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Abstract: Human activities pose significant impacts on ecosystem services (ESs) in mining areas,
which will continually increase over time and space. However, the mechanism of ES change on
spatiotemporal scales post-disturbance remains unclear, especially in the context of global climate
change. Here, we conducted a global literature review on the impact of two of the most frequent
disturbance factors (mining and restoration) on 27 different ESs, intending to synthesize the impacts
of human disturbance on ESs in mining areas via a meta-analysis, and analyze the spatiotemporal
variability of ESs after disturbance. We screened 3204 disturbance studies published on the Web of
Science between 1950 and 2020 and reviewed 340 in detail. The results of independence test showed
that human disturbance had a significant impact on ESs in the mining areas (p < 0.001). The impacts
(positive and/or negative) caused by mining and restoration differed considerably among ESs (even
on the same ESs). Additionally, spatiotemporal scales of human disturbance were significantly related
to spatiotemporal scales of ES change (p < 0.001). We found that the positive and negative impacts of
disturbances on ESs may be interconversion under specific spatiotemporal conditions. This seems to
be associated with spatiotemporal variability, such as the temporal lag, spatial spillover, and cumula-
tive spatiotemporal effects. Climate changes can lead to further spatiotemporal variability, which
highlights the importance of understanding the changes in ESs post-disturbance on spatiotemporal
scales. Our research presents recommendations for coping with the twofold pressure of climate
change and spatiotemporal variability, to understand how ESs respond to human disturbance at
spatiotemporal scales in the future, and manage disturbances to promote sustainable development in
mining areas.

Keywords: spatiotemporal variability; ecosystem services; mining and restoration; temporal lag
effect; spatial spillover effect; spatiotemporal cumulative effect

1. Introduction

Human activities affect ecosystem services (ESs) worldwide [1–3]. Particularly in the
mining area, anthropogenic activity such as mining and restoration is one of the most
direct and important drivers of ES change [4,5]. Large-scale mining activities are widely
distributed globally, mainly in the Andes mountain range, East Asia, Australia, South
Africa, and Eastern Europe [6–9]. A majority of these active mines (63%) are located in
high ES provisioning zones, covering 69% of the global terrestrial land surface [10,11].
Land disturbed by mining is continuously increasing owing to growing global demand
for energy [12]. Many studies over the last few decades have suggested that restoration
activities can improve degraded lands after mining. To date, almost 60 countries have
announced political commitments to bring more than 170 million hectares of degraded land
to restoration [13]. Large-scale restoration activities at the surface are needed in the foresee-
able future, to implement countries’ existing restoration pledges, which cover more than
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one billion hectares [14]. The ESs in mining areas are likely to change more dramatically,
with the extension in time and space of disturbances in the coming decades [15]. This will
further be accentuated as a result of the climate change (e.g., drought, temperature, and
precipitation), which can expand the disturbance impacts through altering the ESs change
rate [16,17]. The disturbance impacts (i.e., the condition, size, severity, and frequency of
disturbance over extended spatial and temporal scales) can be reflected by the changes
in ESs at spatiotemporal scales, as the actual contribution of mining and restoration to
ES change is subject to change over time and space [18–20]. Therefore, analysis of the
spatiotemporal changes in ESs post-disturbance can enhance our knowledge of how ESs
respond to human disturbances at spatiotemporal scales, which is crucial for sustainable
mine management of mining areas in the context of global climate change [7].

To better address climate change and adequately inform mine management decisions,
there is a need for a comprehensive understanding of the impacts of disturbance on ESs [21].
There is an increasing body of research dealing with human disturbance impacts on ESs, as
their importance is more widely recognized [22]. Numerous snapshot (i.e., ESs presented
by static maps) studies have demonstrated that human disturbance has negative or positive
impacts on ESs. On the one hand, mining activities have significant negative impacts
on the surrounding ecosystems through either direct effects (e.g., loss of vegetation [23],
soil degradation [1,24], and water quality pollution [25–27]) or indirect effects (e.g., social
conflicts [12,28,29]). However, mining sites also have substantial ecological, geological, and
cultural value [23,30–34]. On the other hand, the specific restoration method (e.g., Surface
Mining Control and Reclamation Act of 1977 [35] and fast colonizing species [36]) alleviates
soil destabilization and water-quality impairment to cause herbaceous communities to
proliferate rapidly and widely in mines, while resulting in a poor growing environment for
native trees that greatly hinder forest regeneration [37]. However, these studies focused
on snapshots that provided limited information on ESs, and dynamic changes in ESs have
seldom been examined [38]. Thus, there is a need for better exploration of the entire
process of ES change after mining and restoration, to understand the significantly different
disturbance effects on ESs [21,39]. Several studies have explored changes in ESs at various
spatiotemporal scales post-disturbance. For example, mining has significantly negative
impacts on ESs in a short time, while many historic mining districts have been preserved
as cultural heritage sites (e.g., the Cornwall and West Devon Mining Landscape World
Heritage Sites) [31,40]. Furthermore, during the process of mine restoration, the diversity
of the forest was lower in the initial stages of active restoration but increased to reference
levels within 10–20 years [41]. Hence, neglecting the spatiotemporal variability of ESs may
yield misleading results [42–44].

It is difficult to effectively manage ESs because of the unpredictability of ES changes
at spatiotemporal scales. This can be attributed to the substantial inertia (delay in the
response of a system to a disturbance) that exists in ecological systems. The impacts of
disturbance on ESs are slow to become apparent [45], and may be expressed primarily at
some distance from where the ESs were disturbed [46]. For example, regional ES values
decreased with the expansion of mining areas and irreversibly altered over time [23,47].
Moreover, there are significant interactions at spatiotemporal scales of ES change as a
result of the interactive effects between location- and time-specific factors [38]. As reported
by Magris et al. [48], the collapse of tailing dams exported a large amount of pollutants
to the ocean over time, and the cumulative effects of temporal lag and spatial spillover
likely affected key sensitive ecosystems. These effects are referred to as the spatiotemporal
variability (i.e., temporal lag effect, spatial spillover effect, and cumulative spatiotemporal
effect) of disturbance impacts on the ESs. This is one of the main challenges in revealing
the underlying mechanisms of post-disturbance ES changes in mining areas [49]. Therefore,
understanding the specific effects of spatiotemporal changes in ESs post-disturbance is key
to facing future challenges.

As a result, we described and quantified the various impacts of human disturbances
in a literature review of disturbances in mining areas globally. In particular, the impacts of
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human disturbances on ESs on temporal and spatial scales were analyzed. We examined
the effects of two of the most important disturbance drivers (i.e., mining and restora-
tion) in mining areas on 27 ESs from eight ecosystems distinguished by the Millennium
Ecosystem Assessment. A clear analysis of all four categories (provisioning, supporting,
regulating, and cultural services) enables a more comprehensive and specific assessment of
impacts [46,50]. Moreover, correlations between disturbances and ESs on the temporal and
spatial scales were measured. The objectives of this study were (1) to synthesize the impacts
of human disturbances on ESs in mining areas via quantitative meta-analysis, and (2) to
further explore the various effects of the response of ESs in mining areas to human distur-
bance changes on spatiotemporal scales. Based on these analyses, we provide suggestions
for the sustainable management of mining areas in the context of climate change.

2. Materials and Methods
2.1. Systematic Review

We searched for studies on disturbance by mining, restoration, and management, and
their impacts on ESs as defined by the Millennium Ecosystem Assessment [46], focusing
on ES change on spatiotemporal scales. The top three anthropogenic drivers, based on the
VOSviewer version 1.6.13, were selected by research keywords ranked according to the
importance and relevance degrees from documents searched for (“ecosystem services”)
AND (“mine” OR “mining”) in December 2020, then the disturbance drivers were de-
termined (Figure 1). However, ESs are affected by both direct and indirect drivers, and
indirect drivers (e.g., management) can trigger or strengthen direct drivers (e.g., mining
and restoration) [51]. We classified the research obtained by searching for “management” in
mining and restoration categories according to their focus, which improved the authenticity
and accuracy of the research results. As different ecosystem types are connected and share
common threats and drivers of change, it is often necessary to include multiple ecosystem
types [51]. Eight ecosystems (i.e., forest, cultivated, dryland, coastal, marine, urban, in-
land water, island, and mountain) on a worldwide level are included in our research [46].
Groundwater is an important component of inland water ecosystems included in inland
water ecosystems, as an important ecosystem component.

In this study, the Web of Science (WoS) was chosen for the analysis of human distur-
bance impacts on ESs, and the cutoff date for the inclusion of publications was 9 December
2020. Only one electronic database was selected to avoid double-counting scientific pub-
lications [52]. As ESs have been extensively studied, and the uses of the term are not
standardized, there exist obvious differences in the expression of ESs in scientific publi-
cations of various countries [53,54]. By using relevant research [55], the final search used
the combination of keywords shown in Table 1. A total of 3204 papers were screened; we
screened the studies based on their titles and abstracts [42]. From this overall body of
research, literature reviews, books, reports, and presentations (i.e., grey literature) were
excluded to avoid repeated viewpoint records [52,55]. Beyond that, we excluded research
without disturbances or full text. Studies that used explicit ES concepts or specific ES
types were included. From the 3204 studies initially screened, 340 were selected for further
analysis (Figure 2).

Individual studies frequently examined more than one ES (i.e., multiple different
services or the same service in different locations) [42]. Thus, we allowed multiple entries
per study—for instance, if a study examined more than one disturbance factor or ESs. For
each study, we collected information on geographical location, ecosystem types, distur-
bance factors, ES categories, spatial and temporal scales, and assessment methodologies
(Supporting Information S1 and S2). For the research with spatiotemporal information,
we recorded the spatiotemporal scales of disturbances and ESs, spatiotemporal changes,
and spatiotemporal overlap (Supporting Information S3). We characterized studies over
four time scales (i.e., short term: <5 years, mid-term: 6–25 years, long term: 26–100 years,
very long term: >100 years) [42]. The spatial scale (i.e., stand: <0.1 km2, patch: 0.1–1 km2,
landscape: 1.01–1000 km2, region: >1000 km2) of the case study was determined follow-
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ing the criteria provided by Dominik Thom and Rupert Seidl according to the size of
the study area [56]. If studies included research methods (e.g., experimental data, field
samples, or observations) affecting the time and space scale, they were focused on in the
quantitative analysis.
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Table 1. Search terms of disturbance and ecosystem services (ESs) and their respective synonyms are
used in the research analysis.

Search Terms Synonyms

Mining
AND

Ecosystem service

Quarry

Cultural service; provisioning service; regulating service;
supporting service

Restoration
AND

Ecosystem service
AND
Mine

Ecological restoration; phytoremediation; reclamation;
rehabilitation; revegetation

Cultural service; provisioning service; regulating service;
supporting service

Management
AND

Ecosystem service
AND
Mine

Supporting service; cultural service; provisioning service;
regulating service
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2.2. Meta-Analysis

The 340 studies contained a total of 736 individual cases that contain 312 with spa-
tiotemporal information (see Supporting Information S1 and S2 for the full sample list).
We analyzed our literature-derived database of disturbance impacts in two steps. First,
we assessed the impacts of disturbance on the ESs in mining areas. To test whether a
significant disturbance effect can be established from the literature, we used the chi-square
independence test to observe the distribution of impacts over the response categories. In
addition, we tested for differences in disturbance impacts among geographical location,
ecosystem types, ES categories, and spatiotemporal scales. The degrees of correlation
between the dependent and independent variables were measured using the coefficient
of contingency to gain further insights into the relationship between disturbance factors
and effect types. Post-hoc analyses were completed for chi-square tests using adjusted
standardized residuals to determine greatest differences [57,58]. We examined standardized
residuals and adjusted standardized residuals relative to a cut-off point of >3 standard
deviations to represent the strength comparisons between groups and the direction of
the correlation.

Second, to explore the response of ESs in mining areas to human disturbance changes
on spatiotemporal scales, correlations between disturbances and ESs were measured at
temporal and spatial scales. The relationship between temporal and spatial scales is
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complicated, and significant space–time interactions exist [38]. The temporal and spatial
scales were computed separately to ensure that the results were more accurate. The strength
and direction of the correlation between disturbances and ESs in terms of temporal or spatial
scales were measured using the chi-square independence test, Kendall’s rank correlation
coefficient, and adjusted standardized residuals. All tests were conducted using the IBM
SPSS Statistics software (version 25.0, Armonk, NY, USA).

3. Results
3.1. Human Disturbance Impacts on ESs in Mining Areas

The number of journal articles focusing on ESs has increased substantially over the
last decade [53]. Research on the effect of human disturbances on ESs in mining areas
began in 1999 and has increased between 2010 and 2020 C.E. (before 2010, studies were
sparse and irregular) in our database. The number of publications in 2020 increased
15.5 times in comparison to the 2010 level (Figure 3). Most studies were conducted in Asia
(28.1%), Europe (20.4%), North America (15.2%), and South America (15.1%) (Figure 4). In
mining areas worldwide, the majority of disturbances occur in forest ecosystems (26.1%),
cultivated ecosystems (15.4%), and dryland ecosystems (13.9%). Overall, mining (62.9%)
was the most common human disturbance in mining areas, followed by restoration (30.3%),
with only 6.8% of the samples showing mixed effects. However, the negative (49.3%) and
positive effects (41.6%) on ESs were nearly equally distributed. ESs affected by human
disturbances involved all categories (i.e., regulating services (41.3%), cultural services
(23%), provisioning services (22.4%), and supporting services (13.3%), which indicates that
relatively little attention has been paid to cultural services [59] (Figure 5).

At the ES category level, the regulating services seemed to receive the biggest influence
from all disturbances and presented significant negative, positive, and mixed (i.e., both
negative and positive) effects. The largest negative and positive effects of mining are on
regulating services and cultural services, respectively. Moreover, more negative impacts
of restoration were found for provisioning services, whereas more positive impacts were
found for regulating services. For individual ESs, the most severely disturbed ESs were
water purification and waste treatment (14.7%), food (11.7%), and recreation and ecotourism
(7.6%). The largest negative effects of mining are water purification and waste treatment,
food, and disease regulation, relative to the other ESs (Figure 5). This is because the
heavy metals and other mining wastes may degrade water quality through runoff and
groundwater infiltration, causing a serious impact on inland water ecosystems [60–62].
The largest positive effects of restoration are nutrient cycling, soil formation, and climate
regulation, which may be closely related to the restoration approach and technique.

Overall, human disturbance had significant effects on ESs (p < 0.001). As Table 2
shows, a negative (positive) impact is positively associated with mining (restoration).
Mixed disturbance is also explained by a positive relationship with mixed impact. As
expected, our results demonstrated that the ES responses to mining and restoration were
significantly different.

3.2. ESs Response on Temporal and Spatial Scales in Mining Areas to Human Disturbance

In our sample (n = 312) of research with spatiotemporal information, the disturbance
time remained mostly mid-term (48.7%) and long-term (29.5%), and the time of ES change
remained mostly short-term (24.4%) and mid-term (71.5%) (Figure 6). Furthermore, the
spatial scales of disturbance and ES changed are mostly landscape (48.7% and 41%, respec-
tively) and region (29.5% and 30.8%, respectively) (Figure 7). As shown in Table 3, studies
based on field samples and observations (31.1%) predominantly considered short temporal
scales and small spatial scales (i.e., stand and patch). Remote sensing methods (25%) and
simulation (18.9%) were most frequently used in studies considering the mid-temporal
scale and large spatial scales (i.e., landscape and region). Studies with an expert opinion
approach (7.7%) preferred to assess long-term changes in ESs on a landscape scale. It can
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be seen that the spatiotemporal scales of ES research are associated with different research
methods.
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Figure 5. Distribution of the disturbance impacts in ES categories. Under the disturbance of
(a) mining, (b) restoration, (c) mining and restoration, and (d) all disturbances, the distribution
of disturbance impacts (positive, negative, mixed) in ESs (expressed as a percentage). The blue
series indicates samples with spatiotemporal information, which together with the red series con-
stitute the total sample. ES acronyms are as follows: FO-food, FW-fresh water, FI-fiber, GR-genetic
resources, BNMP-biochemicals, natural medicines and pharmaceuticals, AQR-air quality regula-
tion, CR-climate regulation, DR-disease regulation, ER-erosion regulation, NHR-natural hazard
regulation, PO-pollination, WR-water regulation, WPWT-water purification and waste treatment, AV-
aesthetic values, CHV-cultural heritage values, EV-educational values, IN-inspiration, KS-knowledge
systems, RE-recreation and ecotourism, SRV-spiritual and religious values, SR-social relations, SP-
sense of place, NC-nutrient cycling, PP-primary production, PH-photosynthesis, SF-soil formation,
WC-water cycling.

Table 2. The strength and direction of correlation between dependent (effect types of disturbance on
ESs) and independent variables (disturbance factors).

Adjusted Standardized Residuals
(ASRs)

Indicator Positive Mixed Negative Pearson
Chi-Square

Contingency
Coefficient

Mining −13.5 −4.3 15.8
433.739 *** 0.609 ***Restoration 16.2 −2.6 −14.4

Mining and Restoration −3.5 13.0 −4.0
*** represents statistical significant < 0.001.
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Table 3. Research methodology and spatiotemporal scales of ES changes (n = 312) regarding distur-
bance impacts on ESs in mining areas.

Research Methodology

Temporal
Scale Spatial Scale Expert

Opinion Empirical Mixed Remote
Sensing Simulation Questionnaire Total

Short
term

Stand 0 33 2 0 3 4 42
Patch 0 6 0 1 0 0 7

Landscape 2 11 3 0 2 2 20
Region 0 1 3 1 2 0 7

Mid term

Stand 0 27 0 1 1 0 29
Patch 0 7 1 0 1 1 10

Landscape 13 9 13 38 19 8 100
Region 3 3 16 34 28 0 84

Long
term

Landscape 4 0 1 3 0 0 8
Region 2 0 0 0 3 0 5

Total 24 97 39 78 59 15 312

The temporal and spatial scales of ESs studies are inevitably diminished by the research
methods. Nevertheless, inter-scale and cross-scale phenomena appear to be significant in
explaining the changes in ESs. Our data indicate that long-term mining or restoration is
likely to have short- and mid-term consequences on ESs. Beyond that, ESs change in short,
mid, and long periods, based on disturbances from very long-term mining. This indicates
that the impacts of disturbances on ESs might have produced a lag effect on temporal
scales (Figure 6). We found that the ESs were affected at the patch and landscape scales
when mining at the patch scale. However, ESs change at all spatial scales after mining
at the landscape scale. In contrast, restoration at the patch scale affected ESs at the stand
and patch scales. As the restoration intervention expanded to the landscape scale, ESs
changed at stand, patch, and landscape scales (Figure 7). While a significant transformation
(i.e., spillover effect) on spatial scales was found, it is possible that multiple factors con-
tributed to this change. In addition, under long-term restoration activities, ESs rarely
changed on a regional scale (Figure 8). Mining at each temporal scale can cause ESs to
eventually change at the four spatial scales. Compared to the stand and patch scale, mining
at the landscape scale makes ESs more likely to undergo long-term changes. Regardless of
the size of the restoration, ESs showed short- and medium-term changes (Figure 9). This
shows that, under the action of temporal and spatial scales, the impact of disturbance is
more complicated and may form a cumulative effect.

In the mid-temporal scale, the impact of mining on ESs is negative compared to the
positive effect of the restoration. Beyond that, there is a negative effect of mining on ESs at
the landscape and regional scales, and a positive effect of restoration at stand and patch
scales. However, some samples suggest that mining has a positive impact on ESs in the
mid- and long-term, and that restoration has a positive impact in the short- and mid-term
(Figure 10). A similar bidirectional impact was observed at the spatial scale (Figure 11).
That is, the positive and negative impacts vary by spatiotemporal scales, and there may be
interconversion under specific spatiotemporal conditions.

Overall, there is strong evidence for the distinct impact of disturbances on ESs at tempo-
ral and spatial scales. Tables 4 and 5 show that the temporal and spatial scales of ES change
were related to the temporal and spatial scales of the disturbances (p < 0.001). There was a
correlation between the temporal scales of disturbances and ESs (Kendall’s tau-c = 0.395,
p < 0.001), and a significant correlation between spatial scales (Kendall’s tau-b = 0.915,
p < 0.001). This suggests that temporal and spatial factors should be considered during
disturbance management.
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4. Discussion

Our results suggest that the impacts of disturbance on ESs have three effects (i.e.,
temporal lag, spatial spillover, and spatiotemporal cumulative effect) on the spatiotemporal
scale and differ depending on both spatial and temporal factors, which may suggest some
mechanisms for spatiotemporal ES variations post-disturbance. Global climate change
influences spatiotemporal variability and may exacerbate the impacts of disturbance on
ESs [63]. These findings improve our knowledge of the spatiotemporal variability of
disturbance effects on ESs and have crucial implications for disturbance management and
the sustainable supply of ESs in mining areas.

4.1. Possible Causes and Consequences of the Spatiotemporal Variability

There are delays in the response of ESs to disturbances, especially on long-term scales.
This is likely due to the fact that ESs rarely respond instantaneously to disturbances in
specific ecological processes. The impacts of mining and restoration are sustained over
time [64–68], and may even change the ESs at the mining area for time scales in the order of
decades to centuries [69–71]. Some studies represent an increase in the spatiotemporal lag
on the pollinator and pest control functions, but at even higher lags, the carbon sequestered
by large intact forests mitigates climate change, benefiting the entire global community [72].
Therefore, the length of the time lag is uncertain and may be related to the environment
(e.g., geology, soil type, topography, and species composition), which may cause drastically
different impacts [73].

Since strong regionality was noted for most of the disturbances [74], spatial extent
is an important aspect to be considered in studies and the management of ESs [75]. Our
results showed that the spatial spillover effect of mining mainly occurred at the patch
and landscape scales (Figure 6), suggesting that spatial spillover effects are not significant
at restricted small-scale mining and very large spatial scales, and this relationship is
characterized by a hump-shaped line. In addition, at fine scales (hundreds of meters), forests
in mining areas can provide important pollinator functions to adjacent fields [76,77]. At
larger scales, headwater riparian areas deposit waste from mining pollution, but improved
water quality is gained downstream [78]. These findings suggest that spatial spillovers in



Sustainability 2022, 14, 7547 14 of 20

different space scales affect other ESs to a particular spatial extent. Thus, spatial spillover
effects can influence multiple ES groups.

In addition, the interactive process of temporal lag and spatial spillover effects pro-
vides an opportunity to inform ES-based decision making and governance [79]. Some
studies have shown that the intensity of the impact of mining activities diminishes over
time, but the total area of sensitive ecosystems at risk is predicted to increase [65]. It is ap-
parent that disturbances can potentially lead to cumulative impacts on ESs across multiple
spatiotemporal scales that have emerged as particularly evident for mining areas [80,81].
This might be owing to the additive or interactive processes of temporal and spatial changes
in ESs, leading to the accumulation of impacts through repetition [22]. The impacts vary by
the duration and frequency of mining and restoration, where a higher intensity disturbance
can cause more rapid space expansion. This further suggests that the spatiotemporal effect
of ES changes could be a future concern if time lag and spatial spillover have an interactive
and cumulative effect on ESs that is overlooked.

4.2. The Contribution of Climate Change to Spatiotemporal Variability

In the present study, we found that spatiotemporal variability is mediated by climate.
This is likely attributed to climate change that alters the propagation and running speed
of the media between disturbance receptors and disturbance sources. In most locations,
there is a 1–6 month time lag between the onset of the rainy season and the seepage of
adits at the mine site [82], and heavy rainfall causes pollutants to enter rivers and the sea
in a short time [83]. Moreover, in tropical and summer-warm temperate climates, mining
areas approached reference conditions relatively rapidly, whereas mining areas restored
in cold climates had not recovered to reference conditions after 50 years [71]. Warm and
large areas recover more rapidly than cold and smaller areas [84]. This indicates that the
significant effects of climate on the rate and degree of spatial spillover effects may cause
nonlinear changes in the temporal lag effect after disturbance [42,85,86], which complicates
multiple-group ES interactions. Therefore, drastic changes in climate may result in a
stronger spatial spillover effect and uncertainty of the time lag length, which may intensify
the disturbance effects.

In addition, greater risk from climate stressors can intensify cumulative impacts or
trigger additional (or linked) consequences [87]. Climate change alterations in food webs
and aqueous environments in mining areas are likely to increase the bioaccumulation and
biomagnification of metals and other contaminants in freshwater food webs [88,89], exacer-
bating the mining-related release of metals or other contaminants that may ultimately affect
our food supply [90]. This suggests that the cumulative impacts on ESs are increased by
climate change across spatiotemporal scales, which alters the flow of energy through ecosys-
tems, biogeochemical cycling of matter, and/or the composition of biological divers [49,86].
Therefore, our current predictions of spatiotemporal cumulative effects on ESs may be
greatly underestimated in the context of climate change.

4.3. Recommendations for How to Cope with the Twofold Pressure of Climate Change and
Spatiotemporal Variability

The research reviewed showed that studies over timespans of several decades relied
on remotely sensed data, secondary data, or simulations, whereas experimental data and
field samples/observations strongly dominated short-term studies. This is owing to the
higher costs of maintaining long-term research projects and the higher workload of the
researchers involved. Many studies have investigated the impact of disturbance on ESs at
the stand or regional scale, as their research methods limit analysis to easily quantifiable
features of ecosystems [91]. Therefore, multi-scale observations are necessary [92], as they
bridge the knowledge gap created by these research methods [42]. This requires a paradigm
shift from the specific-technique, small-spatial-scale, and short-term perspective approach
to ES assessment and management to the application of integrated cross-spatiotemporal
assessments of changing ES conditions [93]. New technologies and algorithms of the Fourth
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Industrial Revolution should be used for assessment, and novel models should be used to
elucidate ES changes in mining areas after disturbance [94,95]. These studies will contribute
to the exploration of the temporal and spatial relationship between disturbance and ES
changes and numerical quantification of spatiotemporal variability in future studies.

Failure to account for spatiotemporal variability and the link to ecosystem service
outcomes in this progress can result in poorly informed management decisions and the
misunderstanding of mechanisms of ES change [96]. Our global meta-analysis suggests
that negative disturbance impacts on water ecosystems (affected by mining) and tree
communities (affected by restoration) are strongly increased with temporal lag and spatial
spillover since the disturbance, but positive effects on biodiversity (affected by restoration)
and cultural heritage (affected by mining) also increased with this spatiotemporal effect,
especially the accumulation effect due to additive or interactive processes of temporal
lag and spatial spillover effects, indicating that appropriate action for disturbance would
result in limited impacts on ESs while still benefiting other ESs. Different disturbance
impacts on ESs (individual ESs and ES groups) and their interconversion results should
be accounted for in ES sustainability management of mining areas under global climate
change [97]. Thus, it is important to determine the spatiotemporal scales and threshold
value of disturbance [48,98], if the spatial extent and time length of ESs are considered as the
key features for determining the disturbance threshold, which favors regulating the effect of
disturbance on multi-group ESs and understanding the spatiotemporal variability [99,100].

Although there are many other factors associated with spatiotemporal effects (e.g., re-
search paradigm, disturbance threshold, and interaction among ESs [17]), uncontrollable cli-
matic changes will increase the disturbance frequency and severity on cross-spatiotemporal
scales, which makes it difficult to manage disturbances. According to our findings, the
main climate-related triggers for ES changes were heavy precipitation, floods, and dry peri-
ods. The pressures from human disturbances related to climate change may push the ESs
towards a heterogeneous trend [101,102]. Consequently, this has necessitated more research
on the potential impacts of climate change on ecosystem services following disturbance
management, as well as the feedback of ESs on climate change after management [98]. The
overall coordinated development of the economy, politics, society, and ecological envi-
ronment is included in the disturbance management of mines. The trade-offs between
ecological resource utilization and ecological compensation from ecological footprint mea-
surements must be assessed to modify the relationship between anthropogenic disturbance
and ES protection. The environmental footprint can be used to analyze the spatiotemporal
distribution characteristics and spatiotemporal heterogeneity of human disturbances [103]
and to monitor, evaluate, and predict the impact of disturbances on ESs from multiple
dimensions. The application of the multidimensional ecological footprint model and
human footprint index at spatiotemporal scales provides a theoretical basis for effective
disturbance policies [104], which is an implementation path for sustainable development
in mining areas.

This study had some limitations, including that the spatiotemporal scale sample is
not comprehensive because spatiotemporal data depending on specific research methods.
Therefore, it is necessary to improve data-collection methods and spatiotemporal databases
to explore the mechanisms that link spatiotemporal effects to ecosystem-service outcomes
in the context of climate change. Moreover, owing to data limitations, quantitative analyses
were not performed on the specific number of years involved, the spatial area of disturbance,
and ES changes. Future research needs to quantify spatiotemporal variability and explore
these relationships more rigorously.

5. Conclusions

This study reviewed 340 papers to explore the spatiotemporal variability of human
disturbance impacts on ecosystem services in mining areas. We evaluated the impacts of
human disturbance on ESs in mining areas and discussed the spatiotemporal effects formed
during this process. This review revealed that the ES responses differed significantly from
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those of mining and restoration, and disturbances can cause both rapid decline and better
recovery of ESs in mining areas. We found that the negative and positive impacts on ESs
may be interconverted under specific conditions at spatiotemporal scales, which may be
attributed to temporal lag, spatial spillover, and cumulative spatiotemporal effects. Due to
ongoing climate change, the time lag effect may change nonlinearly, the spatial spillover
effect complicates multi-group ESs interactions, and the spatiotemporal cumulative effect
of ES changes in post-disturbance mining areas may be significantly underestimated.
To address climate-change issues, we support shifting existing research methods to the
application of integrated cross-spatiotemporal assessments of ES change and managing the
disturbance stress through ecological footprint measurement, the disturbance threshold,
and anthropogenically modified systems, which are important for the practical application
of mining-resource extraction and ecological restoration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14137547/s1, Supplementary Materials file, S1: 424 samples
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