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Abstract: This study introduces a robust concept for considering uncertain multiobjective optimiza-
tion problems, called the lightly robust max-ordering solution. This introduced solution concept
offers the best option for solving issues based on the maximum cost in the worst-case scenario.
Introducing a tolerable relaxation parameter can be used to increase the robustness of the solution
but, at the same time, the desirable property of such a solution with respect to the nominal scenario
might be decreased. Subsequently, the two measurements, which are the ‘gain in robustness’ and
the ‘price to be paid for robustness’ , are considered. These measurements are needed to support a de-
cision maker to find more desirable lightly robust max-ordering solutions with a beneficial trade-off
between the robustness of solutions and the quality of solutions in an undisturbed situation. More-
over, an algorithm for finding the proposed solution is presented and discussed. An instance of the
benefits of the suggested solution concept is used on an example of ambulance location planning
if ambulances may be unavailable.

Keywords: uncertain multiobjective optimization problem; robust optimization; robust solution;
lightly robust solution; ambulance location problem

1. Introduction

In recent years, several robustness concepts have been proposed for uncertain multiob-
jective optimization problems. These solution concepts are proposed considering problem-
solving goals, which may differ significantly depending on the decision maker’s preferences.
For example, consider a student organization that wants to provide low-cost lunch to students
in numerous university cities but needs to determine a dish price in advance. The aim of this
problem is to minimize the lunch prices in all cities simultaneously, where the uncertainty
in the price development is modeled by the ingredient prices in any city. To minimize the high-
est price in any town that any student has to pay for their meal in the worst case, the solution
method based on max-ordering optimization problem was proposed by Schmidt et al. [1].
Intuitively, the original idea of the max-ordering approach was proposed for solving lo-
cation allocation problems in location theory; see [2]. One of prominent examples of the
max-ordering approach to location allocation problems is an ambulance location problem.
This problem plays an important role in emergency service systems. The effective access
of an ambulance to an incident scene is closely correlated with a high patient survival rate.
Moreover, first aid for injury after an incident is a time-sensitive task that matters in relieving
the severities of injuries. There are many directions investigated for the ambulance location
problem. The first direction of this problem was studied by Toregas et al. [3] in a setting of the
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location set covering model, which attempts to reduce the number of ambulances required
to cover all demand sites. Another early model is a maximal covering location problem,
which was initially proposed by Church and ReVelle [4]. This approach aims to maximize
the total demand covered given a fleet of fixed size. However, these are static models that
do not account for the fact that ambulances may become unavailable at any time of the day
and that special demand points may no longer be covered. To deal with these ambulance
location issues, many researchers are attempting with a lot of effort to adopt the robust
optimization approach for building solutions that perform effectively in any circumstance
of unavailability; see [5] for more information. It is worth to notice that the maximal covering
formula has been utilized in a diverse set of application areas, including the optimal location
of emergency response facilities, services, and vehicles; see [6], communication networks;
see [7] and maximal covering species problems; see [8], liner ship routing and scheduling
schemes under uncertain weather and ocean conditions; see [9], container ocean shipping
network designs; see [10]. These problems are the applications of the maximal covering
location problem.

It is well-known that identifying and defining robust solutions to uncertain multi-
objective optimization problems have been issues of growing interest recently. The most
familiar approach is the extensions of the minmax robust solution, which was introduced
by Ben-Tal and Nemirovski [11] and Ben-Tal et al. [12]. The goal of this notion was to find
a solution that would minimize the objective function in the worst-case scenario while
remaining a feasible solution to the original problem. It is not simply to transfer this solu-
tion concept from single-objective optimization problems to multiobjective optimization
problems, since the meaning of the minimum of the worst case of multiobjective is not
clearly defined by researchers.

The first generalization of the minmax robust solution concept was proposed by Kuroiwa
and Lee [13]. Their theory suggested a progressive development from single-objective op-
timization problems to multiobjective optimization problems. In this solution concept,
the authors replaced the objective function vectors in the original problem with the vector
consisting of each respective component of the worst-case scenario. Therefore, researchers
are able to identify the solutions for the deterministic multiobjective optimization prob-
lem. Hence, the term efficient solution is also known as the point-based minmax robust
efficient solution for the result of the origin of the uncertain multiobjective optimization prob-
lems. Another interpretation of the minmax robust efficient solution notion was proposed
by Ehrgott et al. [14], called the set-based minmax robust efficient solution concept. Instead
of looking at each respective objective component in the worst-case scenario, the authors look
at the set of objective vectors in all scenarios of a given feasible solution and compare the sets
to each other. It is observed that these two solution concepts, which included the point-
based minmax robust efficient solution, Kuroiwa and Lee’s work, and the set-based minmax
robust efficient solution, by Ehrgott et al., are identical in cases of solving objective-wise
uncertain multiobjective optimization problems. Another approach to studying minmax
robustness concepts in the literature is to observe the practical applications of the minmax
robust solution concepts. The portfolio selection problems, which were studied by Fliege
and Werner [15], and the recent results of the feasibility of the minmax robust solutions
studied by Wei et al. [16], are examples of several studies involving minmax robustness
concepts. Another direction of robustness concepts for uncertain multiobjective optimization
problems was proposed by Boriwan et al. [17], which is called the lexicographic tolerable
robust solution concept. The solution obtained by this solution concept provides the best
choice for the practical problems in which the objective function is composed of different
level priorities. For the theoretical point of view on the lexicographic tolerable robust solution
concept, we may refer the reader to see in [18].

As the resulting solutions of minmax robustness concepts are derived by relying
on data from the worst-case scenario, decision makers may not be willing to make conclu-
sions about a definite outcome based on the worst possible outcome. Furthermore, if one
wants to protect all situations against the uncertainty set by focusing on the worst-case sce-
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nario, this may come with an adverse consequence, and the quality of the resulting solution
in the nominal situation is often drastically decreased. Adhering to that viewpoint, many
researchers continually attempt to examine the solution concept against the uncertainty
(robustness), while not being overlenient in an undisturbed environment from the con-
current uncertainty. Based on the aforementioned concepts, the light robustness concept,
a nominal scenario defined in this study, was first proposed by Fischetti and Monaci [19]
for solving uncertain single-objective optimization problems. A scenario is called nominal
if it is the most typical and notable situation found among all scenarios in an uncertainty set.
According to the original light robustness concept in Fischetti and Monaci’s work, a feasible
solution is said to be lightly robust if its objective value does not differ from the optimal
objective value by more than an acceptable threshold in the nominal scenario and if it
minimizes the objective function in the worst-case scenario while considering all feasible
solutions. As the light robustness concept becomes more reliable and applicable in many
modern management society challenges, the generalizations regarding the uncertain mul-
tiobjective optimization problem have been well studied. The first generalization of this
solution concept was extensively studied by Kuhn et al. [20] from uncertain single-objective
optimization problems to uncertain biobjective optimization problems by means of directly
following the idea of the light robustness concept introduced in Fischetti and Monaci’s
work. The generalizations of the lightly robust concept have been continuously studied
by Schöbel and Ide [21] in a more general setting of uncertain multiobjective optimization
problems via combining the ideas of set-based minmax robust efficiency and the lightly
robustness concept. Replacing the idea of set-based minmax robust efficiency with the idea
of point-based minmax robust efficiency has created an alternative interpretation of lightly
robust efficiency, as presented by Schöbel and Zhou-Kangas [22]. Additionally, they theo-
rized that the relationships among nominal efficient solutions, point-based minmax robust
efficient solutions, and lightly robust efficient solutions are analyzed and compared un-
der the nominal case scenario and the worst-case scenario. The authors also analyzed
the benefits or disadvantages between applying nominal quality and robustness of a single
solution by proposing a measure which is called the price of robustness. Through the use
of the price of robustness, decision makers can understand both the nominal quality and
robustness of a solution founded by applying the lightly robust efficiency concept.

The main contribution of this paper is to propose a new solution concept using the com-
bined features of the light robustness concept introduced by Fischetti and Monaci [19] along
with the max-ordering solution concept in [23]. We notice that this new approach differs
from the mentioned ideas in [21,22] and is appropriate for the problem where a solution
should provide the best choice when decision makers are concerned about the maximum
criteria in the worst-case scenario. After introducing the fundamental characteristics of this
new solution concept, the strategy used for choosing a final solution to satisfy both aspects
of nominal quality and robustness is presented. An ambulance location problem regarding
the unavailability of ambulances was the focus of the uncertainty.

The organization of this paper is as follows. To deal with an uncertain multiobjec-
tive optimization problem, a new robust solution concept and an algorithm for finding
the proposed solution concept are presented in Section 2. Two measures that are considered
in decision support strategy are presented and discussed in Section 3. Then, an implemen-
tation of the proposed solution concept is illustrated on an ambulance location problem
in Section 4. Finally, Section 5 concludes the paper.

2. Methodology

In this section, we introduce the light robust max-ordering solution concept solving
for an uncertain multiobjective optimization problem.
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Lightly Robust Max-Ordering Solutions with Respect to the Relaxation for Uncertain
Multiobjective Optimization

Let X be a feasible set and U a finite uncertainty set. An uncertain multiobjective
optimization problemMP(U ) is a problem consisting of a family of deterministic multiob-
jective optimization problems {MP(s)|s ∈ U} of

(MP(s)) min f (x, s) (1)

subject to x ∈ X,

with the objective function f : Rn ×U → Rp. The elements x ∈ X ⊆ Rn are called feasible
solutions and s ∈ U are called scenarios.

Before we go to the lightly robust max-ordering solution concept, we introduce the no-
tationMP(ŝ) to denote the nominal problem of uncertain multiobjective optimization
problemsMP(U ). That is, for an uncertain multiobjective optimization problemMP(U )
together with a nominal scenario ŝ ∈ U , the nominal problemMP(ŝ) is given as a detern-
imistic multiobjective optimization problem:

(MP(ŝ)) min f (x, ŝ) (2)

subject to x ∈ X

with the objective function f : Rn × {ŝ} → Rp.
To introduce the new solution concept of this work, we now recall the important

definition of the max-ordering solution in [23] that is relevant to our solution concept.

Definition 1. Given a deterministic multiobjective optimization problemMP(ŝ), a feasible solu-
tion x̂ ∈ X is called a max-ordering solution if there is no x ∈ X, such that

max
k∈Ip

fk(x, ŝ) < max
k∈Ip

fk(x̂, ŝ). (3)

According to Definition 1, the set of max-ordering solutions for the nominal problem
MP(ŝ) can be found by solving the following optimization problem:

min
x∈X

max
i∈Ip

fi(x, ŝ). (4)

We denote the set of max-ordering solutions to the nominal problemMP(ŝ) by XMO(ŝ).
For any fixed non-negative value ε, we define the robust counterpart of an uncer-

tain multiobjective optimization problemMP(U ) with respect to the nominal scenario ŝ
as following

(LRMOP(ŝ, ε)) min max
s∈U

max
i∈Ip

fi(x, s) (5)

subject to x ∈ XLRMOP(ŝ,ε),

where XLRMOP(ŝ,ε) := {x ∈ X|max
i∈Ip

fi(x, ŝ) 6 max
i∈Ip

fi(x̂, ŝ) + ε}, for some x̂ ∈ XMO(ŝ).

We now present the solution concept which is the main aim of this work.

Definition 2. Given an uncertain multiobjective optimization problemMP(U ) with a nominal
scenario ŝ, let ε > 0 be given. Then, a feasible solution x∗ is called a lightly robust max-ordering
solution for the problemMP(U ) with respect to the relaxation ε on the nominal scenario ŝ if it
is an optimal solution for the optimization problem LRMOP(ŝ, ε). The set of all lightly robust
max-ordering solutions is denoted by X∗LRMOP(ŝ,ε).

The following remark is the observations on the concept of solution in Definition 2.



Sustainability 2022, 14, 7511 5 of 18

Remark 1. A solution obtained by Definition 2 provides an option that concerns the worst-case
scenario. This means that this solution approach is an appropriate tool for solving the decision-
making problem that takes into account the disastrous outcome in critical situations.

Remark 2.

(i) Note that when |U | = 1, it follows thatMP(U ) = MP(ŝ). Then, the solution concept
in Definition 2 is nothing but the concept of max-ordering optimality in Definition 1 with
respect to ε = 0.

(ii) When p = 1, the solution concept in Definition 2 coincides with the concept of light optimal-
ity in [19].

(iii) Notice that for the considered nominal scenario ŝ, the optimal value according to the Definition 2
is always greater than or equal to the optimal value of the nominal problemMP(ŝ).

Here, we suggest a method for finding a lightly robust max-ordering solution to
the problem LRMOP(ŝ, ε).

Remark 3.

(i) In step 1, by applying the algorithm for solving the max-ordering optimization problem in [23],
we can obtain a max-ordering solution for the problemMP(ŝ).

(ii) Notice that in step 2, solving the problem LRMOP(ŝ, ε) is a constrained optimization
problem. There are several methods that can be used to approximate a constrained optimization
problem LRMOP(ŝ, ε). For example, by applying a penalty method, we may add a penalty
term to the objective function that prescribes a high cost for violation of the constraints of the
original problem. Indeed, the penalty function method is to replace problem (5) with an
unconstrained approximation of the form

(P−LRMOP(ŝ, ε)) min max
s∈U

max
i∈Ip

fi(x, s) + cP(x) (6)

subject to x ∈ X,

where c is a positive constant and P : X → R is defined by

P(x) = max{0, (max
i∈Ip

fi(x, ŝ)− (max
i∈Ip

fi(x̂, ŝ)− ε))}. (7)

It is obvious that, if for each i ∈ Ip, a function fi(·, ŝ) : X×{ŝ} → R is continuous, a function
P is also continuous on X. Moreover, a function P(x) > 0, for all x ∈ X and P(x) = 0 for all
x ∈ XLRMOP(ŝ,ε). This means that a function P is a penalty function, and then we can apply
standard search techniques for unconstrained optimization to obtain solutions for the problem
LRMOP(ŝ, ε). For more information, one can see [24,25]. Another technique to consider
the problem LRMOP(ŝ, ε) is a bilevel optimization. For more details, we refer the reader
to see [26–28].

Based on Algorithm 1, the corresponding solutions achieved by this method depend
on the chosen relaxation ε. In other words, the degree of protection of the obtained solution
for uncertainty data is correlated with the choice of such relaxation ε. So, making a decision
only relying on this information may not be enough for decision makers. The perfor-
mance of the suggested solution in respect to the relaxation level ε is illustrated in the
following section.
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Algorithm 1 Finding lightly robust max-ordering solutions.
Input: Uncertain multiobjective optimization problemMP(U ).
Step. 1: For the nominal scenario ŝ, find an element x̂ in a set of max-ordering solutions
XMO(ŝ).
Step. 2: For the chosen relaxation ε > 0, compute an element x(max,light)

ε in the solution set
X∗LRMOP(ŝ,ε) subject to the set XLRMOP(ŝ,ε).

Output: Lightly robust max-ordering solutions x(max,light)
ε to the problemMP(U ).

3. The Price of Robustness

For the nominal scenario ŝ, the solution set according to the problem LRMOP(ŝ, ε)
in Definition 2 is dependent on the relaxation ε. In order to know the trade-off between
the robustness and the quality of a solution with respect to a nominal scenario, we provide
additional information to help decision makers by illustrating by how much nominal quality
has to be sacrificed for more desirable robustness of a solution. To achieve this, we present
two measurements that can be applied as strategies for finding the most desirable solution,
which we called the gain in robustness and the price to be paid for robustness. The underlying
idea of the first measurement approach is to interpret the robustness of the lightly robust
max-ordering solution compared with the max-ordering solution of a nominal problem
in the worst-case scenario. The second measurement approach is to explain the price to be
paid for the robustness of the lightly robust max-ordering solution in a nominal scenario.
In the lightly robust max-ordering solution method, we calculate the gain in robustness as

gain(x(max,light)
ε , ŝ) := min

x∈XMO(ŝ)
max
s∈U

max
i∈Ip

fi(x, s)−max
s∈U

max
i∈Ip

fi(x(max,light)
ε , s) (8)

where x(max,light)
ε is a lightly robust max-ordering solution with respect to the relaxation ε

for the problemMP(U ). Observe that the value of gain(x(max,light)
ε , ŝ) is used to express

a visualization of the robustness that x(max,light)
ε is better than max-ordering solutions of the

nominal problem in the worst-case scenario. On the other hand, we calculate the price to be
paid for robustness as

price(x(max,light)
ε , ŝ) := max

x∈X∗LRMOP(ŝ,ε)

max
i∈Ip

fi(x, ŝ)−max
i∈Ip

fi(x̂, ŝ), (9)

for some x̂ ∈ XMO(ŝ). The value of price(x(max,light)
ε , ŝ) interprets how much the quality

of the lightly robust max-ordering solution x(max,light)
ε is losing compared with x̂ in the

nominal problem. These measurements explain how much nominal quality is lost when
we want more robustness in a solution regarding each relaxation. By considering the ratio
of these two measures, the decision makers can make an informed decision according to
preferences in both aspects.

From a practitioner’s point of view, it is good to choose a solution that works well
in both respects, the worst-case and the nominal scenarios, respectively. Based on the
Equations (8) and (9), we now suggest a method to find a lightly robust max-ordering
solution to the problem.

Note that the results from Algorithms 1 and 2 are completely reliant on each relaxation
ε. By varying the value of the relaxation ε, we can alter the trade-offs between robustness
and the nominal quality for the problem LRMOP(ŝ, ε) in (5). To do so, the steps of finding
lightly robust max-ordering solutions and its price and gain are the following:
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Algorithm 2 Computing the price and gain for a lightly robust max-ordering solution.
Input: Uncertain multiobjective optimization problemMP(U ).
Step. 1: Compute an element x(max,light)

ε in the solution set X∗LRMOP(ŝ,ε) of the problem
LRMOP(ŝ, ε) by using the Algorithm 1.
Step. 2: Compute the gain in robustness gain(x(max,light)

ε , ŝ) and the price to be paid
for robustness price(x(max,light)

ε , ŝ) as the formulations of Equations (8) and (9), respectively.

Output: The gain in robustness gain(x(max,light)
ε , ŝ) and the price to be paid for robustness

price(x(max,light)
ε , ŝ) for the choice of the relaxation ε.

The Threshold Degradation

This section discusses a relaxation ε to determine the feasible set of the problem
LRMOP(ŝ, ε). It should be noted that the lightly robust max-ordering solution depends
on the choice of relaxation ε. If there is a situation in which decision makers need more
robustness on a solution, the method for how to choose the effective relaxation ε for classi-
fying the level of robustness of the solution set is considered. Here, we classify the level
of robustness of a solution set for the proposed solution concept. To achieve this, we begin
by computing the relaxation for determining the first level of robustness of a solution
set. To do so, in the nominal problem, takes the smallest value of the deviation between
the maximum value among all objectives of each feasible solution and an optimal value.
After that, the next level of robustness of a solution set can be computed by removing all
elements that belong to the first level of robustness of the solution set from the feasible set.
This mentioned idea is presented below in the situation that the feasible solution set X is
compact.

Theorem 1. Let X ⊆ Rn be a feasible set and function f : Rn × U → Rp. For each m ∈
{2, 3, . . . }, let εm be defined by

εm := min
x∈X\X∗

LRMOP(ŝ,εm−1)

{max
i∈Ip

fi(x, ŝ)−max
i∈Ip

fi(x̂, ŝ)}, (10)

where ε1 = 0. If X is a compact set and for each i ∈ Ip, fi(·, s) is lower-semicontinuous on X
for each s ∈ U , then for any β ∈ [εm, εm+1) we have

X∗LRMOP(ŝ,εm) = X∗LRMOP(ŝ,β). (11)

Proof. We note that the solution set X∗LRMOP(ŝ,εm) and X∗LRMOP(ŝ,β) are results of the
same objective function that concern the feasible sets XLRMOP(ŝ,εm) and XLRMOP(ŝ,β),
respectively. Thus, we only need to show that

XLRMOP(ŝ,εm) = XLRMOP(ŝ,β).

The inclusion XLRMOP(ŝ,εm) ⊆ XLRMOP(ŝ,β) is followed directly from the relation (5).
Now, we show XLRMOP(ŝ,β) ⊆ XLRMOP(ŝ,εm). Let x∗ ∈ XLRMOP(ŝ,β). Suppose

on the contrary that x∗ /∈ XLRMOP(ŝ,εm). Thus, by the definition of εm+1, it would
follow that

εm+1 6 max
i∈Ip

fi(x∗, ŝ)−max
i∈Ip

fi(x̂, ŝ). (12)

Note that since x∗ ∈ XLRMOP(ŝ,β), we have

max
i∈Ip

fi(x∗, ŝ) 6 max
i∈Ip

fi(x̂, ŝ) + β. (13)
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Thus, from the Equations (12) and (13), we obtain

εm+1 6 max
i∈Ip

fi(x∗, ŝ)−max
i∈Ip

fi(x̂, ŝ) 6 β, (14)

which leads to a contradiction with the choice of β. Therefore, we obtain the remaining
inclusion and the proof is completed.

Remark 4. Notice that for each m ∈ N, by choice of computing the relaxation εm as in Formulation (10),
we can see that εm 6 εm+1 for each m ∈ N. Moreover, according to the definition of the relaxation
in Formulation (10), the largest number of relaxation εm can be determined. In fact, we can check
that the largest number of relaxation εm is

εm := max
x∈X
{max

i∈Ip
fi(x, ŝ)−max

i∈Ip
fi(x̂, ŝ)},

where ŝ is the nominal scenario and x̂ ∈ XMO(ŝ).

The method for finding the relaxation in Theorem 1 leads us to determine the number
of relaxations in the nominal scenario. By applying this method together with the mea-
surements of the gain in robustness in (8) and the price to be paid for robustness in (9)
of each suggested relaxation ε, the most desirable solution according to the decision maker’s
preference can be obtained.

4. Case Study: The Ambulance Location Optimization Problem
4.1. Problem Description

In this section, we focus on applying the lightly robust max-ordering solution concept
to the ambulance location problem to help a decision maker in finding the best location
patterns for ambulance placement in the event of an unexpected ambulance shortage.
This approach provides a minimum value of the maximum distance while also specifying
a solution for ambulance placement at specific locations regarding the maximum distance
to demand sites. Moreover, by considering the measurements of the gain in robustness
and the price to be paid for robustness, decision makers can see how much they have
to sacrifice the nominal quality for obtaining robustness on lightly robust max-ordering
solutions in each level of robustness of the solution set. Notice that this approach is
different from the time-dependent travel model in [5]. Indeed, the ambulance location
problem was captured in [5] by applying the covering model and solving the problem using
the static location problem in each time period, while the uncertainties are time-dependent
variations of travel times during the course of the day. As a result, by using this model,
the best solutions change more frequently during the day in each time period, while our
model provides all the best solutions in solving uncertain multiobjective optimization as an
original problem.

In our study, we consider simulated data for the ambulance location problem for finding
the appropriate placement for 5 ambulances among all 15 possible candidate locations, such
that the suitable locations must satisfy requirements of the longest distance covering between
the closest ambulance and any of the 10 demand sites (Table 1). The orange squares and the blue
points in Figure 1 are used to indicate the candidate ambulance locations and the potential
demand sites that are included in this emergency medical services system, respectively.

Through researching the above problem settings of the emergency demand sites, we
then have the objective function, f := ( f1, f2, f3, f4, f5, f6, f7, f8, f9, f10). As the purpose
of solving this problem is to find the most effective location patterns for placing 5 ambu-
lances from 15 candidate locations, the total number of potential ambulance locations can
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be established. All the possible alternative location patterns concerning the solving of this
problem were computed using the following formula:(

15
5

)
=

15!
(5!)(15− 5)!

= 3003.

In this context, these patterns are considered as feasible solutions. So, the feasible set
is X := {ak|k ∈ E3003} ⊂ R5, where E3003 is the index set of each indice k of each possible
alternative candidate location pattern.

Figure 1. Ambulance locations and potential demand sites.

Table 1. Weight of demand site Di for i ∈ I10 of the ambulance location problem.

Demand Sites Weight di of Demand Site Di

D1 27.21040801
D2 4.10474611
D3 18.31712008
D4 42.5425252
D5 20.31375215
D6 1.36011829
D7 12.35886195
D8 3.35721854
D9 49.69260057
D10 48.52901567

Here, we consider the problem of locating the ambulance where the situation of un-
availability of the ambulance could occur. In this study, we assume that all ambulances are
in the same condition. We consider all the possible events with ambulances simultaneously
unavailable. So, all possible events of the considered problem are:

Possible events:

• There is no unavailable ambulance (U0).
• There is one unavailable ambulance (U1).
• There are two unavailable ambulances simultaneously (U2).
• There are three unavailable ambulances simultaneously (U3).
• There are four unavailable ambulances simultaneously (U4).
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Since there are 5 ambulances to allocate in this system, for each P ∈ {0, 1, 2, 3, 4}
a set UP of each event is composed of subevents itself. Here, a subevent in the set UP is
considered as a scenario. According to the above possible events in this problem, for each
candidate location pattern ak ∈ X and P ∈ {1, 2, 3, 4}, the number of scenarios in each U ak

P
can be computed by the following formula:

|U ak
P | =

5!
(P!)(5− P)!

=:
(

5
P

)
, (15)

where the notation P in the Formulation (15) is denoted by the number of ambulances
which are simultaneously unavailable. To present it more clearly, we denote each scenario
of ambulance unavailability in this system with respect to each candidate location pattern
ak by the following notations:

• U0 = {s{0}}.
• U ak

1 = {sk
{1}, sk

{2}, sk
{3}, sk

{4}, sk
{5}}.

• U ak
2 = {sk

{1,2}, sk
{1,3}, sk

{1,4}, sk
{1,5}, sk

{2,3}, sk
{2,4}, sk

{2,5}, sk
{3,4}, sk

{3,5}, sk
{4,5}}.

• U ak
3 = {sk

{1,2,3}, sk
{1,2,4}, sk

{1,2,5}, sk
{1,3,4}, sk

{1,3,5}, sk
{1,4,5}, sk

{2,3,4}, sk
{2,3,5}, sk

{2,4,5}, sk
{3,4,5}}.

• U ak
4 = {sk

{1,2,3,4}, sk
{1,2,3,5}, sk

{1,3,4,5}, sk
{1,2,4,5}, sk

{2,3,4,5}}.
Note that each scenario’s subscription refers to the unavailable ambulance labels.

For example, the notation s{0} refers to there being no unavailable ambulance in this
system, the notation sk

{1} refers to the 1st label of ambulance being unavailable with respect

to the location pattern ak, and the notation sk
{1,2} refers to the 1st label and the 2nd label

of ambulances being unavailable with respect to the location pattern ak in this system.
As the possible candidate location patterns in this problem are 3003 patterns, the num-

ber of all possible scenarios is:

|U0|+
(

15
5

)[
|U ak

1 |+ |U
ak
2 |+ U

ak
3 |+ |U

ak
4 |
]
= 1 + (3003× 30) = 90, 091.

For convenience, we denote the set of all possible scenarios for this problem by

U := U0
⋃(3003⋃

k=1

(
4⋃

i=1

U ak
i

))
.

Here, the ambulance location problem is formulated as an uncertain multiobjective
optimization problemMP(U ), whereMP(U ) is given as a family of {MP(s)|s ∈ U}
of deterministic multiobjective optimization problem as

(MP(s)) min f (ak, s) (16)

subject to ak ∈ X,

and for each i ∈ I10, the component function fi : X×U −→ R is defined as

fi(ak, s{0}) = min
h∈H5

di‖ah
k − Di‖, (17)

and

fi(ak, sj
�) =

 min
h∈H5\�

di‖ah
k − Di‖, if k = j,

0, if k 6= j.
(18)
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where ‖ · ‖ is a norm on R2. This means fi(ak, sj
�) is defined as the shortest distance

of ambulance pattern ak to demand site Di under scenario sj
�. We note that the objective

function values of the Formulations (17) and (18) were generated and computed accord-
ing to the problem setting as Figure 1. Notice that the objective function values of the
Formulations (17) and (18) not only depend on the distance between the closest ambu-
lance and the demand site but also the weight di. In practice, the value of weight may be
correlated with the statistical importance of a demand site.

Here, the robust counterpartLRMOP(ŝ, ε) as in the Formulation (5) of the ambulance
location problem (16) with respect to the relaxation ε is expressed as follows:

(LRMOP(ŝ, ε)) min max
s∈U

max
i∈I10

fi(ak, s) (19)

subject to ak ∈ XLRMOP(ŝ,ε),

where XLRMOP(ŝ,ε) := {ak ∈ X|max
i∈I10

fi(ak, ŝ) 6 max
i∈I10

fi(âk, ŝ) + ε} and ŝ is the nominal

scenario. Note that the notations âk and fi(âk, ŝ) indicate the optimal location pattern in the
nominal problem and the distance between the closest ambulance of the optimal location
pattern âk and the demand site Di in the nominal scenario, respectively.

We assume that the nominal scenario of this system is s{0} because this should be
considered as a typical situation (in fact, another scenario can be seen as a nominal scenario
depending on which situation we would like to define as the most important event or the
frequent event) and consider the distance in R2 by computing the Euclidean norm. Ac-
cording to Definition 1 of max-ordering solutions, we obtain that the number of elements
in a solution set XMO(s{0}) are 757, and the longest distance according to these solutions is
193.24 units (a unit of length in this study can be seen as any arbitrary accepted standard
for measurement of length).

4.2. Solution Discussions

We now describe the computations of the results which are presented in Table 2. As we
can see from Table 2, the results of solution sets depend upon a selection of different
relaxations εm, where εm ∈ [0.00,+∞).

For the choice of the relaxation ε0 = 0.00, by applying the Definition 2, we obtain
that there are 56 optimal location patterns, in which the longest travel distances con-
cerning unavailability of ambulances of these optimal location patterns are 496.49 units
in the worst-case scenario (see Appendix A for the explicit information of the solution).
Note that all solutions in the set X∗LRMOP(s{0} ,ε0)

are considered as solutions in the first

level of robustness.
By applying the method of computing the relaxation in Theorem 1, the next levels

of the robustness of solution set are determined by the relaxations ε1 = 11.15 and ε2 = 32.30.
According to these relaxations, the corresponding optimal location patterns are 56 patterns,
and the corresponding longest travel distance of these location patterns are 496.49 units
in the worst-case scenario. Here, the solution sets corresponding to ε1 = 11.15 and
ε2 = 32.30 are considered as the second level of robustness and the third level of robustness,
respectively. We note that the solution set for the second level of robustness is more robust
than the solution set for the first level of robustness. Moreover, the solution set for the third
level of robustness is more robust than the solution set for the second level of robustness.
It is observed that the number of optimal solutions (see Appendix A for the explicit
information of the solution) and the longest distance of these location patterns is the same
number as the previous level of the solution set. This indicates that too small a change
in the number of relaxations does not produce better results than the previous ones. Indeed,
it is not surprising that sacrificing too little of the quality of the nominal scenario does not
yield solutions performing better than the solutions in the previous solution set concerning
robustness. This is because the small change in the value of relaxation means that the longest
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distance of feasible solutions is not permissible too far away from the optimal value in the
nominal scenario, so that the additional solutions still have limitations and few options.

Table 2. Computational experiments of the problem LRMOP(s{0}, εm) where εm are computed
as in Theorem 1.

Relaxation Optimal Values

ε0 = 00.00 496.49
ε1 = 11.15 496.49
ε2 = 32.30 496.49
ε3 = 49.21 471.60
ε4 = 55.43 412.07
ε5 = 68.44 412.07
ε6 = 78.74 412.07
ε7 = 96.45 376.69
ε8 = 98.10 376.69

ε9 = 303.25 376.69

Continuing with the above idea, the fourth level of robustness of the solution is de-
termined by ε3 = 49.23. Here, the corresponding optimal location patterns of this level
of robustness are 20 patterns, and the longest travel distances of these optimal location pat-
terns are 471.60 units in the worst-case scenario. It is observed that the corresponding solution
set of a relaxation ε3 = 49.23 is disjoint from the solution sets for relaxations ε0, ε1, and ε2.

By applying Theorem 1 again, the fifth level of robustness and the sixth level of robust-
ness are determined by the relaxations ε4 = 55.43 and ε5 = 68.44, respectively. According
to the relaxation ε4 = 55.43, the optimal location patterns are 4 patterns, whereas the corre-
sponding longest travel distance of these location patterns is 412.07 units. Notice that these
4 optimal location patterns are different from elements in a solution set for the relaxation
ε3 = 49.23. Furthermore, the optimal location patterns correlated with the relaxation
ε5 = 68.44 are 5 patterns, with the associated longest travel distance of these solutions
also being 412.07 units. There are four elements in this set of solutions that are identical to
the solution set for the relaxation ε4 = 55.43.

By continuing this idea, the rest of the level of robustness of the solution set can be obtained
by applying the method of computing the relaxation in Theorem 1, as shown in Table 2.

Remark 5. The number of elements in the solution sets may not be necessarily linked to a rise
in relaxation levels. For example, by choice of relaxations ε4 and ε5, the number of elements in a
solution set correlated with the relaxation ε5 is greater than the number of elements in a solution set
correlated with the relaxation ε4 (see Appendix A for the explicit information of the solution).

4.3. Trade-Off between the Gain of Robustness and the Price to Be Paid for Robustness

The following table shows a portion of a trade-off between the gain of robustness and
the price to be paid for robustness for each solution set.

Remark 6.

(i) As indicated in Table 3, the gain in robustness and the price to be paid for robustness of two
solution sets X∗LRMOP(ŝ,ε1)

and X∗LRMOP(ŝ,ε2)
are 0. This is because of all solutions in these

two sets being identical to the solution set X∗LRMOP(ŝ,ε0)
(see Appendix A for the explicit

solutions information).
(ii) For the three relaxations ε4, ε5, and ε6, the associated gain in robustness values is the same num-

ber, which is 84.42. However, it was asserted that the price to be paid for robustness of these three
solution sets are different. For the first set X∗LRMOP(ŝ,ε4)

, the value of the price to be paid for ro-
bustness is 55.43, while the remaining two sets, X∗LRMOP(ŝ,ε5)

and X∗LRMOP(ŝ,ε6)
, are 68.44.

This is due to the fact that the new members in the sets X∗LRMOP(ŝ,ε5)
and X∗LRMOP(ŝ,ε6)
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provided the value of the corresponding longest distance in the nominal problem more than
the existing elements in the set X∗LRMOP(ŝ,ε4)

.

Table 3. The gain of robustness and the price to be paid for robustness with respect to each
εm ∈ [0.00,+∞).

Relaxation

Trade-Off

Gain Price Ratio

(G) (P)
(

G
P

)
ε0 = 00.00 0 0 0
ε1 = 11.15 0 0 0
ε2 = 32.30 0 0 0
ε3 = 49.21 24.90 49.21 0.5
ε4 = 55.43 84.42 55.43 1.52
ε5 = 68.44 84.42 68.44 1.23
ε6 = 78.74 84.42 68.44 1.23
ε7 = 96.45 119.80 96.45 1.24
ε8 = 98.10 119.80 96.45 1.24

ε9 = 303.25 119.80 96.45 1.24

Based on the above discussion and information in Table 3, the question that could be
raised to decision makers is which relaxation should be chosen. A direction that can be
used for obtaining the answer is considering the trade-off between the gain in robustness
and the price to be paid for robustness. Figure 2 shows the visualization of a trade-off
in each level of robustness of the solution set.

Rationally speaking, the ratio of the gain in robustness and the price to be paid for the
robustness means the benefits in robustness of solutions which we obtain and the nominal
quality of the solutions we lose.

From Figure 2, we see that the highest ratio value of trade-off is 1.52, which is obtained
from solutions in the fifth level of robustness of the solution set X∗LRMOP(s{0} ,ε4)

, where

ε4 = 55.43. This means that the solution set of the fifth level of robustness can be considered
the most desirable solution compared with another level of robustness set.

Remark 7.

(i) An important point to note is that if we choose the optimal location pattern relying on just data
on the nominal problemMP(s{0}) and ignore the uncertainty of unavailable ambulances,
it is possible that the network components of the location pattern could lose functions when
a disaster or crisis occurs in practice. In fact, for example, by choice of location pattern
{A2, A3, A8, A9, A12}, which is an optimal solution in the nominal problem (there is neither
disaster nor crisis), the longest distance covering all demand sites with respect to this location
pattern is 193.24 units. However, if there is an unavailability of ambulances once a vehicle
is dispatched to a call, then the longest distance covering all demand sites with respect to
this location pattern {A2, A3, A8, A9, A12} in the worst-case scenario become 644.92 units.
Note that the number of the longest distance covering all demand sites by the location pattern
{A2, A3, A8, A9, A12} is worse than all optimal location patterns, which are computed
by the concept of lightly robust max-ordering solution in the worst-case scenario (for more
information see Table 2). This means that the benefits of a solution obtained by our proposed
solution concept ensure a high performance in serving the longest distance covering all demand
sites in uncertain environments.

(ii) In the general setting on n candidate locations to locate r ambulances, we can calculate all
possible scenarios of simultaneously unavailable ambulances by the formula:
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1 +
(

n
r

) r−1

∑
i=1

(
r
i

)

Figure 2. The ratios
(

G
P

)
of the gain in robustness and the price to be paid for robustness corre-

sponding to different relaxations εm ∈ [00.00,+∞).

5. Conclusions

This research extended the concept of light robustness proposed by Fischetti and
Monaci [19] from its original use in uncertain single-objective optimization problems to
new use in uncertain multiobjective optimization problems. The new concept of the robust
solution and a method of the solution’s computing were proposed in Section 2. This new
solution concept is appropriate to a type of problem that required a solution which works
well for solving issues that concern the maximum cost in the worst-case scenario with
primary respect to the normal situation. We also analyzed the trade-off between nominal
quality and robustness by proposing a measure for the price of robustness based on a
lightly robust max-ordering solution concept in Section 3. This measurement can help
a decision-maker to consider how much a nominal quality should be sacrificed in order to
achieve a more desirable strength in a solution. So, it is appropriate for decision makers
who are interested in a compromise between the robustness of solutions and the quality
of solutions in a nominal scenario.

A numerical example was implemented in an ambulance location problem in Section 4.
In the worst-case scenario, it showed that the set of solutions which are computed by using
the lightly robust max-ordering solution always provided a better performance than the set
of solutions that are obtained regardless of uncertainty. This argues that the proposed
solution concept is a good direction when dealing with this kind of problem. It can be seen
that the presented experimental and methodical details are provided so that the results can
be reproduced for other interesting appropriate problems. It is worth noticing that the aim
of the LRMOP(ŝ, ε) model (5) is exactly to pay attention to the nominal scenario and
the worst-case scenario. Therefore, carefully gathering the information required for judging
which scenarios to play in these two roles is very important because this can affect the final
suggested solution. Furthermore (see Remark 7 (ii) for the discussion point), we see that
the problem size for solving uncertain multiobjective optimization problems with respect
to LRMOP(ŝ, ε) model (5) solution concept needs expensive computation. In fact, it
is an NP-complete problem (see [2] for more detail), and this can affect the limitations
of the applicability of the presented solution concept (5). According to this note, one may
see that the idea of using techniques to make grouping scenarios, such as the clustering
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technique with respect to some factors, can be one future research direction to avoid
expensive computation. Finally, for ease of applications of the solution concept presented
in this paper, estimating the numerical effort resulting from the implementation of the
methodology described in popular programming environments deserves consideration.
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Notations

Ip The index set {1, 2, . . . , p}, for each p ∈ N
Rp The vector space with p dimension
R Set of real numbers
N Set of natural numbers
X Set of decision space
U Set of uncertainty
f Objective function
x ∈ Rp A vector x with p coordinates, that is x = (x1, x1, . . . , xp)

A ⊆ Rp A subset A of vector space Rp

I10 The index set of emergency demand sites
J15 The index set of ambulance candidate locations
H5 The index set of the considered ambulances
Di The emergency demand site i, where i ∈ I10 (the blue squares)
di The weight of emergency demand site Di, where i ∈ I10 (the details on

each simulated data of di can be found in Table 1)
Aj The ambulance candidate location j, where j ∈ I15 (the blue squares)
ak := {a1

k , a2
k , a3

k , a4
k , a5

k} the kth location pattern for the considered 5 ambulances.

Appendix A

Table A1. The optimal location patterns with different relaxations for the ambulance location problem.

Thresholds X∗LRMOP(s{0},εm)

ε0, ε1, ε2 ∈ [00.00, 32.30] {A1, A2, A5, A6, A12}
{A1, A2, A5, A7, A12}
{A1, A2, A5, A8, A12}
{A1, A2, A5, A9, A12}
{A1, A2, A5, A11, A12}
{A1, A2, A5, A12, A13}
{A1, A5, A6, A7, A12}
{A1, A5, A6, A8, A12}
{A1, A5, A6, A9, A12}
{A1, A5, A6, A11, A12}
{A1, A5, A6, A12, A13}
{A1, A5, A7, A8, A12}
{A1, A5, A7, A9, A12}
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Table A1. Cont.

Thresholds X∗LRMOP(s{0},εm)

{A1, A5, A7, A11, A12}
{A1, A5, A7, A12, A13}
{A1, A5, A8, A9, A12}
{A1, A5, A8, A11, A12}
{A1, A5, A8, A12, A13}
{A1, A5, A9, A11, A12}
{A1, A5, A9, A12, A13}
{A1, A5, A11, A12, A13}
{A2, A5, A6, A7, A12}
{A2, A5, A6, A8, A12}
{A2, A5, A6, A9, A12}
{A2, A5, A6, A11, A12}
{A2, A5, A6, A12, A13}
{A2, A5, A7, A8, A12}
{A2, A5, A7, A9, A12}
{A2, A5, A7, A11, A12}
{A2, A5, A7, A12, A13}
{A2, A5, A8, A9, A12}
{A2, A5, A8, A11, A12}
{A2, A5, A8, A12, A13}
{A2, A5, A9, A11, A12}
{A2, A5, A9, A12, A13}
{A2, A5, A11, A12, A13}
{A5, A6, A7, A8, A12}
{A5, A6, A7, A9, A12}
{A5, A6, A7, A11, A12}
{A5, A6, A7, A12, A13}
{A5, A6, A8, A9, A12}
{A5, A6, A8, A11, A12}
{A5, A6, A8, A12, A13}
{A5, A6, A9, A11, A12}
{A5, A6, A9, A12, A13}
{A5, A6, A11, A12, A13}
{A5, A7, A8, A9, A12}
{A5, A7, A8, A11, A12}
{A5, A7, A8, A12, A13}
{A5, A7, A9, A11, A12}
{A5, A7, A9, A12, A13}
{A5, A7, A11, A12, A13}
{A5, A8, A9, A11, A12}
{A5, A8, A9, A12, A13}
{A5, A8, A11, A12, A13}
{A5, A9, A11, A12, A13}

ε3 = 49.21 {A1, A2, A6, A8, A12}
{A1, A2, A7, A8, A12}
{A1, A2, A8, A9, A12}
{A1, A2, A8, A12, A13}
{A1, A6, A7, A8, A12}
{A1, A6, A8, A9, A12}
{A1, A6, A8, A12, A13}
{A1, A7, A8, A9, A12}
{A1, A7, A8, A12, A13}
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Table A1. Cont.

Thresholds X∗LRMOP(s{0},εm)

{A1, A8, A9, A12, A13}
{A2, A6, A7, A8, A12}
{A2, A6, A8, A9, A12}
{A2, A6, A8, A12, A13}
{A2, A7, A8, A9, A12}
{A2, A7, A8, A12, A13}
{A2, A8, A9, A12, A13}
{A6, A7, A8, A9, A12}
{A6, A7, A8, A12, A13}
{A6, A8, A9, A12, A13}
{A7, A8, A9, A12, A13}

ε4 = 55.43 {A1, A6, A7, A8, A9}
{A1, A6, A7, A8, A13}
{A1, A6, A8, A9, A13}
{A1, A7, A8, A9, A13}

ε5 = 68.44 {A1, A6, A7, A8, A9}
{A1, A6, A7, A8, A13}
{A1, A6, A7, A9, A13}
{A1, A6, A8, A9, A13}
{A1, A7, A8, A9, A13}

ε6 = 78.74 {A1, A6, A7, A8, A9}
{A1, A6, A7, A8, A13}
{A1, A6, A7, A9, A13}
{A1, A6, A8, A9, A13}
{A1, A7, A8, A9, A13}

ε7 = 96.45 {A6, A7, A8, A9, A13}
ε8 = 98.10 {A6, A7, A8, A9, A13}
ε9 = 303.25 {A6, A7, A8, A9, A13}
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