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Abstract: Thermochemical technologies (TCT) enable the promotion of the sustainability and the
operation of energy systems, as well as in industrial sites. The thermochemical operations can be
applied for energy storage and energy recovery (alternative fuel production from water/wastewater,
in particular green hydrogen). TCTs are proven to have a higher energy density and long-term storage
compared to standard thermal storage technologies (sensible and latent). Nonetheless, these require
further research on their development for the increasing of the technology readiness level (TRL).
Since TCTs operate with the same input/outputs streams as other thermal storages (for instance,
wastewater and waste heat streams), these may be conceptually analyzed in terms of the integration
in Water and Energy Integration System (WEIS). This work is set to review the techno-economic and
environmental aspects related to thermochemical energy storage (sorption and reaction-based) and
wastewater-to-energy (particular focus on thermochemical water splitting technology), aiming also
to assess their potential into WEIS. The exploited technologies are, in general, proved to be suitable
to be installed within the conceptualization of WEIS. In the case of TCES technologies, these are
proven to be significantly more potential analogues to standard TES technologies on the scope of the
conceptualization of WEIS. In the case of energy recovery technologies, although a conceptualization
of a pathway to produce usable heat with an input of wastewater, further study has to be performed
to fully understand the use of additional fuel in combustion-based processes.

Keywords: thermochemical energy storage; water and energy integration systems; energy recovery;
thermochemical water splitting; green hydrogen

1. Introduction

Thermochemical technologies (TCT) are a set of sorption and reaction-based com-
ponents and systems having the ultimate objectives of improving the operation and the
sustainability of industrial processes and energy systems [1]. For sustainability promotion,
TCTs may be implemented with the aims of improving energy use and water use, and
reduce the emissions of liquid or gas pollutants, overall promoting the eco-efficiency of
industrial units [2,3]. The role of TCTs is, thus, as improvement measures, similar to heat
recovery [4] and wastewater treatment [5]. Within system retrofitting research, thermo-
chemical technologies have a fundamental role for water and energy integration systems
(WEIS), namely, in the form of alternative thermal energy storage (TES) [6] and wastewater-
to-energy (WWtE) [7]. TCTs present overall efficiencies to their counterparts [2], which is
substantially notorious in the case of TES [8]. In the case of wastewater-to-energy, TCTs are
particularly relevant for green hydrogen production [9]. In this scope, it is to underline the
application of thermochemical water splitting (TWS) as an alternative to electrolysis [10].

Thermochemical technologies are essentially applied for management, reduction,
recovery, and treatment of material and energy wastes [11]. Within the context of energy
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recovery, TCTs are set to be implemented for the promotion of circular economy [12].
Furthermore, the role of these technologies has been proposed for the mitigation of the
environment-related impacts of COVID19 pandemic, especially for industrial wastes [11].

The recent EU Energy System Integration Strategy [13,14] pretends the attainment of a
net-zero GHG emission-based economy through the promotion of the circular economy
perspective on the operation of energy systems. This strategy is itself divided in three
pillars: the first pillar (dealing with the energy efficiency and circular economy nexus), the
second pillar (dealing with renewable-based electrification), and the third pillar (dealing
with alternative low-carbon fuels) [15]. Particular attention shall be applied for the first
(which particularly deals with the promotion of waste heat recovery and energy recovery
from wastewater) and third pillar (which deals with the promotion of the use of green
hydrogen on sectors with more difficult decarbonization) [15].

This work performs a review on the state-of-the-art of thermochemical technologies
for energy storage and energy recovery from wastewater. It is set to frame the analysis of
the installation of these technologies within water and energy integration systems (WEIS),
in follow-up of an ongoing research on this area involving all the aspects associated to
the implementation of heat recovery, water treatment and recirculation and eco-efficiency
promotion practices in process industry [4,16–19].

2. Thermochemical Energy Storage (TCES)

Thermochemical Energy Storage (TCES) comprises a set of technologies which com-
bine both the principles of thermal and chemical energy storage. These may be set to be
used in the overall paradigm of the conceptualization of Water and Energy Integration
Systems (WEIS) with time-dependent supply and demand levels of water and energy re-
sources. TCES technologies generally present a higher energy storage capacity compared to
standard thermal energy storage (in this case, sensible and latent storage technologies) [20].
The characterized technologies have been selected due to their adequacy to the purpose of
waste heat recovery in process industry and these are, namely, system-level technologies
that may be characterized in three parts: heat source, heat storage units, and heat sinks.

2.1. Overview of TCES Potential

Thermochemical energy storage (TCES) technologies are associated to the following
advantages [21]: high storage capacity, low heat losses (since energy mat be stored at
temperatures near ambient temperature), high storage period, potential of transport at
long distance, and high compactness. Nonetheless, these present disadvantages at the
level of having high capital costs and being technically complex [22]. In Table 1, these
technologies are compared in terms of technical and economic aspects. In Figure 1, the
potential of materials set to be used in TCES technologies is compared in terms of energy
storage capacity to standard TES materials.

Table 1. Comparison of typical values for main performance parameters between different types of
thermal storage (adapted from [21]).

Parameter
Thermal Storage Type

Sensible Latent Thermochemical

Temperature range
(Examples) Up to 110 ◦C (Water Tanks) 20–40 ◦C (paraffins)

30–80 ◦C (salt hydrates) 20–200 ◦C

Storage capacity 0.2 GJ/m3 0.3–0.5 GJ/m3 0.5–3 GJ/m3

Lifetime Long Limited Dependable (on reactant
degradation and side reactions)

Technology status Commercially available Partially commercially available Generally not available
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Figure 1. Comparison of sensible, latent, and thermochemical storage in terms of temperature range
and storage capacity (adapted from [22]).

The data presented in both Table 1 and Figure 1 demonstrate that while the scope
of application of TCES is wider than the considered standard TES technologies (wider
temperature range and higher energy density), these still suffer from drawbacks in terms
of technological maturity. Owing to a relatively low technology readiness level (TRL),
TCES technologies do not present the same commercial availability as the standard ones
and typical values for the lifetime of these is not deeply understood. The integration of
these technologies in the conceptualization of industrial systems whose study is inherent
to this work may potentiate the improvement of the TRL of these, and, thus, allow for their
constitution into higher potential alternatives to sensible and latent TES.

2.2. Description of TCES Technologies

TCES technologies may be either sorption or reaction-based [23]. Sorption technolo-
gies may be conceptualized as open or closed systems. In the first, the heat transfer between
charging and discharging processes is performed directly between the sorbent and the
sorbate. In the latter, the heat transfer occurs in different phases [24]. Reaction-based
technologies make use of endothermic and exothermic reactions for the storage of thermal
energy (in general, reactions occur in the reactors, where the endothermic reactor corre-
sponds to the heat source and the exothermic reactor to the heat sink) [25]. In general (and
as verified by the analysis of Figure 1 above), reaction-based TCES are associated to higher
temperature range and energy density than adsorption-based TCES. In Table 2, several
TCES technologies are described.
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Table 2. Description of TCES Technologies and Strategies.

Technology Technology Characterization Operational Conditions Refs.

Adsorption
heat storage

(AHS)

It is based on the phenomena of desorption (charging)
and adsorption (discharging) of an air stream;

The configurations for AHS may be classified into
open and closed systems, which are pictorially

presented in Figure 2;

Adsorption materials include zeolites
(for desorption temperatures up to

180 ◦C and adsorption temperatures up
to 80 ◦C), aluminophosphates/silico-
aluminophosphates (for desorption

temperatures of 95–140 ◦C and
adsorption temperatures of 30–40 ◦C)

and metal organic frameworks (for
desorption temperatures of 90–140 ◦C

and adsorption temperatures of
30–40 ◦C).

[26–31]

Ammonia-
based energy

storage

It is based on the reactions of dissociation/synthesis of
ammonia (NH3) into/from nitrogen gas (N2) and

hydrogen gas (H2) (as described below);
It is overall associated to the following advantages: (i)
the reaction is single-step and does not require careful

control; (ii) the reactants and products are stable at
operating temperatures; (iii) the reactants and

products are relatively abundant; (iv) possibility for
the storage of liquid phase (NH3) and gas phase (N2

and H2) within the same tank due to
density differences;

The industrial system typically includes two reaction
vessels (for dissociation and synthesis), a separation

and storage tank and two heat exchangers—Figure 3a.

Operating temperatures overall vary
within the range 400–1000 ◦C.

[32–38]

Reactions

Haber–Bosch
synthesis

(Endothermic)
NH3 → 1

2 N2 +
3
2 H2, ∆H0 = +91.8 kJ/mol (1)

Calcium-
looping energy

storage

It is based on the reactions of calcination/carbonation
of calcium carbonate (CaCO3) into/from calcium

oxide (CaO) and carbon dioxide (CO2) (as
described below);

The industrial system encompasses three vessels for
carbonate, calcium oxide and carbon

dioxide—Figure 3b.

Carbonation occurs at about 650 ◦C,
calcination occurs in much more

higher temperatures.
[39–43]

Reactions

Calcination
(Endothermic) CaCO3 → CaO + CO2, ∆H0 = +160− 172 kJ/mol (2)

Metal oxide
energy storage

It is based on the reactions of oxidation/reduction of
metal oxides (as described below);

A typical industrial installation includes the supply of
a heat source for the occurrence of reduction reaction

and a reactor for the occurrence of the oxidation
reaction, as represented in Figure 3c;

The reaction enthalpy highly varies for different
metal oxides.

The operational temperatures for the
occurrence of reaction are set in the

range of 700–1400 ◦C.

[44–50]

Occurring Reaction

Reduction
(Endothermic) MOn → MOn−δ + δ

2 O2 (3)



Sustainability 2022, 14, 7506 5 of 17Sustainability 2022, 14, 7506 5 of 17 
 

 
Figure 2. Flowsheet for (a) Open adsorption heat storage system and (b) closed adsorption system 
(adapted from [29]). 

 
Figure 3. Flowsheet for (a) Ammonia-based energy storage and (b) calcium-looping energy storage 
(adapted from [39,43]). 

3. Energy Recovery from Wastewater 
Technologies for energy recovery from wastewater may be considered on the overall 

conceptualization of WEIS. This type of technologies may also be referred as Wastewater-

Figure 2. Flowsheet for (a) Open adsorption heat storage system and (b) closed adsorption system
(adapted from [29]).

Sustainability 2022, 14, 7506 5 of 17 
 

 
Figure 2. Flowsheet for (a) Open adsorption heat storage system and (b) closed adsorption system 
(adapted from [29]). 

 
Figure 3. Flowsheet for (a) Ammonia-based energy storage and (b) calcium-looping energy storage 
(adapted from [39,43]). 

3. Energy Recovery from Wastewater 
Technologies for energy recovery from wastewater may be considered on the overall 

conceptualization of WEIS. This type of technologies may also be referred as Wastewater-

Figure 3. Flowsheet for (a) Ammonia-based energy storage and (b) calcium-looping energy storage
(adapted from [39,43]).

3. Energy Recovery from Wastewater

Technologies for energy recovery from wastewater may be considered on the overall
conceptualization of WEIS. This type of technologies may also be referred as Wastewater-
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to-energy (WWtE) technologies and subsists not in the direct use of discharge water and
waste heat streams as valorized water and energy inputs, respectively. Rather, these subsist
on the use of the liquid water streams or the sludge streams which result as by-products in
WWT units for the production of additional quantities of fuels [51]. The selected energy
recovery technologies have been chosen based on its adequacy in terms of the produced
fuels bearing considering the end-users, namely, combustion-based thermal processes.
For instance, as the analyzed processes are natural gas-based, the selected technologies
correspond to gaseous fuels production.

3.1. Framework of Alternative Fuel Production with Focus on Green Hydrogen

The sludge streams resultant from wastewater treatment may be furtherly valorized
to produce additional quantities of fuels (for instance biofuels and synfuels), which may be
furtherly used in combustion-based processes (in addition to used primary fuel, such as
natural gas) [7]. The particular case of green hydrogen production is a relevant concern on
the path to promote innovative low-carbon strategies, with hydrogen being identified as
a relevant alternative energy vector [52]. The challenges regarding sustainable hydrogen
production include the high cost for hydrogen production technologies and hydrogen
distribution within the energy system of a region [53]. In the context of the Portuguese
energy system, most recently, the 2020 EN-H2 strategy was approved in the prospect
to promote the production and further distribution of green hydrogen. Such strategy
prominently aims the creation of an alliance between several Portuguese institutions and
enterprises for the development of new technologies, services, and products on this area,
which have a period of implementation in the time frame of 2020–2023 [54].

Hydrogen production based on the use of fossil fuels (such as natural gas and coal)
represents 95% of the total produced hydrogen, while the remaining 5% correspond to
water electrolysis [51,55–57]. Presently, electrolysis is the most mature green hydrogen
technology, and the one with highest technology readiness level (TRL). Nevertheless, it is
associated to two disadvantages [58]:

• Considerable electricity use (which is already an energy carrier and there is the pos-
sibility of additional energy losses by converting it into another energy carrier such
as hydrogen);

• Low efficiency of commercial solar panels.

Most recently, thermochemical water splitting (TWS) technologies [59] have been
studied as alternative methods to electrolysis for green hydrogen production [9]. This is a
set of technologies that (having the supply of a determinate quantity of heat as the driving
force [3]) is set for the production of hydrogen from liquid water. The most recent research
and development (R&D) efforts have been taken to improve the technology readiness
level associated to this set of technologies by improving its economic viability [57]. TWS
technologies may be integrated in heat recovery systems, in particular, in ones that use
either waste heat or the heat generated by the implementation of solar thermal systems.
As such, these may constitute a significant improvement in terms of the whole energy
supply and demand chain involving hydrogen as an energy vector. Since these technologies
use heat as the driving force, the necessity of additional energy conversion steps for the
supply of the required energy input on the waste-to-energy unit is set to be decreased in
the context of a whole energy system. In Figure 4, the incorporation of hydrogen within
the conceptualization of a sustainable energy systems (encompassing the implementation
of TWS and waste heat recovery within a plant) is summarized.
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3.2. Traditional Wastewater-to-Energy Technologies (WWtE)

Traditional wastewater-to-energy (WWtE) technologies with a considerably high
technology readiness level include anaerobic digestion (biogas production), gasification
(syngas production), and electrolysis (hydrogen production). In the context of green
hydrogen production, while the input material stream in an electrolysis and TWS process
is only liquid water (which may be the remaining quantity of water present in a sludge
stream at the outlet of a wastewater treatment unit) and the main output is hydrogen,
the resultant stream from anaerobic digestion and gasification must be further treated
to separate hydrogen from other gas components. In Table 3, several traditional WWtE
technologies are characterized.

Table 3. Characterization of WWtE Technologies.

Technology Technology Characterization Produced Fuel Characterization Refs.

Anaerobic Digestion

It is a process in which the output is
primarily biogas, with a digestate

resulting as the by-product;
It is prominently applied for the

treatment of wastewater streams with a
significant load of organic materials,

which are considerable prone to
biological degradation;

The anaerobic digestion process may be
integrated in the operation of a WWT

unit as represented in Figure 5a.

The produced biogas may be
injected in natural gas networks,

through the process of separation of
carbon dioxide and other

contaminants to turn biogas into
biomethane.

[60–66]

Gasification

It subsists on the partial oxidation of
biodegradable material present in

wastewater streams for the production of
synthesis gas (syngas), as well as a solid

fraction of char as by-product;
The gasification process may be

integrated in the operation of a WWT
unit as represented in Figure 5b.

The produced syngas is commonly
composed by hydrogen (H2),

carbon monoxide (CO), carbon
dioxide (CO2) and methane (CH4);

The produced syngas is an
intermediate in the production of

other fuel gases, such as diesel fuel
(by Fischer-Tropch process) and

hydrogen (which must be refined
for its use in fuel cells).

[67–72]
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Table 3. Cont.

Technology Technology Characterization Produced Fuel Characterization Refs.

Electrolysis

It is a process that uses an electric current
to produce hydrogen, based on
oxidation-reduction reactions;

A set of by-products (such as chlorine
and sodium hydroxide) may also be

generated, as represented in Figure 5c;
Several types of electrolysis processes

exist, such as: alkaline water electrolysis,
solid oxide electrolysis, microbial

electrolysis and PEM water electrolysis;

The produced hydrogen may be
directly injected into the natural gas

fuel supply to combustion-based
processes, through processes of

production of hydrogen-enriched
natural gas (HENG).

[73–82]
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3.3. Thermochemical Water Splitting (TWS)

The implementation of thermochemical water splitting (TWS) technologies sconsists
on several thermochemical cycles (whose input is liquid water and whose output is gaseous
hydrogen and oxygen) [83]. Each one of these thermal cycles are based on the occurrence of
different multistep reactions encompassing two or more reactions, with the overall reaction
being water splitting as represented in Equation (4).

H2O→ H2 +
1
2

O2, ∆H0 = +241.93 kJ/mol (4)

The assessment of this technology is based on the analysis of the outputs water streams
in a plant, heat source availability (for instance thermal energy through high concentration
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of solar radiation or waste heat from nuclear reactors) and cost-related requirements [83].
Thermochemical cycles that are commonly used for the occurrence of thermochemical water
splitting include metal oxide cycles, sulfur-iodine (S-I) cycles and iron-chloride (Fe-Cl)
cycle. In Table 4, these thermal cycles are characterized.

Table 4. Characterization of Thermochemical Water Splitting (TWS) Technologies.

Technology Technology Characterization Operational Conditions Refs.

Metal oxide
cycle

It is a two-step thermal cycle based on the redox
reactions of metal oxides (as described below);

It presents the following advantages in comparison to
the remaining thermal cycles: (i) in terms of

input-output streams, wastewater and heat are the only
inputs and hydrogen and oxygen are the only outputs;
(ii) the produced H2 and O2 are separated in different
reactions; (iii) the existence of continuous recycling of

reactants and products; (iv) the produced H2 gas is pure;
A typical installation encompassing this thermal cycle is

represented in Figure 6a;

Typical metal oxides implemented for
this type of thermal cycle are:

CdO/Cd, ZnO/Zn, SnO2/SnO,
Mn2O3/MnO, CeO2/Ce2O3 and

Fe3O4/FeO;
The operational temperatures across

the cycle are in the range of
900–2000 ◦C;

The reaction enthalpy highly varies for
different metal oxides.

[50,59,84–99]

Reactions

Reduction MOn → MOn−δ +
δ
2 O2 (5)

Oxidation MOn−δ + δH2O→ MOn + δH2 (6)

Sulfur-iodine
cycle

It is three-step thermal cycle based on the use of sulfur
and iodine components (as described by the

reactions below);
The advantage of being a significantly high efficiency

hydrogen production system, although it as an
associated drawback of the involvement of high

corrosive sulfuric and iodic acids;
A typical installation of this thermal cycle is represented

in Figure 6b.

Reaction (CE7) typically occurs at
about 120 ◦C, (CE8) above 800 ◦C and

(CE9) above 350 ◦C.

[10,100–104]

Reactions

Sulfuric acid
decomposition H2SO4 → SO2 + H2O + 1

2 O2, ∆H0 = +186 kJ/mol (7)

Bunsen reaction I2 + SO2 + 2H2O→ 2HI + H2SO4, ∆H0 = −75 kJ/mol (8)

Iodic acid
decomposition 2HI→ I2 + H2, ∆H0 = +12 kJ/mol (9)

Iron-chlorine
cycle

It is a four-step thermal cycle based
on the use of iron and chlorine

components (as described by the
reactions below);

A typical installation of this thermal
cycle is represented in Figure 6c.

Thermal decomposition occurs at 425 ◦C, the reverse
Deacon reaction and hydrolysis in the range 525–925 ◦C

and chlorination at 125 ◦C.

[105–107]
Reactions

Thermal
Decomposition 2FeCl3 → 2FeCl2 + Cl, ∆H0 = −160.5 kJ/mol (10)

Reverse Deacon
Reaction Cl2 + H2O→ 2HCl + 1

2 O2, ∆H0 = +59.4 kJ/mol (11)

Chlorination Fe3O4 + 8HCl→ FeCl2 + 2FeCl3 + 4H2O, ∆H0 = −244 kJ/mol (12)

Hydrolysis 3FeCl2 + 4H2O→ Fe3O4 + 6HCl + H2, ∆H0 = +156 kJ/mol (13)
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iodine cycle, (c) Iron-chlorine cycle (adapted from [59,102,107]).

4. Thermochemical Technologies for Water and Energy Integration

Thermochemical technologies presented in this work are to be analyzed for integration
in Water and Energy Integration Systems (WEIS). The first step for such assessment is the
comparison of such technologies to similar ones. Such assessment was already performed
in this work, namely, throughout Sections 2 and 3 with the characterization of the technical
and economic aspects associated to each technology.

For the full achievement of the objective of proving the superior potential of TCTs
within WEIS, it is necessary to analyze the specific benefits in terms of improved potential,
namely, water and energy savings and reduced environmental impacts. Table 5 summarizes
the existing research on incorporation of thermochemical technology in heat recovery and
energy recovery from wastewater.

It is evident that the implementation of thermochemical technologies within the water
and energy systems is possible in terms of overall conceptualization (Table 5). In the scope
of these studies, these technologies have been successfully exploited in terms of physical
phenomena occurrence and equipment sizing. In the case of TCES, the incorporation of
these technologies has been proven to be possible within the overall paradigm of waste
heat recovery, although the assessment of these as valuable WHR measures has still to
be performed for different comparative case-studies (as commonly performed in process
integration studies). On the side of WWtE units, further work is still to be developed,
namely, in terms of:

• Analysis of the integration of these units for sustainable fuel generation to be used as
additional fuel streams in thermal processes;

• Assessment of TWS integration as a (potentially) more efficient form of hydrogen
production in comparison to electrolysis;

• Use of waste heat streams as an alternative heat source for TWS instead of solar thermal.
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Table 5. Characterization of studies for the implementation of Thermochemical Technologies for
Water and Energy Integration.

Aspect Characterization Refs.

Thermochemical Energy Storage for Heat
Recovery from Thermal Processes

The functioning of TCES units is analyzed in terms of the supply of
variable quantities of thermal energy recovered form waste
heat streams;
The studies are generally focused on:

• Analysis of thermal sensitivity;
• Analysis of reaction occurrence (in terms of reaction rates and

operational temperature and pressure).

[108,109]

Use of thermal energy to drive
Wastewater-to-energy units

The use of thermal energy (namely the one generated from solar
thermal systems) is analyzed for the functioning of WWtE units;
These studies are generally focused on:

• Analysis of the wastewater contaminant concentration on the
conditions for fuel generation;

• Integration of solar thermal in electrochemical systems for
fuel generation.

[110,111]

In the scope of WEIS conceptualization, TCES technologies are, overall, a highly viable
alternative to sensible and latent TES technologies. Their conceptualization shall also
consider, on the other hand, the innovative WWtE technological integration within existing
WEIS configurations. Figure 7, represents a concept adapted from Oladejo et al. [112] for the
integration of a WWtE within a plant considering their thermal processes and wastewater.
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The system represented in Figure 7 enables understanding of the production of addi-
tional sustainable fuels from wastewater streams and the allocation of these into thermal
process systems (as well as the combustion-based processes within electricity generation
systems). Nevertheless, this overall scheme must be analyzed in terms of energy supply
and demand requirements (which, in this case, correspond to the WWtE unit and the
combustion-based processes, respectively), namely (in the case of gaseous fuels), through a
correspondence of the fuel gas to be supplied and the necessary changes to the combustion
chambers for the supply of the new gas (for instance, tecno-economic analysis).
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5. Conclusions

This work is a contribution to the ongoing research on Water and Energy Integration
System (WEIS) in Process Industry. The specific aim of this work is the exploitation of the
characteristics of several thermochemical technologies (energy storage and wastewater-to-
energy), the superior potential of these technologies compared to their counterparts (for
instance sensible and latent storages), and the potential to these to be encompassed on the
project of WEIS. In relation to thermochemical energy storage, it was verified that:

• Sorption and reaction-based technologies present a significantly higher overall poten-
tial compared to standard thermal storage technologies owing to the increased energy
storage capacity;

• The approached open and closed system Adsorption Heat Storage (AHS) present
an apparatus and operational conditions (lower temperature) that are more ade-
quate to industrial waste heat recovery in comparison to reaction-based technologies
(which are commonly set to be installed for the heat source component to be a solar
thermal system).

In relation to wastewater-to-energy (WWtE), it was verified that:

• Thermochemical water splitting has a higher operational potential in comparison to the
approached traditional technologies (anaerobic digestion, gasification and electrolysis),
which is due to the decreased number of steps to produced hydrogen from wastewater
(in comparison to anaerobic digestion and gasification) and energy conversion steps
(in comparison to electrolysis);

• The required enthalpy to be supplied as the driving force for these technologies is
significantly high and requires heat sources which are not compatible with the waste
heat potential of industrial sites (they require the supply of thermal energy from
nuclear reactors and solar thermal systems instead).

In relation to the overall incorporation of TCTs in the conceptualization of WEIS, it
was verified that:

• Thermochemical technologies have been proved to be structurally compatible with the
general concept of WEIS, with a small number of studies performing equipment sizing;

• The potential associated to these technologies in terms of environmental benefits is still
set to be furtherly calculated (for instance, for the definition of typical and potential
values for overall water savings, energy savings and pollutant reduction);

• The existing conceptualization for integration of wastewater treatment and WWtE
units for additional energy generation is valid in the scope of the overall concept
of WEIS, although it still subsists in a deeper comprehension on energy supply and
demand analysis and in terms of the modification of the destination processes for the
supply of the new fuels.

In general, as TCES technologies are proved to be suitable as higher potential analogues
compared to standard TES technologies. Further work regarding the application of such
approaches includes the assessment of their benefits as WHR measures. For energy recovery,
further work shall be directed to the study of waste heat-based TWS (one of interest for
the conceptualization of WEIS) and its analysis in the integration in each process based on
the specific fuel production. Additional study directed to the integration of WWtE within
WEIS is being developed in a parallel publication to this paper.
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Nomenclature

AHS Adsorption heat storage
EU European Union
GHG Greenhouse gases
HENG Hydrogen-enriched natural gas
R&D Research & Development
TCES Thermochemical energy storage
TCT Thermochemical technology
TES Thermal energy storage
TRL Technology readiness level
TWS Thermochemical water splitting
WEIS Water and Energy Integration Systems
WHR Waste heat recovery
WWtE Wastewater-to-energy
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