typical pharmaceutical supply chain may contain some or all of the following
parts: primary manufacturers, secondary manufacturers, market warehouses (distribu-
tion centers), wholesalers, and retailers [17]. Only a few studies have considered the
pharmaceutical supply chain in a particular country or region. Ref. [12] discussed the
performance and distortions of the pharmaceutical market in China’s health system reform.
They concluded that the key factor in market and government failures is that all suppliers
prefer higher-than-cost drugs, a problem that could be solved by introducing a new drug
pricing mechanism. Ref. [18] analyzed the impact of radio frequency identification in Asia
and Europe, leading to a better understanding of customer needs and buyer behavior in
the context of pharmaceutical suppliers. Ref. [19] studied the sustainable performance
of Ethiopian healthcare supply chain. Through a modeling approach, the bottlenecks of
environmental supply chain could be identified. Other studies have mainly focused on
the operational aspects of general pharmaceutical supply chains, which can be divided
into long-term, mid-term, and short-term decisions [20]. Based on the research objectives,
this sections mainly reviews the operations research of pharmaceutical supply chain and
different approaches on newsvendor problem.
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2.1. Long-Term Decision Problems on Pharmaceutical Supply Chain

Long-term decision problems, also known as strategic issues, mainly concern supply
chain network design and capacity planning [21]. Pharmaceutical supply chain network
design considers the co-ordination of participants in different countries. Mixed integer
linear programing (MILP) models have been established to investigate problems such as
plant operations [22], capacity-expansion planning [23], and product allocation or distribu-
tion [24,25]. Various assumptions were made in these studies, such as continuous time [22],
the uncertainty of data and outsourcing of production [23], and different distribution
costs and tax rates in different locations [25]. Motivated by these works, other researchers
have established bi-objective MILP (BOMILP) models to handle pharmaceutical supply
network design problems with uncertain parameters [26,27]. As the problems are often
too large to be tractable in a reasonable time, researchers have often used decomposition
algorithms to obtain acceptable results. For the capacity planning problem, ref. [28] de-
scribed a deterministic model for allocating newcomers to existing sites. They claimed
that taxation can have a huge effect on location decisions. Ref. [29] extended their work
with a systematic programming approach to handle the situation of long-term, multi-site
capacity planning under uncertainty and established a hierarchical algorithm to deal with
the large-scale MILP problem. Ref. [30] built a stochastic model to describe the problem of
clinical trials. They assumed that drugs went through different stages in their life cycles
and trials of products would be completed at different times. They solved a four-product
problem but their approach was limited by the complexity of the model. Refs. [31,32]
considered the capacity planning problem of active pharmaceutical ingredients and final
drug products. With uncertain clinical trial outcomes, they proposed an MILP formulation
to ensure production capacity to meet uncertain demands and a decomposition algorithm
for industrial-scale problems.

2.2. Short-Term Decision Problems on Pharmaceutical Supply Chain

Studies of short-term decisions have mainly included scheduling or sequencing deci-
sion problems, in which the decision-maker needs to decide a combination of variables,
such as assignment to production lines, the number and size of batches, the length of
campaigns, and material flows [20,33]. Ref. [34] considered the production planning and
scheduling problem in multi-purpose batch chemical plants that can accommodate different
products in many ways. Given the production requirements, they established a computer
program to obtain production strategies and allocation times. Ref. [35] considered the
scheduling problem of multistage batch plants, in which the optimal production policy to
satisfy the demands for different products must be found before due dates. They proposed
an MILP model with continuous time and established two solution strategies to solve it
in a reasonable time. As realistic sizing problems are often too large to be tractable, re-
searchers have turned their attention to the techniques for solving such problems. Ref. [36]
summarized techniques that are useful for the design, planning, and scheduling of batch
processes. They analyzed the performance of different approaches to solving MILP and
MINLP problems in various contexts and gave some examples to illustrate them. For
a large-scale MILP model for scheduling chemical batch processes, ref. [37] proposed
an LP-based heuristic algorithm to reduce the size of the problem for which the optimal
solution can be obtained within reasonable CPU-time.

2.3. Mid-Term Decision Problems on Pharmaceutical Supply Chain

The main considerations of mid-term decisions in pharmaceutical supply chains are
product portfolio selection and inventory control problems [20]. For the first problem, if
a pharmaceutical company wants to achieve sustainable development, it is necessary for
it to manage its R&D processes. Thus, the choice of which products should be included
in development projects is of great importance. Ref. [38] built a stochastic optimization
model to depict pharmaceutical R&D processes, in which the development of new drugs
is controlled by a series of continuation/abandonment options that determine whether
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to proceed with development. They proposed a framework to guide the decisions in
real cases and showed that the value of the abandonment option increased as market
uncertainty increased. With the objective of maximizing profits at an acceptable level of
risk, ref. [39] proposed a portfolio management approach to decide which projects should
be selected. They established a probabilistic network model to depict all of the activities
and resources involved in developing a new drug and built a genetic algorithm-based
search for the optimal sequence with product dependencies and limited resources. Instead
of finding exactly one group of decisions under certain conditions, ref. [40] concentrated on
improving the quality of pharmaceutical resource management decisions and practices in
the pharmaceutical R&D pipeline. They proposed a simulation–optimization framework to
simulate the pharmaceutical workflow process. This framework contained both a resource
manager and a strategy learner, and it obtained and improved scheduling and resource
allocation control policies by learning from optimization agents. Ref. [41] considered
another important aspect of the pharmaceutical R&D pipeline: the clinical trial planning
problem. Given a portfolio of potential drugs and limited resources, they proposed a multi-
stage stochastic programming formulation to decide which trails to perform in each period.
They used a reduced set of scenarios to reduce the size of the problem and proposed a
branch cut algorithm in a subsequent study [42]. The main ideas and approaches to product
portfolio selection are well summarized in [43].

Another aspect of mid-term decisions in pharmaceutical supply chains is the inventory
control problem. Different from the common situation, inventory control in a pharma-
ceutical supply chain may require a high level of customer service to manage perishable
products [44]. To depict the situation for an inpatient hospital, ref. [45] considered a two-
stage inventory management problem with perishable raw materials and finished goods in
each stage. They developed a Markov decision process to decide optimal inventory and
production policies for both stages and applied the framework to the drug Meropenem.
Ref. [46] established a model with one company and one hospital, in which production and
distribution were continuously reviewed and multiple products, variable lead times, and
permissible payment delays were considered. To minimize the total cost, they developed
a procedure to determine optimal solutions with constraints on space availability and
customer service level, which could be used as a decision support tool. Instead of finding
solutions for a general model, ref. [47] studied a hospital’s inventory policy in detail. They
established a multi-product (s, S) model to obtain optimal allocations. They also claimed
that the expected number of daily refills, the service level, and storage space utilization
could be key performance indicators of tactical decisions that could be used to analyze the
tradeoffs among the refill workload, emergency workload, and variety of drugs offered.

2.4. Newvendor Problem with Different Approaches

In this paper, a model based on the newsvendor problem is established to depict
price competition between hospitals and drugstores. When reviewing the literature on
pharmaceutical supply chain analysis, we did not find any studies similar to ours, but some
studies have considered the newsvendor problem. We review some of them in the rest of
this section.

The origin of the newsvendor problem can be traced to the 19th century [48]. It origi-
nates from a decision problem relating to how many newspapers a newsboy would order
when facing a market with random demand. If he ordered too many, some newspapers
would be discarded, but if the order quantity was too small, some customers would not
get their newspapers, causing a loss of profit. Given the distribution of demand and
selling price, the problem can be solved. Its closed-form solutions and conclusions were
summarized by [49].

As the newsvendor model is widely used in operations management and applied
economics, it is natural for researchers to consider it with different assumptions and
constraints. Several researchers have discussed models with different demand functions.
Ref. [50] assumed that the deterministic part of demand was a decreasing function of price
and obtained closed-form solutions for a special kind of symmetrically distributed demand.
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Ref. [51] considered a similar demand function with constant variance and explained why
uncertainty often leads to a lower optimal selling price. Ref. [52] considered two more
detailed structures of price dependent demands—the linear demand and the empirical
demand—and proposed algorithms to find solutions.

Some other studies have considered sellers with different profit functions. The most
representative of these is [53]. The authors changed the objective of sellers from “maximiz-
ing profit” to “maximizing the probability of achieving a certain profit” and worked out the
closed-form solutions of the optimal order quantity with exponentially distributed demand.

Different constraints have also been considered by researchers. Ref. [54] considered
the multi-product problem with a constraint that requires the seller to have stock not lower
than a certain level. In follow-up work, ref. [55] provided four efficient algorithms to solve
the single-period problem with one constraint.

Researchers have also studied price competition in the newsvendor model. Ref. [56]
studied the interaction between the newsvendor model and game theory. They modeled
the problem with competition among N retailers, each facing a random demand, and
analyzed the performance of a competitive decentralized supply chain, concluding that
with an appropriate contract, a decentralized supply chain can act as well as a centralized
chain. Ref. [16] proved the existence and uniqueness of equilibrium in a competitive game
and showed that competition leads to a lower selling price at the equilibrium point by
comparing it with a cooperative relationship between suppliers and sellers.

In addition to the classic research on the newsvendor problem, researchers have
combined traditional methods with new techniques. Ref. [57] considered a data-driven
newsvendor problem in which the demand was drawn from a random, independent
sample. They analyzed the sample average approximation (SAA) approach and claimed
that the demand distribution’s weighted mean spread affects the accuracy of the SAA
heuristic. To deal with a newsvendor problem in which the probability distribution of
demand is unknown, ref. [58] proposed a deep learning algorithm in which demand
forecasting and inventory-optimization were integrated. In numerical experiments, their
algorithm was able to run without knowledge of the demand distribution and outperformed
other approaches.

2.5. Research Gap

For operations research in the pharmaceutical supply chain, LP-based models such as
MILP [22–25,29,31,32,35] or BOMILP [26,27] are established to investigate long-term and
short-term decision problems such as network design, capacity planning and scheduling.
For mid-term decision problems, stochastic optimization models [38,39,41] or decision
processes [45,46] are applied to investigate product portfolio selection and inventory control
problems, respectively.

This paper aims to investigate the pricing and production decisions of drugstores and
hospitals in China’s pharmaceutical supply chain, which belongs to the inventory control
problem. In this area, researchers are mainly focused on optimal strategies of the hospital
with perishable pharmaceutical products [45,47], or the interaction between upstream and
downstream participants in the pharmaceutical supply chain [46]. However, few studies
have considered the pricing competition between pharmaceutical retailers.

The innovation of this paper is mainly in applying game theory to a newsvendor
model in China’s pharmaceutical supply chain, focusing on the perspective of pricing
and production decisions with price-sensitive and uncertain demand. In addition to the
optimal prices and quantities, this paper also focuses on the drug shortage and price
disparity problems in China and studies their contributing factors, corresponding with
some managerial implications.

3. Research Methods

This paper applies game theory to study the price competition between retailers in
China’s pharmaceutical supply chain. The methodology is interpretivism as a newvendor
pricing model with uncertain demand is established to depict the interaction between
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hospitals and drugstores. The methods of this study involves four produces. Firstly,
it describes the problem and presents the assumptions. Secondly, it derives the model
formulation to get the optimal order quantities of participants in pharmaceutical supply
chain and analyzes the equilibrium by game theory. Thirdly, two special kinds of linear
demands are discussed and the closed-form of pricing decisions are derived to depict the
competition between pharmaceutical retailers. Lastly, it numerically analyzes the influence
of ex-factory prices, governmental discounts and market sensitivity on optimal prices,
profits, order quantities and satisfaction rates. The results provide some insights in drug
shortage and price disparity problems and some managerial implications in pharmaceutical
supply chain.

3.1. Problem Description

From Figure 1 we see that there are two types of drug distribution in China. One is
from domestic drug manufacturing firms to wholesalers, who then distribute the drugs to
hospitals and drugstores. The other is directly from manufacturing firms to hospitals and
drugstores. In both cases, patients obtain their drugs from hospitals or drugstores. Without
loss of generality, we could merge the manufacturing firms and wholesalers in Figure 1
into one to simplify the problem (see Figure 2).

Figure 2. Simplified pharmaceutical supply chains in China.

To concentrate on the key issues of the problem, we consider a simplified supply chain
of one hospital and one drugstore, where the objective of each player is to maximize its
profit. Each of them sells only one kind of drug with price-sensitive and uncertain demand.
Drugs are provided by a single supplier with infinite production capacity. The decision
variables of the sellers include order quantity and selling price. However, the supplier
decides the ex-factory price, which is exogenous for the distributors.

We further assume that patients have only two choices: one is to see a doctor at
the hospital and obtain drugs there, the other is to go to the drugstore directly to buy
the drug. The hospital, acting as a social welfare agency, receives a price discount from
the government.

In our model, the sellers have the same goal to maximize their total profit. The process
is as follows: first, the pharmaceutical supplier sets the ex-factory price of the drug; then,
facing random demand, the two sellers simultaneously first decide their order quantities
and then their selling prices [59].

Our notations are listed in Table 1:
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Table 1. Model notations.

Symbol Description

c Ex-factory price for the supplier
φ Discount factor for the hospital, where the hospital gets a marginal cost of φc, φ ∈ (0, 1]
pd Selling price for the drugstore
ph Selling price for the hospital
Qd Order quantity for the drugstore
Qh Order quantity for the hospital
p∗d Optimal selling price for the drugstore
p∗h Optimal selling price for the hospital
Q∗d Optimal order quantity for the drugstore
Q∗h Optimal order quantity for the hospital
Ad Reliability factor of the drugstore
Ah Reliability factor of the hospital
Dd Deterministic part of the drugstore’s demand, also represented as Dd(pd, ph, Ad)
Dh Deterministic part of the hospital’s demand, also represented as Dh(pd, ph, Ah)
ed Price elasticity of the drugstore’s demand
eh Price elasticity of the hospital’s demand
ξd Random part of the drugstore’s demand
fξd

Density function of ξd
Fξd

Cumulative distribution function of ξd
ξh Random part of the hospital’s demand
fξh

Density function of ξh
Fξh

Cumulative distribution function of ξh
r∗d(ph) Best response function of the drugstore
r∗h(pd) Best response function of the hospital
RDd Drugstore’s demand, where RDd = Dd · ξd
RDh Hospital’s demand, where RDh = Dh · ξh
Πd Expected payoff of the drugstore, also represented as Πd(pd, ph, Qd)
Πh Expected payoff of the hospital, also represented as Πh(pd, ph, Qh)
Πs Expected payoff of the supplier, also represented as Πs(c)

This model is a static non-cooperative game with pricing, where each of the players
can make his decision only once. The two common ways to depict random demands with
pricing are the additive form defined by RD(p, ξ) = D(p) + ξ [51] and the multiplicative
form defined by RD(p, ξ) = D(p) · ξ [60]. The demand is described as a deterministic
part (decreasing with p) adds (or multiplies) a random part ξ. In our model, we use the
multiplicative form to describe the demand.

3.2. Assumptions

In this section, we state the assumptions of our basic model and provide comments on
some of them. Assumptions 1 and 3–5 are demand related assumptions which also appear
in [16,56].

Assumption 1. Assumptions on the random variable ξd and ξh:

1. ξd and ξh are independent of pd and ph, furthermore, E[ξd] = E[ξd] = 1. So E[RDd] =
Dd(pd, ph, Ad), E[RDh] = Dh(pd, ph, Ah).

2. ξd and ξh are uniformly distributed on [1− σd, 1 + σd] and [1− σh, 1 + σh] respectively,
where σd ∈ [0, 1] and σh ∈ [0, 1].

Assumption 1.1 claims that although the overall demand trends are determined by
selling prices, the demands fluctuate randomly. How the real demand varies is controlled
by the distribution of a random variable. Assumption 1.2 states that the random demand
is uniformly distributed among [(1− σd)Dd, (1 + σd)Dd] or [(1− σh)Dh, (1 + σh)Dh]. Note
that if σd = σh = 1, the demand will uniformly vary from 0 to 2Dd (or 2Dh), which could
contain the situation that there is no demand for the drug in the period.
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Assumption 2. pd and ph are defined on [c, pd] and [φc, ph]. Here, pd and ph are the maximum
selling price of drugstore and hospital, respectively.

This assumption makes sense for China because the price of self-pricing pharmaceuti-
cals is governed by the National Development and Reform Commission’s regulations. This
prevents the drug sellers from increasing the price without limitation. This assumption is
also coincide with [16].

Assumption 3. Assumptions on the demand function Dd and Dh:

1. Dd is twice continuous differentiable in pd on [c, pd], so is Dh in ph on [φc, ph].

2. ∂Dd(pd ,ph ,Ad)
∂pd

< 0, ∂Dh(pd ,ph ,Ah)
∂ph

< 0.

3. ∂Dd(pd ,ph ,Ad)
∂ph

> 0, ∂Dh(pd ,ph ,Ah)
∂pd

> 0.

4. ∂Dd(pd ,ph ,Ad)
∂Ad

> 0, ∂Dh(pd ,ph ,Ah)
∂Ah

> 0 and Ah > Ad.

Assumptions 3.2 and 3.3 indicate that the demand is decreasing with the seller’s own
price and increasing with his competitor’s price. Assumption 3.4 means that the seller’s
demand will be higher when the seller is thought to be more reliable. As [12] described, for
reasons such as physician recommendation, greater assurance of pharmaceutical quality,
and convenience, patients prefer hospital pharmacies to drugstores.

Assumption 4. Assumptions on the price elasticity of ed and eh:

1. ed = − ∂Dd/∂pd
Dd/pd

and eh = − ∂Dh/∂ph
Dh/ph

are increasing with pd and ph, respectively. i.e.,
∂ed/∂pd > 0 and ∂eh/∂ph > 0.

2. ed and eh are non-increasing with ph and pd respectively, i.e., ∂ed/∂ph ≤ 0 and ∂eh/∂pd ≤ 0.

Assumptions 4.1 and 4.2 tell us that the increase in one player’s price will not only
decrease expected demand but also reduce its competitor’s price elasticity. This is an
important property to show the supermodularity of game.

Assumption 5. The domination condition: ∂ed/∂pd + ∂ed/∂ph ≥ 0 and ∂eh/∂ph + ∂eh/∂pd ≥
0 are satisfied for the drugstore and hospital.

Assumption 5 means that variation of the local price has a larger influence than that
of its competitor. Later, we use this assumption to show the uniqueness of the Nash
equilibrium point.

For the deterministic part of demand Dd and Dh, there are two commonly used forms
in the literature of single newsvendor with pricing decisions [16]:

1. The linear form:

Dd = Ad − ad pd + bd ph, Dh = Ah − ah ph + bh pd. (1)

where Ad, Ah, ad, ah, bd, bh are all positive.
2. The logarithmic form:

Dd =
Ade−ad pd

Ade−ad pd + Ahe−ah ph
, Dh =

Ahe−ah ph

Ade−ad pd + Ahe−ah ph
. (2)

where Ad, Ah, ad, ah are all positive.

Here, the reliability factors of sellers depict the potential market demands. Next, we
introduce a lemma to show that the commonly used demand functions are compatible with
Assumptions 3 and 4. For simplicity, all proofs of theorems and lemmas can be found in
Appendix A.
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Lemma 1. The commonly used demand functions given in (1) and (2) satisfy Assumptions 3 and 4.

This lemma indicates that Assumptions 3 and 4 are reasonable in normal circumstances.
Next section is devoted to the model formulation.

4. Model Formulation and Analysis
4.1. The Optimal Order Quantities of Hospital and Drugstore

As described in the previous section, the two sellers first decide their optimal order
quantities and selling prices according to the market. Then, based on their decisions, the
pharmaceutical supplier decides the two ex-factory prices to maximize total profit. The
profit function of the drugstore can be written as:

Πd(pd, ph, Qd) = pdEξd [min{Qd, Dd(pd, ph, Ad) · ξd}]− cQd. (3)

The profit function of hospital can be written as:

Πh(pd, ph, Qh) = phEξh [min{Qh, Dh(pd, ph, Ah) · ξh}]− φcQh. (4)

Given the selling price ph of the hospital, the drugstore faces a newsvendor pricing

problem. We rewrite its profit function as Πd(pd, ph, Qd) = pd

{
Dd
∫ Qd/Dd

0 t fξd(t)dt +

Qd
∫ ∞

Qd/Dd
fξd(t)dt

}
− cQd.

Note that Dd has nothing to do with Qd, so taking the partial derivative of Qd,
we obtain

∂Πd(pd, ph, Qd)

∂Qd
=pd

{Qd
Dd

fξd(
Qd
Dd

) +
∫ ∞

Qd/Dd

fξd(t)dt− Qd
Dd

fξd(
Qd
Dd

)
}
− c

=pd

∫ ∞

Qd/Dd

fξd(t)dt− c.

Further notice that ∂2Πd(pd ,ph ,Qd)
∂(Qd)2 = − pd

Dd
fξd(

Qd
Dd

) < 0. So Πd is a concave function with
respect to Qd.

Set ∂Πd(pd ,ph ,Qd)
∂Qd

= 0, we could see that the optimal order quantity Q∗d is

Q∗d = Dd(pd, ph, Ad) · F−1
ξd

(1− c
pd

). (5)

Repeating the same procedure again, we know that Πh is also concave with respect to
Qh and the optimal order quantity of the hospital is

Q∗h = Dh(pd, ph, Ah) · F−1
ξh

(1− φc
ph

). (6)

Next, we claim that both of Πd and Πh are concave with respect to pd and ph, respectively.

Lemma 2. Both of the profit functions Πd(pd, ph, Qd) and Πh(pd, ph, Qh) are concave with
respect to pd and ph, respectively.

Lemma 2 and the concavity of Πd (with respect to Qd) ensure that Equation (5) will
always hold in this game, for if it does not hold, the decision-maker of the drugstore could
change its order quantity to Q∗d to gain a higher profit. So given ph of the hospital, the only
option for the drugstore is to choose an optimal pd to maximize its profit. This is also true
for the hospital.

Substituting Qd with the optimal Q∗d in Equation (3), the response function of the

drugstore is Πd(pd, ph, Q∗d) = Dd pd
∫ F−1

ξd
(ρd)

0 t fξd(t)dt, where ρd = 1− c/pd.
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Similarly, we have Πh(pd, ph, Q∗h) = Dh ph
∫ F−1

ξh
(ρh)

0 t fξh(t)dt, where ρh = 1− φc/ph.
By Assumption 12, ξd is uniformly distributed on [1− σd, 1 + σd].

So fξd(t) =
{

1 t ∈ [1− σd, 1 + σd]
0 elsewhere

, Fξd(t) =


0 t ∈ [0, 1− σd)
t−(1−σd)

2σd
t ∈ [1− σd, 1 + σd]

1 t ∈ (1 + σd, ∞)

.

Thus we have Πd(pd, ph, Q∗d) = 4Dd pdσd(1 − σdc
pd
)(1 − c

pd
) and Πh(pd, ph, Q∗h) =

4Dh phσh(1−
σhφc

ph
)(1− φc

ph
).

Next section is devoted to the equilibrium analysis.

4.2. Equilibrium Analysis

Equilibrium is achieved in a system when all of the relating factors compete on a
balanced level. It is common sense that in a pricing game, the players’ prices will reach
certain points during a long period of competition. Thus, analyzing the properties of
equilibrium points is very important. This section considers the existence and uniqueness
of the Nash equilibrium in this game.

4.2.1. Existence of Nash Equilibrium

By the definition [61], the Nash equilibrium point is a (p∗d, p∗h) ∈ [c, pd] × [φc, ph]
that satisfies Πd(p∗d, p∗h, Q∗d) > Πd(pd, p∗h, Q∗d) and Πh(p∗d, p∗h, Q∗h) > Πh(p∗d, ph, Q∗h) for all
(pd, ph) ∈ [c, pd]× [φc, ph].

In order to prove the existence, we first prove a lemma.

Lemma 3. The game under consideration is supermodular.

Lemma 3 actually guarantees the existence of the Nash Equilibrium. Furthermore,
ref. [62] proved that there exists some simple algorithms to find an equilibrium point.

Now we discuss the existence of the Nash Equilibrium.

Theorem 1. There exists at least one Nash Equilibrium in this game.

The theorem above tells us that in this game, the hospital and the drugstore will reach
an equilibrium under which no player has anything to gain by changing only their own
strategy. In the next subsection, we discuss the uniqueness of the equilibrium.

4.2.2. Uniqueness of Nash Equilibrium

Taking derivatives on Πd and Πh with respect to pd and ph separately, we obtain

∂Πd(pd, ph, Q∗d)
∂pd

= Dd

[
(−ed + 1) ·

∫ F−1
ξd

(ρd)

0
t fξd(t)dt +

c
pd
· F−1

ξd
(ρd)

]
, (7)

∂Πh(pd, ph, Q∗h)
∂ph

= Dh

[
(−eh + 1) ·

∫ F
ξ−1

h
(ρh)

0
t fξh(t)dt +

φc
ph
· F−1

ξh
(ρh)

]
. (8)

All of the derivations of the equations in this paper are provided in Appendix B.
Let ρ∗d , ρ∗h, e∗d , e∗h , D∗d and D∗h denote 1− c/p∗d , 1− φc/p∗h, ed(p∗d , p∗h, Ad), eh(p∗d , p∗h, Ah),

Dd(p∗d , p∗h, Ad), and Dh(p∗d , p∗h, Ah), respectively.
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As the equilibrium point must satisfy


∂Πd(pd ,p∗h ,Q∗d)

∂pd

∣∣∣
(pd ,ph)=(p∗d ,p∗h)

= 0

∂Πh(p∗d ,ph ,Q∗h)
∂ph

∣∣∣
(pd ,ph)=(p∗d ,p∗h)

= 0
. It is equiv-

alent to say that the following two equations: −e∗d + 1 + c
p∗d
·

F−1
ξd

(ρ∗d)∫ F−1
ξd

(ρ∗d )

0 t fξd
(t)dt

= 0 and

−e∗h + 1 + φc
p∗h
·

F−1
ξh

(ρ∗h)∫ F−1
ξh

(ρ∗h )

0 t fξh
(t)dt

= 0 must be satisfied simultaneously.

Recall that ξd and ξh are uniformly distributed on [1− σd, 1+ σd] and [1− σh, 1+ σh], re-

spectively, we can rewrite the two equations above as−e∗d + 1+ 2c
p∗d
· −2σdc/p∗d+1+σd
(−2σdc/p∗d+1+σd)2−(1−σd)2

= 0 and −e∗h + 1 + 2φc
p∗h
· −2σhφc/p∗h+1+σh
(−2σhφc/p∗h+1+σh)2−(1−σh)2 = 0.

Define gd(pd) , −ed + 1 + 2c
pd
· −2σdc/pd+1+σd
(−2σdc/pd+1+σd)2−(1−σd)2 and gh(ph) , −eh + 1 + 2φc

ph
·

−2σhφc/ph+1+σh
(−2σhφc/ph+1+σh)2−(1−σh)2 , the Nash equilibrium point (p∗d, p∗h) of the game under our con-
sideration can be solved by condition{

gd(p∗d , e∗d) = 0
gh(p∗h, e∗h) = 0

. (9)

To show the quasi-concavity of the payoff functions, we establish the following
two lemmas:

Lemma 4. gd(pd) is non-decreasing with ph , and strictly monotonic decreasing with pd; gh(ph) is
non-decreasing with pd , and strictly monotonic decreasing with ph. So the best response functions
r∗d(ph) and r∗h(pd) can be uniquely determined by solving gd(pd) = 0 and gh(ph) = 0, respectively.

Lemma 5. Suppose f : X → R is a twice continuously differentiable function defined on X,
if X ⊂ R, the f is quasi-concave if and only if it is monotonic or first non-decreasing and then
non-increasing.

Lemma 6. The payoff functions Πd(pd, ph, Q∗d) and Πh(pd, ph, Q∗h) are quasi-concave in pd and
ph, respectively.

Note that the equilibrium point (p∗d , p∗h) must satisfy the first order conditions gd(p∗d , e∗d)
= 0 and gh(p∗h, e∗h) = 0 simultaneously, the uniqueness of Nash equilibrium can be proved.

To obtain Theorem 2, we use the index theory approach [61], which is based on the
Poincare-Hopf index theorem in differential topology [62].

Theorem 2. In the game discussed, there exists a unique Nash equilibrium. It can be solved by
Equation (9).

Therefore, the hospital and the drugstore will reach and only reach a Nash equilibrium
point in the single drug-selling competition. This proposition can be used for analyzing
the causes of drug shortage problems with commonly used demand functions. In the
next section, we discuss the optimal strategies for the hospital and drugstore with linear
demand functions.

4.3. Pricing Analysis with Linear Demand Functions

Recall that in (1) that the linear form of demand functions are Dd = Ad − ad pd + bh ph
and Dh = Ah − ah ph + bd pd. We further assume adah > 1

4 bdbh, which implies that a change
in the local price has a relatively larger influence on demand than that of non-local price.
As we state in the comments about Assumption 1.2, to take the situation that nobody needs
a drug in the period into consideration, we let σd = σh = 1. The real demand RDd and RDh
will then vary uniformly between [0, 2Dd] and [0, 2Dh].
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Now we have e∗d =
ad p∗d

Ad−ad p∗d+bd ph
and e∗h =

ad p∗h
Ah−ap∗h+bpd

. Substituting σd = σh = 1 into
condition (9) we know that at the equilibrium point, p∗d and p∗d must satisfy −

ad p∗d
Ad−ad p∗d+bd p∗h

+ 1 + 2c
p∗d
· 1
(−2c/p∗d+2) = 0

− ah p∗h
Ah−ah p∗h+bh p∗d

+ 1 + 2φc
p∗h
· 1
(−2φc/p∗h+2) = 0

.

After some simplifications, we have

 p∗d =
adc+bd p∗h+Ad

2ad

p∗h =
ahφc+bh p∗d+Ah

2ah

.

Solve the equations, we obtain{
p∗d = 2adahc+ahbdφc+2ah Ad+bd Ah

4adah−bdbh

p∗h = 2adahφc+adbhc+2ad Ah+bh Ad
4adah−bdbh

. (10)

We can see in Equation (10) that p∗d and p∗h are increasing with c and φ. It is intuitive
that the increasing ex-factory price will cause retailers’ selling prices to increase. The
decrease in discounts for the hospital is very similar to an increase in its marginal cost, thus
increasing its optimal price. An increase in the hospital’s marginal cost will have a positive
effect on the drugstore’s demand, which will increase the drugstore’s optimal price.

At the equilibrium point, for the drugstore and hospital, we have Q∗d = Dd(p∗d , p∗h, rd) ·
F−1

ξd
(1− c

p∗d
) = (Ad − ad p∗d + bd p∗h) · (−

2c
p∗d

+ 2) and Q∗h = Dh(p∗d, p∗h, rh) · F−1
ξh

(1− φc
p∗h
) =

(Ah − ah p∗h + bh p∗d) · (−
2φc
p∗h

+ 2).

We define s∗d , P{ξd|Q∗d > RD∗d} and s∗h , P{ξh|Q∗h > RD∗h} as the satisfaction rates
of the drugstore and hospital, respectively. Note that as RD∗d = D∗d · ξd, RD∗h = D∗h · ξh,
and ξd, ξh are uniformly distributed on [0, 2], we have s∗d = Q∗d/2D∗d and s∗h = Q∗h/2D∗h . To
explain the drug shortage problem, we need the following theorem:

Theorem 3. In the linear demand case, the satisfaction rates of the two sellers have the following
properties:

1. s∗d is monotonically decreasing with c and increasing with φ.
2. s∗h is monotonically decreasing with c and φ.

Theorem 3 depicts some possible reasons for a drug shortage problem. If for some
reason, such as a lack of raw materials or the COVID-19 pandemic, the pharmaceutical
supplier increases the ex-factory price of a certain drug, it will reduce the drugstore’s and
hospital’s satisfaction rates, which could cause a drug shortage problem. Government
policy also plays a role in drug shortages. If the government stops the hospital’s discounts,
it will be more difficult for the hospital to retain a high stock, leading to a drug shortage
in the hospital. When the hospital loses some power in the game, the drugstore’s market
share may be increased, which is why we see s∗d increases with φ in Theorem 3.1.

As discussed in Section 1, it is common for drugs to be cheaper in a drugstore than
in a hospital. Thus, when people suffer common or chronic diseases, they often prefer
drugstores to hospitals. In the next two subsections, we describe two special kinds of linear
demand to show that in some cases, the game ends up with p∗d > p∗h, as reported in [15].

4.3.1. Symmetric Linear Demand

Let ad = ah = l represent the impact of local price change. Further let bd = bh = k
represent the impact of cross-price change. The demand function will then change to
Dd = Ad − lpd + kph and Dh = Ah − lph + kpd, respectively.

We call it symmetric because the demand functions above will lead to a symmetrical
position of two sellers. Both sellers will face the same local price change impact rate. That is,
the increase of one player’s selling price will cause a decrease of its demand at a certain rate
(say l/yuan), and the increase of its competitor’s selling price will cause an increase of its
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demand at a certain rate (say k/yuan). The price change impact factors can be regarded as
a measurement of the market sensitivity: the higher they are, the more sensitive market is.

Based on this consideration, we have p∗d = 2l2c+lkφc+2lAd+kAh
4l2−k2

p∗h = 2l2φc+lkc+kAd+2lAh
4l2−k2

. (11)

To consider the influence of local price change impact l and cross-price change impact
k, we establish the following theorem:

Theorem 4. In the symmetric linear demand case, the optimal prices and satisfaction rates of the
two sellers: p∗d , p∗h, s∗d and s∗h are all monotonically decreasing with l and increasing with k.

Theorem 4 states that in the symmetric case, when the market is relatively sensitive
to its own price, the seller will have a lower optimal price and satisfaction rate. When
the market is relatively sensitive to its competitor’s price, the seller will have a higher
optimal price and satisfaction rate. According to our model, the local price change impact
for each player has a negative effect on demand, whereas the cross-price change impact has
a positive effect. Thus, the factor l/k can be interpreted as an indicator of market sensitivity.
A larger l or smaller k represents a highly sensitive market, in which it is difficult for the
players to hold high stocks and prices. In contrast, a less sensitive market allows the players
to hold more stock and set high prices. Thus, a market with high sensitivity could be
another cause of drug shortage problems.

Comparing the two prices at the equilibrium point, we obtain p∗h − p∗d = (Ah−Ad)−l(1−φ)c
2l+k .

This tells us that there are two groups of influential factors whose price would be
higher. One is affected by the markets, and it is depicted by the ex-factory price, local
price change impact, and discount factor; the other is determined by patients, and it can be
characterized by sellers’ reliability or patients’ perception of a curative effect.

If Ah − Ad ≥ l(1 − φ)c, it will lead to p∗d 6 p∗h at the equilibrium point. That is,
compared to the difference in reliability between the hospital and drugstore, if the price
gap between them is not very large and the price does not strongly influence demand,
the drugstore will not have a higher selling price than the hospital. A special case of this
situation is φ = 1, which means that the government gives no discount to the hospital. As
the hospital has a higher reliability and thus a higher potential demand, it could increase
its price to gain more profits.

In a less sensitive market, when the hospital has a lower marginal cost than the
drugstore, and patients’ perceptions of the difference in reliability or curative effect between
the drugstore and hospital is small enough (smaller than l(1− φ)c), we may have p∗h < p∗d
at the equilibrium point.

4.3.2. Seller-Reliant Linear Demand

Let ad = bh = d represent the price change impact of the drugstore. Further let
ah = bd = h represent the price change impact of the hospital. The demand function will
then change to Dd = Ad − dpd + hph and Dh = Ah − hph + dpd, respectively.

We call this situation seller-reliant demand because the impact of price change is
determined by who sells the drug. Changing the hospital’s selling price will always cause a
demand impact of h/yuan and changing the drugstore’s selling price will cause an impact
of d/yuan. Under this consideration, a one-unit increase in the hospital’s (or drugstore’s)
selling price would decrease its own demand by h (or d) units and increases its competitor’s
demand by d (or h) units.

In the seller-reliant linear demand case, the price change impact actually depicts how
far the drugstore and hospital can influence the market. This game is no longer symmetric
as we use d and h to differentiate the two sellers, respectively.
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Similar to Section 4.3.1, we could work out{
p∗d = 2dc+hφc+2Ad+Ah

3d
p∗h = dc+2hφc+Ad+2Ah

3h

. (12)

A theorem is also established to consider the influence of two sellers’ price change impact:

Theorem 5. In the linear demand case, the optimal prices and satisfaction rates of the two sellers
have the following properties:

1. p∗d is monotonically decreasing with d and increasing with h, p∗h is monotonically decreasing
with h and increasing with d.

2. s∗d is monotonically decreasing with d and increasing with h, s∗h is monotonically decreasing
with h and increasing with d.

Note d and h describe the price sensitivity of the drugstore and hospital, respectively. It
is natural that for each player, the optimal price will decrease with its own price sensitivity
and increase with its competitor’s price sensitivity. The satisfaction rates follow the same
pattern because a player with high price sensitivity is less likely to satisfy the demand,
which leads to a low satisfaction rate. Thus, high price sensitivity could be one of the
reasons for a drug shortage problem experienced by one particular retailer.

Comparing the two optimal prices, we have

p∗h − p∗d =
(d− 2h)(dc + Ad) + (2d− h)(hφc + Ah)

3dh
. (13)

To show when situation p∗h < p∗d will happen, it is necessary to consider the value of
two price change impacts, d and h.

1. If d > 2h, that is, in the market, the drugstore has an influence at least twice that of the
hospital. We obtain that (d− 2h)(dc + Ad) is non-negative and (2d− h)(hφc + Ah) is
positive. Thus in this situation, the game will end up with p∗h > p∗d .

2. If d 6 h
2 , the drugstore has an influence of half or less than half that of the hospital.

Under this circumstance. We obtain that (d− 2h)(dc + Ad) is non-positive and (2d−
h)(hφc + Ah) is negative. Thus, at the equilibrium point, the hospital will have a
lower selling price than the drugstore.

3. If h
2 < d < 2h, we rewrite Equation (13) as

p∗h − p∗d =
cd2 + (Ad + 2Ah + 2hφc− 2hc)d− h2φc− hAh − 2hAd

3dh
.

Define u(d) , cd2 + (Ad + 2Ah + 2hφc− 2hc)d− h2φc− hAh − 2hAd. Investigate the
sign of Equation (13) is then equivalent to discuss the sign of u(d) on ( h

2 , 2h).
Taking the derivative of u(d) on d, we have u′(d) = 2cd + Ad + 2Ah + 2hφc− 2hc.
So the minimum point of h(a) is d∗ = h− Ad+2Ah+2hφc

2c .
As d∗ < h, we know by the symmetry of h(d) that u(d∗) 6 u( h

2 ) < u(2h). In case
1 and 2, we have already shown that u( h

2 ) < 0 and u(2h) > 0, there must exist a

unique d0 such that u(d0) = 0. We could obtain d0 =
√

K2+4cL−K
2c by solving the

equation u(d) = 0, where K = Ad + 2Ah + 2hφc− 2hc and L = h2φc + hAh + 2hAd.
The expression of d0 is not important, what we are concerned about is that when h

2 <
d < d0, the game will have p∗d > p∗h at the equilibrium point, and when d0 6 d < 2h,
it will end up with p∗d 6 p∗h.

Now we can see that p∗d > p∗h is possible in seller-reliant demand. That is, when the
price change impact of the drugstore, d is small enough (smaller than d0), the hospital will
choose a selling price even lower than that of the drugstore. When the influence of the
drugstore’s price is relatively weak, increasing it will not cause a big reduction in demand,



Sustainability 2022, 14, 7551 16 of 28

so the drugstore will increase its selling price to gain more profit, subsequently leading to
p∗d > p∗h at the equilibrium point.

We now summarize the discussions above. A drug shortage problem may have three
causes. The first is the high price sensitivity of the market, which makes it difficult for
retailers to keep enough stock. Second, an increase in ex-factory price will cost the business
more to satisfy demand. Third, if the government offers smaller discounts to a hospital, it
will cause its satisfaction rate to reduce. The price difference between the drugstore and
hospital can be divided into two cases. In the symmetric linear demand case, both sellers
face a symmetric price change impact; the only advantage of the hospital is reflected in the
difference between two reliability or curative effects, Ah and Ad. If Ah − Ad is relatively
small, a highly sensitive market with a large discount for the hospital may result in the
uncommon situation of p∗d > p∗h. In the seller-reliant demand case, parameter d is used to
depict the price change impact of the drugstore and h characterizes the price change impact
of the hospital. If d is small enough, the drugstore can increase its price to gain more profit,
which may lead the hospital to have a relatively lower selling price. These results explain
the price disparity in [15].

To further illustrate the factors contributing to the drug shortage and the price disparity
problems, we present numerical studies in the next section.

5. Numerical Analysis

In this section, we analyze the decisions of the drugstore and hospital in both sym-
metric and seller-reliant cases. For each case, we investigate the influence of the price
change impact, ex-factory price, and discount factor on each player’s optimal prices, order
quantities, expected profits, and satisfaction rates.

5.1. Symmetric Linear Demand

As shown in Section 4.3.1, when the cross price change impact k is fixed, the local
price change impact l can be regarded as a indicator of market sensitivity. To consider the
influence of local price change impact l, ex-factory price c and discount factor φ, we set
Ad = 1000, Ah = 1100 and draw four groups of functions.

Figure 3 shows that the two lines in all three sub-figures intersect with each other,
which means that the drugstore can have a higher optimal price than the hospital. It is also
clear that the optimal prices of the two retailers will decrease with price sensitivity and
discounts provided for the hospital and increase with the ex-factory price. This is intuitive
because large price sensitivity, a low ex-factory price, and small discounts often lead to
a lower optimal price. Figure 3a shows that with the advantages of purchasing discount
and higher reliability, the hospital could set a higher optimal price than the drugstore but
set a lower one with a relatively large l. When the market becomes more sensitive, the
two players may tend to use a so-called small profit and quick turnover policy. Thus, the
hospital could offer a lower price to gain market share. Figure 3b,c show two other possible
situations of p∗d > p∗h. The first occurs because when the ex-factory price is relatively small,
the advantage of higher reliability allows the hospital to select a higher optimal price. When
the ex-factory price increases, the discount provided by the government gives the hospital
a much lower marginal cost, which leads to a result of p∗h < p∗d . The second situation occurs
because when the discount provided to the hospital is very large, it has a cost advantage
and thus charges a lower price.
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(a) k = 2.0, φ = 0.8, c = 40.0. (b) l = 10.0, k = 2.0, φ = 0.8. (c) l = 4.0, k = 4.0, c = 40.0.

Figure 3. Optimal Prices of the Symmetric Demand Case.

Figure 4 illustrates the influence of the local price change impact, ex-factory price,
and discount factor on the optimal order quantities. As the demands are symmetric, the
two lines in the three sub-figures do not intersect and the hospital always has a higher
optimal order quantity due to its discount and reliability advantages. It can be seen in
Figure 4a,b that the optimal order quantities for both players decrease with the local price
change impact and ex-factory price because either a higher market sensitivity or ex-factory
price will make the retailers order less. Figure 4c shows that if the government reduces
discounts for the hospital, the optimal order quantity of the hospital will be reduced but
that of the drugstore will be slightly increased. When the hospital’s marginal cost increases,
it will order less and therefore the market share of its competitor will increase.

(a) k = 2.0, φ = 0.8, c = 40.0. (b) l = 10.0, k = 2.0, φ = 0.8. (c) l = 4.0, k = 4.0, c = 40.0.

Figure 4. Optimal Order Quantities of the Symmetric Demand Case.

Figure 5 shows that the expected profits of the two players follow almost the same
pattern as the optimal quantities. The expected profits also decrease with the local price
change impact and ex-factory price, where the decrease with the local price change impact
is even steeper (see Figure 5a,b). Figure 5c depicts the influence of the discount factor:
when the government offers smaller discounts for the hospital, its expected profit is lower
but the drugstore gains more profits. As the hospital has the advantages of reliability and
φ ∈ (0, 1], it will always gain more profit than the drugstore regardless of the values of the
local price change impact, ex-factory price, and discount factor.

(a) k = 2.0, φ = 0.8, c = 40.0. (b) l = 10.0, k = 2.0, φ = 0.8. (c) l = 4.0, k = 4.0, c = 40.0.

Figure 5. Expected Profits of the Symmetric Demand Case.

To gain insight into the drug shortage problem, we also need to investigate the influ-
ence of these factors on the satisfaction rate. As stated in Theorems 3 and 4, Figure 6a,b
show two possible causes of the drug shortage problem. One is a highly sensitive market.
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Neither the hospital nor the drugstore can handle highly price-sensitive demand with
uncertainty. The other is an ex-factory price that is too high for the two players to hold
enough stock to manage uncertain demand. In conjunction with Theorem 3, Figure 6c
shows that decreasing the government discount reduces the satisfaction rate of the hospital
and increases that of the drugstore. The increasing marginal cost may make it more difficult
for the hospital to retain stock. As a consequence, the drugstore can gain some power in
the game and thus it slightly increases its satisfaction rate.

(a) k = 2.0, φ = 0.8, c = 40.0. (b) l = 10.0, k = 2.0, φ = 0.8. (c) l = 4.0, k = 4.0, c = 40.0.

Figure 6. Satisfaction Rate of the Symmetric Demand Case.

The next subsection is devoted to the seller-reliant demand case, in which there is
another kind of competition.

5.2. Seller-Reliant Linear Demand

Unlike the symmetric case, under the seller-reliant linear demand function, price
sensitivity differs not according to local or non-local factors but to the participants in
the competition. When h is fixed, the drugstore’s price change impact d can be regarded
as another indicator of market sensitivity. If d is comparatively small relative to h, the
drugstore customers are less price sensitive than those of the hospital, and vice versa. Let
Ad = 1000, Ah = 1200. As in the former subsection, four groups of graphs are drawn to
illustrate the factors contributing to optimal prices, quantities, profits, and satisfaction rate.

Figure 7 shows that in the seller-reliant linear demand case, it is possible for the
drugstore to have a higher optimal price than the hospital. In Figure 7a, it is intuitive to see
that when the price sensitivity of the drugstore increases, the optimal price of the hospital
will increase and that of the drugstore will decrease as the price change impact of the
hospital is fixed. Thus, there exists a threshold of the drugstore’s price change impact below
which drugs will be cheaper in the drugstore than in the hospital. Figure 7b,c show that the
optimal prices of the two retailers increase with the ex-factory price and decrease with the
discounts provided to the hospital. Similar to the symmetric demand case, the game may
end with p∗d > p∗h when the ex-factory price is high or the discount for the hospital is small.

(a) h = 10.0, φ = 0.8, c = 40.0. (b) d = 8.0, h = 8.0, φ = 0.5. (c) d = 8.0, h = 8.0, c = 40.0.

Figure 7. Optimal Prices of the Seller-relied Demand Case.

Figure 8 depicts the factors contributing to optimal order quantities. Figure 8a indicates
that a seller with comparatively higher price sensitivity may have a lower optimal order
quantity. Instead of d = 10.0, the threshold where Q∗h exceeds Q∗d occurs on d < 10.0.
The reason is that the advantages of discounts and reliability make the hospital more
competitive. It is intuitive that the hospital’s optimal order quantity decreases with the
ex-factory price and increases with the government discount and that the drugstore’s
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optimal order quantity decreases with them (see Figure 8b,c). When the drugstore has a
distinct advantage in price sensitivity, there may exist thresholds for the ex-factory price
and discount factor, above which the drugstore will order more than the hospital.

(a) h = 10.0, φ = 0.8, c = 40.0. (b) d = 5.0, h = 8.0, φ = 0.8. (c) d = 4.0, h = 8.0, c = 40.0.

Figure 8. Optimal Quantities of the Seller-relied Demand Case.

The optimal expected profits of the two retailers follow a similar pattern to the order
quantities. Figure 9a shows that if the drugstore has a distinct advantage in price sensitivity,
it has a larger profit than the hospital. Figure 9b shows that increasing the ex-factory price
will increase the marginal cost of both players, leading to a decrease in their expected
profits. When the market is less sensitive to the drugstore’s price and the ex-factory price is
relatively low, the drugstore may have a larger profit than the hospital. As the ex-factory
price increases, the hospital’s profit gradually increases via its purchasing discounts. It
can be seen in Figure 9c that if the government reduces the hospital’s discounts, the profit
of the hospital will decrease and that of the drugstore will increase. The reduction in the
discount reduces the hospital’s profits, giving the drugstore an opportunity to increase its
market share.

(a) h = 10.0, φ = 0.8, c = 40.0. (b) d = 8.0, h = 10.0, φ = 0.7. (c) d = 6.0, h = 8.0, c = 40.0.

Figure 9. Optimal Expected Profits of the Seller-relied Demand Case.

Figure 10 depicts the satisfaction rates for the three contributing factors. Figure 10a
indicates that for each player, the satisfaction rate will decrease with its own price change
impact. That is, if only one of the two sellers faces the shortage problem, it may be caused
by the high price sensitivity of this particular seller. A high ex-factory price may be another
reason for the drug shortage problem (see Figure 10b) because an increase in the ex-factory
price will increase the cost of holding stock. Figure 10c shows that the government discount
also influences the hospital’s drug shortage: if a larger discount is given to the hospital, it is
less likely that the drug will go out of stock.

(a) h = 10.0, φ = 0.8, c = 40.0. (b) d = 8.0, h = 8.0, φ = 0.5. (c) d = 5.0, h = 8.0, c = 40.0.

Figure 10. Satisfaction Rate of the Seller-relied Demand Case.
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6. Conclusions

Motivated by the current state of China’s pharmaceutical supply chain, we consider
the drug shortage and price disparity problems in the country. This paper establishes a
model with one pharmaceutical supplier, one hospital, and one drugstore in a decentralized
supply chain with price-sensitive and uncertain demand. By analyzing a game between
the retailers, we find that our pharmaceutical supply chain game has a unique Nash
equilibrium point. The closed-form solution of optimal strategies can be found in linear
demand cases.

The three factors contributing to the drug shortage problem are the ex-factory price,
the price sensitivity of the market, and the government discount provided to the hospital.
High ex-factory price and price sensitivity of the market or small discounts cut the retailers’
profits, thus causing them to stop ordering.

We also show that in most cases of drug price disparity, hospitals can set a higher
optimal selling price than drugstores due to their reliability and discount advantages.
However, there are exceptions in daily life [15]. We propose two special kinds of linear
demand to provide some insights into this unusual phenomenon. In the symmetric demand
case, if the drugstore is almost as reliable as the hospital, high local price sensitivity, high
discounts, or a high ex-factory price may cause the drugstore to set a higher price than the
hospital. In the seller-reliant demand case, low drugstore price sensitivity, a large discount
for the hospital, or a high ex-factory price may also result in atypical phenomena.

6.1. Implications

According to this study, pricing competition between drugstores and hospitals may
cause drug shortage problems in China’s pharmaceutical supply chains. The key reason
for the problem is that the only goal for pharmaceutical retailers is to maximize the profits.
Thus, the variation of factors such as ex-factory price, price sensitivity of demand and
governmental discounts directly influence the satisfaction rates.

Fortunately, due to the centralized political system, there are three possible ways
for China’s government to increase the satisfaction rate of drugs. The first way is to set
ex-factory price restrictions for certain drugs. Such policies are commonly adopted by
municipal or provincial healthcare and security administrations [63]. The second way is to
strengthen the medical insurance system and try to include more kinds of medications in it.
Such policies could reduce the price sensitivity of demands which make the pharmaceutical
suppliers more willing to produce [64]. The third way is to provide more discounts to
hospitals. A typical example of it is the ongoing centralized drug bidding and purchasing
system, in which China’s government tries to integrate the purchasing activity of public
hospitals to obtain a lower marginal cost, which could also relieve the pressure of drug
shortage [65].

It is not strange that the disparity of drug price exists between drugstores and hospitals
in China. Apart from drugs, hospitals also provide medical diagnosis and treatment, which
often lead to a higher operation cost and thus a higher price than drugstores. But the
abnormality of drugstores selling drugs four or five times more expensive than hospitals is
worthy of note [15]. This situation is a reminder that some parts of China’s pharmaceutical
supply chains still lack regulations. Policies such as adjusting medical insurance systems,
setting drug price restrictions or providing subsidies are necessary for people who are
unwilling or unable to go to hospitals.

6.2. Suggestions for Future Research

There are many opportunities for future research. One extension is to include more
hospitals and drugstores in the game. The existence and uniqueness of the equilibrium
point may still be preserved, but the closed-form solution of optimal selling prices may no
longer be found. The properties of the equilibrium may be analyzed with relevant optimal
conditions. As hospitals can be regarded as social welfare institutions, a model in which
hospitals are not allowed to be out of stock could also be examined.
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Another interesting factor to consider is that the hospital and drugstore could sell
multiple drugs that are used to treat a certain kind of disease. This game would then change
to a multi-product model with substitution, for which [66] could provide some insights.

The problem could also be studied as a game with strategic customer behavior, mean-
ing the advantage of the hospital can no longer be depicted by the differences between
Ah and Ad. The patients have three ways of buying drugs: go to a hospital for a doctor’s
advice and buy the drugs there; go directly to a drugstore without asking for any advice; or
go to a hospital for advice and then buy the drugs at a drugstore. This model would be
quite different from ours.
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Appendix A. Proof of Lemmas and Theorems

This section contains the proofs of all the lemmas and theorems in our work.

Appendix A.1. Proof of Lemma 1

Proof of Lemma 1. Due to the symmetry of the drugstore and hospital, it is sufficient to
show that the two Dds satisfy Assumptions 3 and 4.

1. Linear Form:
For Assumption 3, ∂Dd

∂pd
= −ad < 0, ∂Dd

∂ph
= bd > 0, ∂Dd

∂Ad
= 1 > 0.

For Assumption 4, ed = ad pd
Ad−ad pd+bd ph

,

thus ∂ed
∂pd

= ad(bd ph+Ad)
(Ad−ad pd+bd ph)2 > 0 and ∂ed

∂ph
= −adbh pd

(Ad−ad pd+bd ph)2 6 0.

2. Logarithmic Form:

For Assumption 3, we have ∂Dd
∂pd

= − ad Ad Ahe−ad pd−ah ph

(Ade−ad pd+Ahe−ah ph )2 < 0,
∂Dd
∂ph

= ah Ad Ahe−ad pd−ah ph

(Ade−ad pd+Ahe−ah ph )2 > 0 and ∂Dd
∂Ad

= Ahe−ad pd−ah ph

(Ade−ad pd+Ahe−ah ph )2 > 0.

For Assumption 4, we have ed = ad Ah pde−ah ph

Ade−ad pd+Ahe−ah ph
,

then ∂ed
∂pd

= ad Ahe−ah ph (ad Ad pde−ad pd+Ade−ad pd+Ahe−ah ph )

(Ade−ad pd+Ahe−ah ph )2 > 0,
∂ed
∂ph

= − adah Ad Ah pde−ad pd−ah ph

(Ade−ad pd+Ahe−ah ph )2 6 0

So the commonly used demand functions given in (1) and (2) satisfy assumptions 3
and 4.

Appendix A.2. Proof of Lemma 2

Proof of Lemma 2. Taking partial derivative on Πd with respect to pd, we get ∂Πd(pd ,ph ,Qd)
∂pd

=

Eξd [min{Qd, Dd · ξd}] + pd · ∂Dd
∂pd
·
∫ Qd

Dd
0 t fξd(t)dt.
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Further taking partial derivative again, we have: ∂2Πd(pd ,ph ,Qd)
∂(pd)2 = Dd

pd
(

p2
d

Dd

∂2Dd
∂p2

d
−

2ed)
∫ Qd

Dd
0 t fξd(t)dt− Dd

pd
e2

d
Q2

d
D2

d
fξd(

Qd
Dd

).

As both of −2ed
Dd
pd

and −Dd
pd

e2
d

Q2
d

D2
d

fξd(
Qd
Dd

) are negative, it is sufficient to show ∂2Dd
∂p2

d
6 0.

According to Assumption 1, ∂ed
∂pd

= − ∂2Dd
∂p2

d

pd
Dd

+ 1
pd

ed +
1
pd

e2
d > 0.

It means that − ∂2Dd
∂p2

d

p2
d

Dd
+ ed + e2

d > 0 will always hold for any ed, which implies

∂2Dd
∂p2

d
6 0.

So we have ∂2Πd(pd ,ph ,Qd)
∂(pd)2 < 0 which indicates that Πd is a concave function with

respect to pd. Note that we have not use any special properties which differ the drugstore
from the hospital, the conclusions which we have drawn on the drugstore will also be true
on the hospital. So Πh is also a concave function with respect to ph.

Appendix A.3. Proof of Lemma 3

Proof of Lemma 3. We transform the drugstore’s payoff function Πd(pd, ph, Q∗d) = 4Dd pdσd
(1− σdc

pd
)(1− c

pd
) to the logarithmic form ln[Πd(pd, ph, Q∗d)].

As lnx is a continuous monotonic increasing function, this transformation will not
change the optimal solution of the game. It is equivalent to show that the new game with
the payoff function ln[Πd(pd, ph, Q∗d)] is supermodular.

It is obvious that ln[Πd(pd, ph, Q∗d)] is twice continuously differentiable, we will prove

that ∂2ln[Πd(pd ,ph ,Q∗d)]
∂pd∂ph

is non-negative. Note

∂ln[Πd(pd, ph, Q∗d)]
∂pd

= − ed
pd

+
1

pd − c
+

1
pd − σdc

− 1
pd

. (A1)

Thus

∂2ln[Πd(pd, ph, Q∗d)]
∂pd∂ph

= − 1
pd
· ∂ed

∂ph
. (A2)

According to Assumption 4.2, we know that ∂2ln[Πd(pd ,ph ,Q∗d)]
∂pd∂ph

and ∂2ln[Πd(pd ,ph ,Q∗d)]
∂pd∂ph

are
non-negative. Repeat this procedure again we get

∂2ln[Πh(pd, ph, Q∗h)]
∂ph∂pd

= − 1
ph
· ∂eh

∂pd
> 0. (A3)

Hence both of the two player’s payoffs are supermodular, which by definition, proves
supermodularity of the game.

Appendix A.4. Proof of Theorem 1

Proof of Theorem 1. Cachon and Netessine have stated that in a supermodular game,
there exists at least one Nash Equilibrium (Theorem 3, [61]). According to Assumption 2,
each of the two players’ decision varies in a closed interval, hence the strategy space of the
game is a convex compact set in R2. By Lemma 3, we know this game is supermodular, so
there exists at least one Nash Equilibrium in it.

Appendix A.5. Proof of Lemma 4

Proof of Lemma 4. By Assumption 4.1 we know ∂ed
∂pd

> 0, thus (−ed + 1) is monotonic
decreasing with pd.
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It is obvious that c
pd

is also monotonic decreasing with pd and c
pd

> 0. Next we will

show that −2σdc/pd+1+σd
(−2σdc/pd+1+σd)2−(1−σd)2 is also monotonic decreasing with pd and non-negative.

Let h(pd) = −2σdc/pd+1+σd
(−2σdc/pd+1+σd)2−(1−σd)2 . If pd = c, we would get Πd(pd, ph, Q∗d) =

Dd pd
∫ F−1

ξd
(0)

0 t fξd(t)dt = 0, which is meaningless, thus we could only consider the situation
that pd > c.

As σd ∈ [0, 1], we have −2σhφc/ph + 1 + σh > 1− σd > 0.
Thus h(pd) can be rewritten as h(pd) =

1

(−2σdc/p∗d+1+σd)−
(1−σd)

2

−2σdc/p∗d+1+σd

.

Note that −2σdc/p∗d + 1 + σd is monotonic increasing with pd, which directly derives

that −(1−σd)
2

−2σdc/p∗d+1+σd
is also monotonic increasing with pd, we can conclude that h(pd) is

monotonic decreasing with pd. Furthermore, we have lim
pd→∞

h(pd) =
1+σd
4σd

> 0.

Thus h(pd) is monotonic decreasing with pd and non-negative.
Recall that gd(pd) = −ed + 1 + 2c

pd
· −2σdc/pd+1+σd
(−2σdc/pd+1+σd)2−(1−σd)2 , we could rewrite it as

gd(pd) = −ed + 1 + 2c
pd
· h(pd).

Taking derivative on gd(pd) with pd, we get ∂gd(pd)
∂pd

= − ∂ed
∂pd
− 2c

p2
d
· h(pd) +

2c
pd
· ∂h(pd)

∂pd
<

0, which means gd(pd) is strictly monotonic decreasing with pd.
Further taking derivative on gd(pd) with ph, we get ∂gd(pd)

∂ph
= − ∂ed

∂ph
, which is by

Assumption 4.2, non-negative. Thus gd(pd) is non-decreasing with ph.
Similarly, we could see ∂gh(ph)

∂ph
= − ∂eh

∂ph
− 2φc

p2
h
· h(ph) +

2φc
ph
· ∂h(ph)

∂ph
< 0 and gd(pd) =

− ∂eh
∂pd

> 0.
Thus gh(ph) is non-decreasing with ph , and strictly monotonic decreasing with pd.
For the drugstore, by Theorem 1 and definition of Nash equilibrium we have known

that the best response function exists and must satisfy gd(pd) = 0. As we have proved
above, gd(pd) could only cross 0 one time, thus the best response function of the drugstore
r∗d(ph) can be uniquely determined by solving gd(pd) = 0.

The same statement can be made on that of the hospital.

Appendix A.6. Proof of Lemma 5

Proof of Lemma 5. We prove the necessity and sufficiency, separately.

• Necessity
According to definition, a function f (x) is called quasi-concave if f (tx1 + (1− t)x2) >
min( f (x1), f (x2)) holds for all t ∈ (0, 1).
Assume f is neither monotonic nor first non-decreasing and then non-increasing. It
means that f (x) is either first decreasing and increasing or first non-decreasing and
then non-increasing but at last decreasing and increasing again. As f (x) is twice
continuously differentiable, it is equivalent to say f ′(x) will cross 0 more than once.
Let a1, a2 be the two adjacent crossing points that satisfy f ′(ai) = 0. There exist a
δ > 0, for any 0 < ε < δ, we have f ′(ai + ε) · f ′(ai − ε) < 0, where i = 1, 2. Without
loss of generality, we assume a1 < a2.

1. If f (a1) < f (a2)
Because f (a1) = f (a2) = 0, we know that there exist a δ1 > 0, such that for all x ∈
[a1 − δ1, a1], f (x) is strictly monotonic decreasing and all x ∈ [a1, a1 + δ1], f (x) is
strictly monotonic increasing. This means that f (x) is convex on [a1− δ1, a1 + δ1],
which contracts the quasi-concavity of f (x).

2. If f (a1) > f (a2)
Similarly, we could say that there exist a δ2 > 0, such that f (x) is convex on
[a2 − δ2, a2 + δ2], which also contracts the quasi-concavity of f (x).

Thus our assumption is wrong, which means f (x) is either monotonic or first non-
decreasing and then non-increasing.



Sustainability 2022, 14, 7551 24 of 28

• Sufficiency
Take any x1, x2, without loss of generality, we assume x1 < x2.

1. If f (x) is monotonic increasing, we have f (x1) 6 f (x2), then f (tx1 +(1− t)x2) >
f (x1) = min( f (x1), f (x2)), thus f (x) is quasi-concave.

2. If f (x) is monotonic decreasing, we have f (x1) > f (x2), then f (tx1 + (1 −
t)x2) > f (x2) = min( f (x1), f (x2)), thus f (x) is quasi-concave.

3. If f (x) is first non-decreasing and then non-increasing. Let x0 denote the turning
point of f (x), that is, for x < x0, f (x) is non-decreasing and x > x0, f (x) is
non-increasing.

(a) If x1 < x2 6 x0, we have f (x1) 6 f (x2), then f (tx1 + (1 − t)x2) >
f (x1) = min( f (x1), f (x2)).

(b) If x0 < x1 < x2, we have f (x1) > f (x2), then f (tx1 + (1 − t)x2) >
f (x2) = min( f (x1), f (x2)).

(c) If x1 < x0 < x2, we will discuss the position of x3 = tx1 + (1− t)x2.

i. If x1 < x3 6 x0 < x2, we have f (x3) > f (x1), which means
f (tx1 + (1− t)x2) > f (x1) = min( f (x1), f (x2)).

ii. If x1 < x0 < x3 < x2, we have f (x3) > f (x2), which means
f (tx1 + (1− t)x2) > f (x2) = min( f (x1), f (x2)).

As discussed above, the sufficiency is proved.

Thus a twice continuously differentiable function f defined on R, is quasi-concave if
and only if it is monotonic or first non-decreasing and then non-increasing.

Appendix A.7. Proof of Lemma 6

Proof of Lemma 6. We prove that Πd(pd, ph, Q∗d) is quasi-concave in pd. The proof of Πh
in ph is almost the same.

Πd(pd, ph, Q∗d) is of course twice continuously differentiable, and we have shown in

Section 4.2.2 that ∂Πd(pd ,ph ,Q∗d)
∂pd

= 0 is equivalent to gd(pd) = 0. By Lemma 4 we know that
for any given ph, it has an unique solution pd = r∗d(ph). Thus the deviation of Πd(pd, ph, Q∗d)
can cross 0 only once.

Further notice that lim
pd→c+

∂Πd(pd ,ph ,Q∗d)
∂pd

= 4Ddσd(1− σd) > 0.

Thus Πd(pd, ph, Q∗d) is first non-decreasing and then non-increasing in pd. By Lemma 5
Πd(pd, ph, Q∗d) is quasi-concave in pd.

Similarly, Πh(pd, ph, Q∗h) is quasi-concave in ph.

Appendix A.8. Proof of Theorem 2

Proof of Theorem 2. Provided that the strategy space of the game is convex and the payoff
functions are quasi-concave. Netessine and Cathon’s index theory approach theorem

(Theorem 7, [62]) tells us that if the determinant of Hessian H =

∣∣∣∣∣∣
∂2Πd
∂p2

d

∂2Πd
∂pd∂ph

∂2Πh
∂ph∂pd

∂2Πh
∂p2

h

∣∣∣∣∣∣ is positive

whenever ∂Πd
∂pd

= 0 and ∂Πh
∂ph

= 0 are satisfied simultaneously, the game will have a unique
Nash equilibrium.

As ln f (x) and f (x) have the same maximum point, the logarithmic transformation is
order-preserving. We will prove it on the logarithmic form ln(Πd) and ln(Πh).

Substituting ∂lnΠd
∂pd

= 0 and ∂lnΠh
∂ph

= 0 into the determinant of Hessian and after some
simplifications, we have

detH = Nd
∂eh
∂ph

1
ph

+ Nh
∂ed
∂pd

1
pd

+ NdNh +
1

pd ph

( ∂ed
∂pd

∂eh
∂ph
− ∂eh

∂pd

∂ed
∂ph

)
, (A4)

where Np = c
pd(pd−c)2 +

σdc
pd(pd−σdc)2 and Nh = φc

ph(ph−φc)2 +
σhφc

ph(ph−σhφc)2 .
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It is clear that Np and Nh are positive, so by Assumption 1 the first three parts of
Equation (A4) are positive. By Assumption 5 we have ∂ed

∂pd
> − ∂ed

∂ph
> 0 and ∂eh

∂ph
> − ∂eh

∂pd
> 0.

So ∂ed
∂pd

∂eh
∂ph

> ∂eh
∂pd

∂ed
∂ph

, which means the forth part of Equation (A4) is non-negative.
Thus, we finally obtain detH > 0, as a result, the game has a unique Nash equilibrium.

Furthermore, the Nash equilibrium point (p∗d, p∗h) must satisfy condition (9), so it can be
uniquely solved by condition (9).

Appendix A.9. Proof of Theorem 3

Proof of Theorem 3. We have calculated in Section 4.3 that Q∗d = (Ad − ad p∗d + bd p∗h)(−
2c
p∗d

+

2), together with Equation (10) we have s∗d = 1− c
p∗d

= 1− 4adah−bdbh

2adah+ahbdφ+
2ah Ad+bd Ah

c

, which is

monotonically decreasing with c and increasing with φ.
Similarly, we have s∗h = 1− φc

p∗h
= 1− 4adah−bdbh

2adah+
adbh

φ +
2ad Ah+bh Ad

φc

, which is monotonically

decreasing with c and φ.

Appendix A.10. Proof of Theorem 4

Proof of Theorem 4. From Equation (11) we have p∗d =
2c+ kφc+2Ad

l +
kAh
l2

4− k2
l2

.

It is obvious that 4 − k2

l2 is increasing with l and 2c + kφc+2Ad
l + kAh

l2 is decreasing
with l, so p∗d is monotonically decreasing with l. We also have 2l2c + lkφc + 2lAd + kAh
is increasing with k and 4l2 − k2 is decreasing with k, so p∗d is monotonically increasing
with k.

Similarly, we have p∗h is monotonically decreasing with l and increasing with k.
Note that s∗d = 1− c

p∗d
, which is monotonically increasing with p∗d , so s∗d is also mono-

tonically decreasing with l and increasing with k.
Similarly, we have s∗h is monotonically decreasing with l and increasing with k.

Appendix A.11. Proof of Theorem 5

Theorem 5. From Equation (12) we have p∗d = 2c
3 + hφc+2Ad+Ah

3d , which is monotonically
decreasing with d and increasing with h. Similarly, we have p∗h = 2φc

3 + dc+Ad+2Ah
3h , which

is monotonically decreasing with h and increasing with d.
Note that s∗d = 1− c

p∗d
, which is monotonically increasing with p∗d, so s∗d is monotoni-

cally decreasing with d and increasing with h.
Similarly, we have s∗h is monotonically decreasing with h and increasing with d.

Appendix B. Equation Derivations

This appendix contains the derivations of rerlated equations.

Appendix B.1. The Derivation of Equations (7) and (8)

As the derivation of Equations (7) and (8) are almost the same, we will only derive the
drugstore’s part.

Because
∂
∫ F−1

ξd
(ρd)

0 t fξd
(t)dt

∂pd
= F−1

ξd
(ρd) · fξd(F−1

ξd
(ρd)) ·

∂F−1
ξd

(ρd)

∂pd
= cd

(pd)2 · F−1
ξd

(ρd).
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We have

∂Πd(pd, ph, Q∗d)
∂pd

=[
∂Dd(pd, ph, Ad)

∂pd
pd + Dd]

∫ F−1
ξd

(ρd)

0
t fξd(t)dt + Dd pd ·

∂
∫ F−1

ξd
(ρd)

0 t fξd(t)dt
∂pd

=Dd

[
(−ed + 1) ·

∫ F−1
ξd

(ρd)

0
t fξd(t)dt +

cd
pd
· F−1

ξd
(ρd)

]
.

Repeating this procedure again, we will see

∂Πh(pd, ph, Q∗h)
∂ph

= Dh

[
(−eh + 1) ·

∫ F
ξ−1

h (ρh)

0
t fξh(t)dt +

φc
ph
· F−1

ξh
(ρh)

]
.

Appendix B.2. The Derivation of Equation (A4)

In the proof of Lemma 3, we have worked out (see Equation (A2) and (A3)):
∂2ln[Πd(pd ,ph ,Q∗d)]

∂pd∂ph
= − 1

pd
· ∂ed

∂ph
and ∂2ln[Πh(pd ,ph ,Q∗h)]

∂ph∂pd
= − 1

ph
· ∂eh

∂pd
.

We also obtain (see equation (A1)):
∂ln[Πd(pd ,ph ,Q∗d)]

∂pd
= − ed

pd
+ 1

pd−c +
1

pd−σdc −
1
pd

,
∂2ln[Πd(pd ,ph ,Q∗d)]

∂p2
d

= 1+ed
p2

d
− 1

(pd−c)2 − 1
(pd−σdc)2 − ∂ed

∂pd
· 1

pd
.

Similarly, we have ∂2ln[Πh(pd ,ph ,Q∗h)]
∂p2

h
= 1+eh

p2
h
− 1

(ph−φc)2 − 1
(ph−σhφc)2 − ∂eh

∂ph
· 1

ph
.

Let Mp = 1
(pd−c)2 +

1
(pd−σdc)2 and Mh = 1

(ph−φc)2 +
1

(ph−σhφc)2 .
The determinant of the Hessian in logarithmic form is

∂2lnΠd

∂p2
d
· ∂2lnΠd

∂p2
h
−∂2lnΠd

∂pd∂ph
· ∂2lnΠd

∂ph∂pd
=
[Md

ph
− 1 + ed

ph p2
d

]
· ∂eh

∂ph
+
[Mh

pd
− 1 + eh

pd p2
h

]
· ∂ed

∂pd

+
[
Md −

1 + ed

p2
d

][
Mh −

1 + eh

p2
h

]
+

1
pd ph

( ∂ed
∂pd

∂eh
∂ph
− ∂eh

∂pd

∂ed
∂ph

)
.

When ∂lnΠd
∂pd

= 0 and ∂lnΠh
∂ph

= 0 are satisfied simultaneously, we have 1+ed
p2

d
= 1

pd(pd−c) +

1
pd(pd−σdc) and 1+eh

p2
h

= 1
ph(ph−φc) +

1
ph(ph−σhφc) .

Thus when the first derivative of the two payoff functions are equal to zero, we have
Md − 1+ed

p2
d

= c
pd(pd−c)2 +

σdc
pd(pd−σdc)2 and Mh − 1+eh

p2
h

= φc
ph(ph−φc)2 +

σhφc
ph(ph−σhφc)2 .

Using Nd and Nh to denote c
pd(pd−c)2 + σdc

pd(pd−σdc)2 and φc
ph(ph−φc)2 + σhφc

ph(ph−σhφc)2 , re-
spectively, we finally obtain

detH = Nd
∂eh
∂ph

1
ph

+ Nh
∂ed
∂pd

1
pd

+ NdNh +
1

pd ph

( ∂ed
∂pd

∂eh
∂ph
− ∂eh

∂pd

∂ed
∂ph

)
.
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