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Abstract: Landscape fragmentation caused by road infrastructures represents a major threat to the
genetic diversity of a region. The resulting genetic isolation between subpopulations may lead to
consanguinity, and consequently to population collapse and extinction. However, the construction
of wildlife crossings can help maintain connectivity. In the present paper, we evaluated the genetic
spatial structuring of populations of wild boars (Sus scrofa) in three areas of the Geneva region
connected by an ecological corridor. Those areas are cut off either by a highway that is crossed by a
wildlife overpass or by an anthropized sector. Genetic profiling with 9 nuclear microsatellite markers
yielded 61 single profiles, which allowed for clustering, parentage, and linkage disequilibrium
analyses, uncovering the populations’ genetic structure. We also evaluated whether the genetic
structure was affected by the sex of individuals. In our analyses, all individuals clustered into a single
genetic group, suggesting that no structure limited significantly the gene flow in the region. However,
a recent admixture indicated a potential increase in the gene flow between two of the subpopulations
due to the wildlife overpass, while the other part of the ecological corridor was not or was only
partially functional. Genetic distances between males were significantly higher than between females,
although the role of sex remains unclear as to its influence on population genetics. Finally, in order
to avoid a subregion becoming fully isolated, urbanization planning should consider this genetic
evaluation and proceed with further monitoring, especially by focusing on species more sensitive to
landscape fragmentation.

Keywords: clustering; genetic profiling; microsatellites; wild boar; wildlife overpass; functionality

1. Introduction

Roads, urbanized areas, or areas with a lack of stepping stones in weakly permeable
matrices are currently one of the biggest threats to wildlife biodiversity, as the installation of
such structures causes fragmentation and loss of natural habitats [1–3] leading to a decrease
in available resources (e.g., food, shelter, mate). In order to meet their basic needs, animals
will attempt to cross these areas and, if a road is in the way, this may lead to their death. As
a result, vehicle–animal collisions increase wildlife mortality rates and reduce the drivers’
security [4,5]. Population fragmentation is an issue from a genetic perspective too [6], as
it can lead to higher sensitivity to genetic drift or to a genetic bottleneck resulting from
a decrease in population size and interconnectivity [7]. Both phenomena can lead to the
loss of allelic diversity, eventually leading to inbreeding depression involving fitness and
genetic adaptation range diminution, and at the worst stage to the collapse and extinction
of population [8].

Connecting biodiversity hotspots and maintaining ecological connectivity at the
landscape-scale with wildlife crossings is a concrete measure to counteract the landscape
fragmentation caused by roads [9,10]. Wildlife crossings should be placed in pre-existing
ecological corridors, defined as axes connecting isolated patches of habitats [11], in order

Sustainability 2022, 14, 7463. https://doi.org/10.3390/su14127463 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14127463
https://doi.org/10.3390/su14127463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-0467-4999
https://orcid.org/0000-0002-9977-9952
https://doi.org/10.3390/su14127463
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14127463?type=check_update&version=2


Sustainability 2022, 14, 7463 2 of 20

to improve their functionality. The efficiency of these constructions may vary depending
on the characteristics of the targeted species, the structure of the populations, the land-
scape structure, and the construction features themselves [9]. In order to evaluate them,
field observations (e.g., camera traps or radio-tracking), and genetic evaluations, such as
measurements of the gene flow before and after their construction, are needed [6].

For the genetic part, small tandem repeat (STR) markers, also named microsatellite
markers, are a simple tool that allows for investigating the population structure and
the evolutionary processes including migration and genetic drift (i.e., random variation
of allelic frequencies) [12]. Furthermore, they present the advantage of being quickly
revealed using gel electrophoresis [13] and especially to still be amplifiable with partially
degraded DNA (e.g., field-collected samples) [14]. However, they may lack statistical power;
therefore, enough STR markers with a sufficient allelic diversity must be selected, especially
for small divergence time [15]. To reveal STR loci profiles, non-invasive samples such as
hair or feces can be used and present the advantage of not disturbing the animals [14]
and avoiding the use of trapping methods [16]. Nevertheless, some samples may not be
amplifiable or may have a higher error genotyping rate than invasive samples (e.g., tissue)
because of the DNA degradation caused by field conditions and time [16,17]. In order
to avoid genotyping errors, several replicates should be extracted and compared [17–19].
In two studies using field-collected feces from mammals, one-third of the samples were
successfully amplified [20,21]. Small mammals’ hairs, when freshly collected (i.e., regularly
visited hair traps), provided accurate genotyping and were as amplifiable and informative
as liver samples [22].

Combined with the STR genetic profiling method, wild boar is a good model species
to evaluate the impact of habitat fragmentation. Indeed, it is a vagile species that has wide
home ranges, even if in this study the home range is among the smaller ones observed in
Europe (i.e., ~4 km2 mean [23]). Small home range size was congruent with the wild boar
population density in the Geneva Basin being among the highest in Europe at the time of
the study [24]. The species is ubiquitous, and has relevant reproductive characteristics to
rapidly initiate population structuration because sexual maturity is reached at 9 months
and sows have 5–6 piglets per litter [25]. The species can also travel long dispersal distances
as highlighted in a study in Spain [26] (i.e., ~50 km on average for both sexes and ~60 km
(min. 600 m, max. 250 km) according to the literature. Furthermore, it is a species with
economical, agricultural, public health, and political implications that require a significant
management effort such as monitoring and regulating populations, tracking the spread
of diseases (e.g., swine fever), providing financial compensation (e.g., for agricultural
damages), etc. [27]. Studies yield various results by using the STR genetic profiling method
to uncover the effect of urbanization on the population structure of wild boars. On the
one hand, it was shown that motorways in Belgium and Lithuania did not represent a
significant limitation to gene flow (i.e., migration between regions with successful reproduc-
tion) [28,29]. Two studies suggest that most of clustering effects were due to characteristics
and recolonization history of the species [30], or to the isolation-by-distance [31], rather
than to the landscape features or the urbanization coverage. On the other hand, a Sardinian
study highlighted the clustering’s effect caused by a quasi-impervious motorway, and to a
lesser degree, by urbanized and cultivated areas [32].

In this study, we evaluated the functionality of an ecological corridor in the Geneva
region. This corridor, which is ~2 km long, is of supra-regional importance for Switzerland
(i.e., object Ge-01-02) [33]. It has been crossed by a 2 × 2 lane road equipped with a wildlife
overpass since 2014 and further constrained by an urbanized area with only a narrow
agricultural area remaining between villages. Between the road and the urbanized area, a
remnant forest patch may act as a stepping stone between the linked core areas. On the
one hand, it is interrupted by a road that is equipped with a wildlife overpass, and on the
other hand, it is threatened by an urbanized zone. A complementary question consisted of
learning if dispersion patterns of males and females could have an influence on the genetic
structure of the total considered population. This study is relevant for the region since wild
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boar is considered a priority species for ecological corridors [34] and because a wildlife
overpass, which was confirmed to be crossed through by wild boars in a camera-trap study
from 2020 [35], has been built in response to the political biodiversity objectives of the
region (i.e., Geneva Biodiversity Strategy 2030 [11] and European Natura 2000 ecological
network [36]).

Our clustering analysis results suggest that all subpopulations of the 3 studied areas
form a single, genetically consistent population that could be indicative of sufficient gene
flow before and after the wildlife overpass construction. However, a recent admixture
indicated a potential increase of the gene flow between two of the subpopulations thanks
to the wildlife overpass, while the other part of the ecological corridor was not or was only
partially functional. An alternative corridor linking both core areas might however have a
sufficient functionality level further to the north. Furthermore, genetic distances between
males were significantly higher than between females, suggesting that males were migrants
or dispersants from more remote populations, while females were genetically closer to each
other. However, the role of sex remains unclear as to its influence on population genetics.

2. Materials and Methods
2.1. Studied Areas

This study encompasses 3 main defined areas, two core areas considered biodiversity
hotspots (Jussy and Les Voirons [10]), and one patch that is considered a stepping stone area
(Foron). These areas are located across the border between France and Switzerland in the
Geneva region at an altitude between 500 and 1000 m above sea level and are characterized
by a continental climate (Figure 1). According to the objectives of the State of Geneva,
those areas should be ecologically connected through the ecological corridor GE-O-01+02
(~2 km long) [10] and offer sufficient resources to serve as partial or complete home-range
for the wild boar. The core area of Jussy is a lowland area mainly constituted of deciduous
forests: more specifically, oak-hornbeam forests mixed with several plantations of conif-
erous trees and alder forests. The second core area of Les Voirons is a mountainous area,
partially under Natura 2000 protection status, and includes beech forests partly colonized
by spruces [10]. These core areas are separated by 2 main obstacles to the movement of
wildlife, respectively, by an urbanized area (village of Juvigny) and agricultural areas lack-
ing stepping stones or linear structures likely to serve as guides to moving animals [10,35],
and by a 4-lane road subject to heavy traffic [35]. Between these two conflict areas that
act as barriers to movements and therefore to gene flow, a small forest patch, the Foron
area, may provide food and shelter for wild animals and thus be used as a stepping stone
area. Whereas the wild boar was almost absent from the Geneva Canton in the 1970s, the
density of wild boars was estimated at more than 10 individuals/km2 in the 2000s [24].
The growth of their population is notably due to agricultural areas, surrounding both
forested hotspots of Les Voirons and Jussy, which can be considered as extension zones
providing food resources [25]. Furthermore, the region is also attractive to humans with a
population density of ∼=1500 residents/km2 in the center of Geneva Canton that decreases
to ∼=400 residents/km2 in Les Voirons massif [37].

Such a dense human population needs transportation infrastructures such as highways.
In the sector of this study, there is a 2 × 2 lane departmental road D1206 with each pair
of lanes separated by a concrete wall. This road was built at the end of the 19th century,
first as a 3-lane road, but it became a real barrier to wildlife movement in the middle-end
of the 20th century as the traffic load increased to over 10,000 vehicles a day and as it
was upgraded to a 2 × 2 lane road. In 2020, the daily users of the road averaged 30,000
in Les Chasseurs section [38] which is far more than what is considered an impermeable
barrier for most of the species (>10,000 users per day) [9]. To avoid this further ecological
disconnection and animal–vehicle collisions, a wildlife overpass was inaugurated in 2014
to help the animals cross through the D1206 road [39]. It is 16 m wide and 39.7 m long and
is equipped with wooden screens between 2.5 and 3 m high with flared and broadening
extremities [40]. Both sides of the road were further secured with the construction of fences.
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One other passage that is worth noting, the corridor GE-O-04a-c [33], is located to the north
of Machilly (France) when the 2 × 2 lane road becomes a normal 2 lane road that is lined
on both sides with forests for ~275 m before entering urbanized areas. According to French
hunters, wild boars use this passage even if some of them get killed on the road. This
observation was confirmed by the Hunting Federation of Haute-Savoie that studies the
ecological connectivity of the region and that considers this single passage as active in the
area [41]. Thus, it might facilitate the exchanges between the subpopulations of Jussy and
Les Voirons.
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2 February 2021).

2.2. Sample Collection

The samples of this study were either collected on dead animals (ear, skin tissue, hair,
and/or feces) or in the field (hair or feces). Sampling was conducted in a sterile manner (i.e.,
disposable sterile gloves, only one packaging/sample, knife disinfection with single-use
wipes Meliseptol® followed by water rinsing). Tissue samples (i.e., entire ear, muscle, or
skin) were stored in 14 mL tubes or plastic bags. Feces and hair were, respectively, placed
in plastic bags and in paper bags. All samples were stored at −20 ◦C, and bags and tubes
were annotated with the following information registered electronically: unique ID and
coordinates of each individual with location name, sample type, and how the sampling
was carried out (e.g., collected on the field). When available, the sex, as well as other data
not pertinent to this study (i.e., age and cause of death of the animals) were added. All
collected information is available in Supplementary Material Table S1.

www.ge.ch/sitg
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A minimum of 30 non-invasive samples per area (Figure 1) was targeted, and it was
considered that a minimum of 3 km2 would be sufficient to include 30 different wild
boars (i.e., estimation of >10 individuals/km2 [24]). Each non-invasive sampling area
covered approximately 4 to 6 km2 of territory. Hairs and feces were searched in pre-selected
locations spotted with the help of orthophoto imagery (clearings surrounded by rejuvenated
forest were favored) as well as in locations containing feeders for hunting purposes, as they
attract the species [25]. The prospections were conducted between the winter of 2020 and
spring of 2021 until the achievement of our minimum number of samples. We maximized
the chance to attain samples by following animal paths and by making a longer prospecting
effort in areas with presence indices. Hairs were recovered on rubbed trees, on mud, on
bedding places, and barbed wires, and feces were recovered directly on the ground.

To complete the non-invasive sampling, tissues were opportunistically collected by
hunters and game wardens on road-killed or legally hunted animals during the winters
of 2020 and 2021. They were located in and around the non-invasive sampling areas
(i.e., maximum 6 km from each area). When possible, hairs and feces were also extracted
from the individuals to test for consistency between each sample type.

In total, we obtained 125 collected samples of which 30 were from Jussy (23 of dead
animals), 22 from Les Voirons (14 of dead animals), and 9 non-invasive samples from Foron.

2.3. DNA Extraction

The DNA was extracted from the ear, skin, and muscle samples using the following
adapted Doyle protocol [42]: 20 mg of tissue was added to 1 mL of hexadecyltrimethy-
lammonium bromide (CTAB) extraction buffer, composed of 2% (w/v) CTAB, 1.4 M NaCl,
20 mM Na2EDTA, and 100 mM Tris-HCl (pH 8), in 2 mL Eppendorf tubes. Then, 100 µL of
10% sodium bisulfite solution and 25 µL of proteinase K solution (10 mg/mL, Carl Roth
GmbH, Karlsruhe, Germany) were added and the mixture was vortexed and incubated in
a thermo-shaker (Hangzhou Allsheng Instruments, Hangzhou, China) at 55 ◦C for 3 h with
gentle agitation every hour. Following incubation, 700 µL of chloroform:isoamyl alcohol
24:1 was added, and samples thoroughly vortexed, prior to centrifugation at 14,000 rpm
for 15 min at 20 ◦C. The resulting aqueous phase was pipetted in a fresh new tube and
nucleic acids precipitated by the addition of an equal volume of isopropanol. Nucleic acids
were then recovered by centrifugation at 14,000 rpm, washed with 1 mL 70% ethanol, and
resuspended in 40 µL warmed up (55 ◦C) ultrapure sterile water (H2Oup).

Hair samples between 0.2–0.5 mm thick were prepared by cutting fragments 0.5–2 cm
in length from the base of the follicle. When present, the roots were included because
they are known to contain more DNA [43]. When hairs were thinner, they were entirely
added. For each sample, 1 to 25 unitary hairs, depending on the number at disposal, were
used. Hair DNA extraction followed the same protocol as previously mentioned, and the
resulting nucleic acids were resuspended in 30 µL H2Oup.

Concerning feces, each agglomerate was washed up to 10 times with 300 µL of H2Oup.
If possible, at least 50 cm2 of the surface was treated as it always gave operable results
with fresh feces. The outermost part of the feces was targeted as it yields more host-quality
DNA [44]. In detail, agglomerates of feces were hydrated with 100 µL to 5 mL of H2Oup
(until no more water was soaked up by the feces) and then washed up to 10 times with the
same 300 µL H2Oup volume. Nucleic acids were then extracted from these 300 µL rinsing
liquid using the QIAamp® PowerFecal® Pro DNA Kit following the supplier protocol
(Qiagen GmbH, Hilden, Germany) and recovered in 50 µL 10 mM Tris-HCL (pH 8.5,
C6 solution).

The quality and quantity of collected samples were then assessed with a NanoDrop®

ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Part
of the non-invasive samples was also assessed using a Qubit 4 Fluorometer (Qiagen GmbH).
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2.4. Amplification of Microsatellite Markers and Sex Gene

A set of 9 microsatellite markers were selected for their high allelic richness and for
their location on different chromosomes for the population structure analysis as well as a
sex-specific gene primer to determine the sex of the individuals (Table 1). Nucleic acids
of extracted tissue were diluted to 50 ng/µL (Nanodrop DNA concentration) and 25 ng
of DNA template was used per amplification reaction. For hair and feces DNA samples,
because of the impossibility to estimate the real part of host DNA, 1 and 2 µL, respectively,
of non-diluted DNA sample were used (raw total nucleic acids concentration ranging from
0 to 55 ng/µL). Triplicates on individuals (i.e., tissue, hair, and feces) were all amplified
1 time and two-thirds of the non-invasive samples collected on the field were amplified
2 to 3 times. Samples such as feces with coprophagous insects were discarded and not
considered for DNA extraction.

Table 1. Selected markers with their type and their forward and reverse primer sequences as well as
the pooling groups used are given.

Marker
Name Marker Type Forward Primer Reverse Primer Ref. Pooling

Group-Label

SW24 STR, autosomal chr. CTTTGGGTGGAGTGTGTGC ATCCAAATGCTGCAAGCG [45] P3-FAM
SW122 STR, autosomal chr. TTGTCTTTTTATTTTGCTTTTGG CAAAAAAGGCAAAAGATTGACA [45] P2-FAM
SW632 STR, autosomal chr. TGGGTTGAAAGATTTCCCAA GGAGTCAGTACTTTGGCTTGA [45] P2-HEX
SW857 STR, autosomal chr. TGAGAGGTCAGTTACAGAAGACC GATCCTCCTCCAAATCCCAT [45] P3-HEX
SW911 STR, autosomal chr. CTCAGTTCTTTGGGACTGAACC CATCTGTGGAAAAAAAAAGCC [45] P1-ROX
SW936 STR, autosomal chr. TCTGGAGCTAGCATAAGTGCC GTGCAAGTACACATGCAGGG [45] P1-FAM
S0005 STR, autosomal chr. TCCTTCCCTCCTGGTAACTA GCACTTCCTGATTCTGGGTA [46] P3-ROX
S0097 STR, autosomal chr. GACCTATCTAATGTCATTATAGT TTCCTCCTAGAGTTGACAAACTT [45] P2-ROX
S0226 STR, autosomal chr. GGTTAAACTTTTNCCCCAATACA GCACTTTTAACTTTCATGATACTCC [47] P1-HEX
SRYB sexual gene, sex chr. TGAACGCTTTCATTGTGTGGTC GCCAGTAGTCTCTGTGCCTCCT [48] -

PCR reactions were run in 25 µL mixtures made of 5 µL MyTaq Reaction Buffer (Merid-
ian Bioscience, Cincinnati, OH, USA), 2.5 µL of 5′ fluorescently labeled forward primer,
and non-fluorescent reverse primer (5 µM each), 0.4 µL (0.2 µL for the SRYB sexual marker)
of MyTaq HS DNA Polymerases (5 U/µL, Meridian Bioscience), 0.5 to 2 µL of extracted
DNA (following previous description above) and completed with H2Oup. Reactions were
run in a TProfessional BASIC GRADIENT Thermocycler (Biometra, Göttingen, Germany)
with the following cycling program: 3 min at 95 ◦C, 36 cycles of 20 s at 95 ◦C (35 cycles for
SRYB sexual marker), 20 s at 55 ◦C (60 ◦C for SW24 marker), and 10 s at 72 ◦C, terminated
by a final elongation of 20 s at 72 ◦C. A negative control was added to each line.

PCR products for microsatellite markers were then pooled with 3 markers’ combina-
tions according to Table 1. Negative controls were checked with a Fragment AnalyzerTM

(Advanced Analytical, Santa Rosa, CA, USA) using 18 µL of Dilution Buffer 1× TE (Agi-
lent, dsDNA905 (1–500 bp), Santa Clara, CA, USA) mixed with 6 µL of the PCR product.
Fragment length reading was carried out at Microsynth AG (Switzerland). Dilutions of
1:30 for hair and tissue samples and of 1:3 for feces were employed, and the selected size
standard and filter set were GS500 LIZ and DS-33_G5, respectively. For its part, the PCR
product of SRY sexual gene amplification was revealed on a 1% agarose electrophoresis
gel, loading a mix of 12 µL (6 µL for tissue) from each PCR product with 6 µL (3 µL for
tissue) of GelRed® (biotium) loading buffer. Migration was performed using the MyRun
device (COSMOBIO Co., Ltd., IMR-201, Tokyo, Japan) for 35 min at 135 volts. The results
were visualized using the U:GENIUS 3 machine (Syngene, Cambridge, UK). All amplified
microsatellite data are provided in Supplementary Material Table S2, and the determined
sex data are provided in Supplementary Material Table S1.

2.5. Statistical Analyses
2.5.1. Data Quality Check

As the study contained non-invasive samples collected in the field, we checked for
double sampling (i.e., several samples of the same individual) and for the uniqueness of
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the hair sample (i.e., no hair sample containing several individuals). We also checked the
coherence between the 3 main types of samples (i.e., tissue, hair, and feces) for the same
individual and between replicates of samples collected on the field. Finally, we completed
the evaluation with a multi-step screening process to assess the microsatellites’ quality
(i.e., genotyping error rate, alleles dropout, linkage equilibrium, and selective neutrality
checks) [13].

During the double sampling check, 3 pairs of samples with identical genetic profiles
were identified. When projected on a map, the samples in each pair were always located
within 500 m of each other, with no barrier of movement between them. We considered
only one individual per duplicate. The uniqueness of each hair sample collected from
the field was evaluated by comparing its allelic richness to the expected allelic richness of
unique samples (i.e., collected directly on individuals) and by checking the ploidy (i.e., max
2 variants by locus by individual). The distribution of the expected allelic richness and one
of the non-invasive samples were visually compared. Due to their triploidy on a marker,
2 samples were not considered for future analyses.

The genotyping error rate was evaluated using replicates by dividing the number
of misamplified alleles by the total number of alleles for each locus and with all loci [49].
We only used effectively twice- or thrice-replicated alleles to make the calculation. To
provide our analyses with data of quality (i.e., avoid allele dropout due to low quality DNA
concentration), only 66 samples with 7 to 9 loci amplified were considered.

Then, null alleles were sought using the Chakraborty method [50] implemented in
the PopGenReport package and using the adegenet package [51,52] on R. The linkage
equilibrium was not tested for the purpose of quality control because each marker was
located on a different chromosome (i.e., no physical linkage) and because functional linkage
was unlikely [53]. The microsatellite data were also checked for selective neutrality using
BayeScan with the multinomial Dirichlet model [54]. Out of 125 collected samples, we
successfully genotyped 7–9 loci out of 9 for 66 individuals, and 61 samples were effectively
kept for the study.

2.5.2. Data Analysis

Allelic richness was estimated using the rarefaction method [55] implemented in the
hierfstat package [56]. Then, the private alleles were counted for each region and locus
using PopGenReport package [52]. We also calculated the observed heterozygosity (Ho)
and the expected heterozygosity (Hs) within each region, and the overall gene diversity
(Ht) [57], as well as the Fst and Fis values [58] for each region and overall with the help
of the hierfstat package [56]. Pairwise Fst between regions (pwFst) as well as Fis were
tested using a bootstrap confidence interval (10,000 bootstrap samples). Then, the linkage
disequilibrium was calculated by computing a likelihood-ratio test (10,000 permutations
and 5 initial conditions for the expectation–maximization (EM) algorithm) in each region
and overall using Arlequin software [59]. To feed Arlequin, we converted the data into an
arp format using PGDSpider [60].

A Bayesian inference approach was used to test for clusters of genetically differentiated
populations using STRUCTURE software [61]. It was combined with the ∆K predictor that
gives the most probable number of clusters (K) [62]. A total of 8 runs were processed using
a combination of several models, parameters, and datasets. We launched the admixture
model that allows working without samples of well-separated ancestry populations. We
also used the model using prior population information that is particularly adapted with
weak Fst values. We used all samples and all microsatellite loci except the SW24 locus,
as null alleles do not fit the basic assumptions of STRUCTURE. A second dataset was
tested with no full-sibship individuals that were established using COLONY software (it
will be described below), as multiple family members sampling may bias the results. The
parameter Freqscoor, which is notably used for closely related populations by considering
identical allelic frequencies [63], was either active or inactive. The Popalphas option was
always activated and allowed the admixture to vary for each population. Twenty repetitions
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for each K from 1 to 10 were performed. The burn-in length was 80,000 and the iteration
number of the Markov chain Monte Carlo (MCMC) was 180,000. The best K was estimated
using the Evanno method [62] and visualized with the pophelper package [64] on R.

To confirm the outputs of STRUCTURE, we used GENELAND software [65] which
presents the advantage of dealing with spatial coordinates. We used their admixture model,
which is analogous to the STRUCTURE admixture model. The number of MCMC iterations
was 100,000. The spatial localizations were transformed from WSG84 World Geodetic
System to the Swiss CH1903+/LV95 Projected System using the ArcGIS Project Tool [66].

Then, we performed a Mantel test [67] to verify if any correlation between geographical
distance and genetic distance existed. The Reynold genetic distance was calculated for
each pair of individuals using the sum of the squared size differences [68] with Arlequin
software [59] and all values were converted in absolute values. To feed Arlequin, we
converted the data into an arp format using PGDSpider [60]. The geographical distance
between each pair of individuals was calculated with the distHaversine method assuming a
spherical earth using the enmSdm package [69] on R. Then, the Mantel test was performed
and the significance and strength of the correlation tested using the Pearson method thanks
to the vegan package [70] on R.

We conducted a sibship reconstruction analysis (i.e., without a priori known rela-
tionships) using COLONY software [71]. It allows one to infer if there are members of a
same parentage cluster with the help of a full-pedigree likelihood analysis which consider
parentage and sibships jointly [71], or if there are members of a full-sibship family, in
which individuals are considered to share parentage or have sibship relationships, while
having no kinship with other defined families [72]. All individuals were considered as
potential offspring data and male or female genotypes were not indicated. Both sexes
of the model were indicated as polygamous. As COLONY needs an estimation of allelic
dropout and genotyping error rate for each microsatellite characteristic, the value of 0.123
was given for the microsatellite SW24 null allele rate. The value of 0.063 was indicated for
the microsatellite SW936 genotyping error rate and all the other values were set to 0. The
options long run, high likelihood precision, and no sibship prior were selected, and the
full-likelihood model, which relies on a simulated annealing algorithm and uses Mendelian
segregation laws [72], was launched. Only results with more than 75% probability of being
true were kept for the full-sibship families. The attributed family members were then
projected on a map to find out their distribution between the 3 areas of our study.

A supplementary analysis on 54 individuals was conducted to determine if part of
the genetic structure of population could be explained by the sex, using data with the
required quality (cf. Data quality check) and from successfully sexed individuals. First,
the Reynold genetic distance was calculated for each individual pairwise using the sum
of the squared size differences [68] on Arlequin software [59]. To feed Arlequin with,
we converted the data into an arp format using PGDSpider [60]. Then, the pairwise
individuals were categorized as female pairs, male pairs, or female–male pairs, and the
data distribution was visualized with boxplots using the ggplot2 package [73] on R. Then,
each group was tested for the homoscedasticity of the variance using a Bartlett test [74]
with the stats package [75] on R. A significant deviation from the homogeneity of variance
was highlighted (K-squared = 15.256, df = 2, p-value = 0.000). Classical analysis of variance
(ANOVA) cannot be used, as it requires parametric data, and non-parametric analysis
was conducted instead using the Dunn Kruskal–Wallis multiple comparison [76] test with
the FSA package [77] on R. The p-values were adjusted for multiple testing using the
implemented Holm method.

3. Results
3.1. Descriptive Statistics and General Genetic Characteristics

Out of the 125 collected samples, 118 were extracted and subsequently amplified.
Duplicate or triple amplifications were carried out for 67.79% of the total number of
samples. Values of the read fragment lengths were always unique between the fresh
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triplicate samples on the same individual (i.e., hair, tissue, and feces) and between the
non-invasive replicate samples from the field (i.e., feces or hair). We successfully genotyped
7–9 loci out of 9 for 66 individuals (all tissue samples and triplicate samples, 22% of the
hair collected in the field, and 25% of the feces collected in the field), of which 32 belonged
to males and 29 to females. Five other samples were removed because they belonged to the
same individual or because they originated from more than one individual. A description
of the 61 final samples is given in Table 2.

Table 2. Count of genotyped samples presented by type and area.

Sample Type # Jussy # Les Voirons # Foron

triplicate 15 0 0
tissue 8 14 0
feces 6 5 0
hair 1 3 9
total 30 22 9

#, number of samples; triplicate, tissue/feces/hair for one wild boar.

The characteristics of the microsatellite loci and the allele distribution at each mi-
crosatellite locus for each area are presented in Tables 3 and 4, respectively. The S0097
microsatellite locus has the highest allelic diversity with 15.867 estimated alleles. No other
specificity is noted for the loci. No selection was detected for the microsatellite markers
using the multinomial Dirichlet model [54] of BayeScan. Then, the marker SW24 differed
significantly from a no null allele frequency (2.5 percentile: 0.027; 97.5 percentile: 0.236)
using the Chakraborty method [50]. The more PCR-stringent conditions for this locus may
have led to allelic dropout. The overall error rate that was only due to the SW936 marker,
comparing amplified alleles against misamplified alleles, was estimated at 0.68%.

Table 3. Genetic characteristics summarized for each microsatellite locus.

Locus Name Ho Hs Fis # Est. Alleles Length Range

SW24 0.636 0.685 0.072 5.967 115–127
SW122 0.761 0.664 −0.146 4.998 97–115
SW632 0.842 0.807 −0.044 7.902 126–160
SW857 0.635 0.681 0.069 4.998 160–168
SW911 0.458 0.514 0.109 3.902 160–166
SW936 0.537 0.486 −0.104 4.902 91–107
S0005 0.808 0.756 −0.069 8.000 218–242
S0097 0.849 0.839 −0.012 15.867 219–264
S0226 0.743 0.687 −0.081 4.000 177–187

Ho, observed heterozygosity; Hs, expected heterozygosity; Fis values were calculated after [58]; # est. alleles,
number of estimated alleles.

Table 4. Allele frequencies distributions presented at each microsatellite locus for each area.

Locus Name Allele Length Freq. Jussy Freq. Les Voirons Freq. Foron

SW936

91 0.08 0.16 0.22
93 0.82 0.68 0.56

101 0.06
105 0.02
107 0.10 0.14 0.17

S0226

177 0.17 0.16 0.11
179 0.33 0.32 0.44
185 0.41 0.34 0.44
187 0.09 0.18
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Table 4. Cont.

Locus Name Allele Length Freq. Jussy Freq. Les Voirons Freq. Foron

SW911

160 0.02
162 0.65 0.52 0.44
164 0.02
166 0.35 0.43 0.56

SW24

115 0.03 0.02
117 0.15 0.27 0.50
119 0.10 0.18 0.13
123 0.58 0.41 0.13
125 0.13 0.09 0.25
127 0.02

SW857

160 0.02 0.02
162 0.15 0.07
164 0.10 0.27 0.28
166 0.23 0.14 0.33
168 0.50 0.50 0.39

S0005

218 0.03
222 0.41 0.29 0.31
232 0.21 0.31 0.38
234 0.02
236 0.03
238 0.16 0.26 0.19
240 0.10
242 0.05 0.12 0.13

SW122

97 0.28 0.23 0.33
99 0.40 0.52 0.50

109 0.28 0.07 0.17
111 0.03 0.14
115 0.05

SW632

126 0.18 0.05 0.06
148 0.10 0.09 0.11
150 0.08 0.07 0.06
152 0.20 0.41 0.22
154 0.18 0.23 0.28
156 0.02
158 0.22 0.16 0.28
160 0.02

S0097

219 0.12 0.07
224 0.10 0.25 0.38
230 0.05 0.02
232 0.13 0.02
234 0.17 0.11 0.25
236 0.23 0.23 0.25
240 0.02
242 0.05 0.05
244 0.02 0.05
250 0.02 0.05
252 0.08
254 0.02 0.13
256 0.02
260 0.02
262 0.02
264 0.09

There is no significant Fis within the subpopulations and overall (Table 5), and the
subpopulations are therefore considered in Hardy–Weineberg equilibrium. The Fst value



Sustainability 2022, 14, 7463 11 of 20

calculated within each region is below 0.1, which is low considering that is it a measure of
the correlation between genes of a subpopulation compared to the total population (i.e., Fst
may vary from 0 to 1 and 1 is the highest differentiation). PwFst indicates significant
differentiation between Les Voirons and Jussy subpopulations with 95 CI [0.006,0.022], and
the Foron and Jussy subpopulations with 95 CI [0.001,0.085] using confidence intervals
from the bootstrap method.

Table 5. Genetic structure of population summarized for each area.

Areas Ho Hs Fst Fis * # Priv. All. # Allel. Richness.

Jussy 0.672 0.660 0.063 −0.018 8 39.457
Foron 0.773 0.682 −0.017 −0.114 1 32.654

Les Voirons 0.645 0.695 0.007 0.075 9 40.460
overall 0.697 0.680 0.017 −0.019 - -

* not significant (bootstrap with 10,000 permutations); Ho, observed heterozygosity; Hs, expected heterozygosity;
# priv.all., number of private alleles; # allel. richness., total estimated allelic richness; Fst and Fis values were
calculated after Weir and Goudet (2017).

The significant linkage disequilibrium (p-value < 0.05), which is considered as a
measure of the joint transmission of two loci (i.e., non-random association within a popula-
tion [53]), was discovered between several microsatellite loci in the Foron and Les Voirons
subpopulations (Table 6). More loci are in linkage disequilibrium (LD) in Les Voirons
subpopulation than in the Foron subpopulation.

Table 6. Matrix that shows the linkage disequilibrium for Les Voirons and Foron areas.

Locus Name SW936 S0226 SW911 SW24 SW857 S0005 SW122 SW632 S0097

SW936 - - - - - - - -
S0226 - + + - - - - +

SW911 - - - - - - - +
SW24 - - - - - - - +

SW857 - - + - + - - +
S0005 - - - - - - + +

SW122 - - - + - - + +
SW632 - + + - + + - -
S0097 - - - + + - + -

The upper limit above diagonal represents Les Voirons subpopulation and the lower limit below diagonal is for
the Foron subpopulation. The “+” sign represents significant LD (p-value < 0.05), while the “-” sign means that it
is not significant.

3.2. Population Genetic Structure Analysis

The cluster analysis using Bayesian inferences with STRUCTURE indicated only one
population (Table 7). The ∆K, which allows one to infer the better K by selecting the first
more likely peak, cannot be used for K = 1 and should be completed with other criteria in
this case [62]. The mean likelihood (LK), which is higher when the number of estimated
clusters better fit the data, is always higher with K = 1 than with other K values for all runs.

Second, the visualization of the clusters with the better K using ∆K for each indi-
vidual and by region always shows nearly identical individuals (i.e., the mix of clusters,
see Figure 2), indicating a probable unique population [63]. The dataset “without kin”
was obtained by keeping only one member of each full-sibship family of COLONY run.
GENELAND was used to confirm STRUCTURE-interpreted result of K = 1 by using all the
individuals and by adding spatial coordinates. Along the chain after burn-in, the MCMC
indicated 1 population with 65% of the clusters aligned to K = 1.
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Table 7. STRUCTURE runs and results summarized.

Model Dataset N Freqscoor Best K (∆K) Prob. K

admixture
with kin 61

on 4 1
off 4 1

without kin 50
on 2 1
off 2 1

prior
information

(region)

with kin 61
on 5 1
off 2 1

without kin 50
on 2 1
off 2 1

N, number of individuals used; freqscoor, an option in STRUCTURE software that allows to analysis closely
related populations (may overestimate the number of clusters); best K (∆K), visual estimation of the best-estimated
number of clusters (K) using ∆K; prob. K, visual estimation of the best K using Mean L(K), ∆K, and visual
graph clustering.
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kin, freqscoor = 0 and with best K by ∆K = 4. The individuals are distributed along the x-axis and
were ordered by region and by cluster distribution. The best K was estimated using the Evanno
method [63] and visualized with the pophelper package 2.3.1. [64] on R.

We obtained the data without kin and the full-sibship family members with COLONY
using the full-likelihood method and by only keeping full-sibship family results with >75%
probability of being correct (Table 8). Furthermore, the inferred parentage clusters were
projected in Figure 3, even if the probability that the parentage clusters are representative
of the reality is low (Table 9).

To verify if there may be detectable isolation by distance, a Mantel test was conducted
using the Reynold genetic distance and the geographic distance between each pair of indi-
viduals. No significant relationship was found with the Pearson correlation test (r = 0.008,
p-value = 0.344).

3.3. Sexual Genetic Structure Analysis

The comparison of the Reynold genetic distance between 1485 pairs (i.e., Gauss sum-
mation) of sexed animals for 26 females and 28 males was conducted using a Dunn Kruskal–
Wallis multiple comparison [76]. The genetic distance was significantly different between
female–female versus male–male groups (p-value = 0.001) and between male–female versus
male–male groups (p-value = 0.038). However, the difference was rather small when we
compared the median value of each group: 0.221 for the female–female group, 0.256 for the
male–female group, and 0.306 for the male–male group (Figure 4). While the members of
each full-sibship family were projected on a map, no sex pattern could be highlighted.
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Table 8. Full-sibship families with only >75% probability of being true are presented.

f. s. Family
ID Prob (Inc.) Prob (Exc.) # Memb.

Jussy
# Memb.
Voirons

# Memb.
Foron

1 0.960 0.570 2 0 0
2 0.972 0.610 0 2 0
3 0.819 0.431 0 0 3
4 0.913 0.371 0 2 0
5 0.940 0.940 2 0 2
6 0.992 0.183 0 2 0
7 0.868 0.222 2 0 0
8 0.998 0.641 0 2 0

f. s. family ID, full-sibship family ID; prob (Inc.), probability that the composed family is splitable, the higher
the value, the less probable; prob (Exc.), probability that all members of the full-sibship family are well included;
# memb., number of family members.

Table 9. Parentage clusters shown according to COLONY run, with all individuals.

Parentage Cluster Prob # Memb. Jussy # Memb. Voirons # Memb. Foron

1 0.427 7 5 3
2 0.211 13 10 6
3 0.519 9 4 0
4 0.279 1 2 0
5 0.728 0 1 0

Prob, probability that the composed parentage cluster is true; # memb., number of parentage cluster members.
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4. Discussion
4.1. Population Genetic Structure
4.1.1. Population Differentiation

The results of STRUCTURE and GENELAND genetic clustering suggest that, along
the ecological corridor GE-O-01+02 and within the connected habitat patches, there is only
one genetic population. The Fst values highlighted only low differentiation between Jussy,
Les Voirons, and Foron (Table 5). However, the pwFst was significant between Les Voirons
and Jussy and between Foron and Jussy, although this differentiation is not enough to
consider the wild boar individuals of the area of Jussy as a differentiated population. We
suggest that the subpopulations of wild boars experienced sufficient gene flow to maintain a
homogeneous population structure either with or without the wildlife overpass. Moreover,
if there were ~65 effective years (i.e., since the intensive use of the D1206 departmental road)
of complete separation between the regions followed by a recent 6 years of reconnection,
the subpopulations would still show a genetic clustering structure due to ancient genetic
drift signature. Indeed, this genetic phenomenon randomly changes the allelic frequencies,
leading to differentiated clusters. Four decades of elapsed time with a quasi-impermeable
barrier to movement (4 lanes motorway over 200 km) were suggested sufficient to end up
with distinct genetic clusters in a Sardinian study [32]. Even with a recent reconnection,
the two hypothetic clusters would still be visible, and we would have three main types
of individuals distributed along the ecological corridor: individuals from the first cluster,
individuals from the second cluster, and admixed individuals due to reproduction between
the two previously separated clusters. In congruence with our results, analogous studies
on wild boar population structures at the landscape scale found no genetic differentiation
resulting from motorway separation [29,78,79], with fencing since 2004 [29] and with
>20,000 average users/day [29,78]. It was suggested that genetic clustering effects were
rather due to isolation-by-distance [30], or to the species’ characteristics or recolonization
history [31].

4.1.2. Clue of Genetic Reconnection

At the scale of population differentiation (i.e., STRUCTURE or GENELAND runs),
no evidence of disconnection was found (see Section 3.1). However, when we look at the
genetic features of each studied area, signs of recent reconnection may be visible and could
be explained by a theoretical hypothesis (Figure 5), in which we consider the situation
before (i.e., in 2014) and some years after the building of the wildlife overpass. In our
hypothesis, Les Voirons and Jussy were always connected by the alternative corridor in
the north of Machilly (Figure 1), while Foron was isolated from both Les Voirons and
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Jussy, leading to slightly differentiated allelic frequencies between the 2 core areas and
the potential stepping stone. Then, reconnection was made possible between Foron and
Les Voirons due to the wildlife overpass. It allowed regular exchanges of individuals that
led to an admixture signature detectable with the measured LD (Table 6). Interestingly,
no LD was detected in Jussy and we hypothesize that the anthropized part of the Foron
area still represented a partial or complete barrier to movement for the wild boars, while
the connexion with Machilly maintain only low genetic exchanges. Finally, the pwFst was
significant between Jussy and the other areas. It gives further arguments for our hypothesis
because Foron and Les Voirons became homogenized, while Jussy remained more isolated.

It emphasized that the alternative passage of Machilly may allow maintaining connec-
tivity with Jussy. The result is congruent with the study of Dellicour et al. (2019) in that,
even if no clustering genetic structure could be highlighted, other indicators, resulting from
capture–mark–recapture in their study or from LD measures in our case, still show that wild
boars are affected by landscape fragmentation [79]. Moreover, our results are constituent
with the Sardinian study that showed that urbanized areas, roads, and intensively culti-
vated areas were likely to drive the species to distinct genetic clusters [32]. Nevertheless,
our approach remains hypothetical and should be confirmed by a further study (e.g., formal
modelization and prediction of scenarios). We may also lack sufficient statistical power to
find low genetic differentiation (e.g., due to brief separation time [78,79]) that needs a high
statistical power to be discovered and this could explain our single population result.
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4.2. Sexual Genetic Structure

Our results are slightly different from what would be expected according to previous
studies on the dispersion of the wild boars. On the one hand, our results would suggest
that the gender of the animals does not greatly influence genetic population structure
because Kruskall–Wallis tests (see Section 3.3) showed only low, even if significant, genetic
differentiation between sexes. On the other hand, ecological studies on the dispersion of
wild boars showed that males tended to disperse further than females [80,81]. From a
genetic point of view, we would have expected more genetic contrast between males’ pairs
and females’ pairs. However, our sampling size and quality might explain this result, as it
included yearlings and piglets that are genetically not representative of the animals in age
to disperse.
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4.3. Perspective

We could improve the study by adding samples from the north of Machilly, as this
region could be used as an alternative passage, and by adding highly polymorphic mi-
crosatellites (i.e., several microsatellites only had an allelic richness between 4–6, Table 3)
or by using an SNP BeadChips approach. Furthermore, the Mantel test used in this study,
which gave no significant results, was limited because we used an isolation-by-distance
approach that only takes the Euclidean distance between individuals into account. One way
to improve that would be to use a least-cost path approach that considers real ecological
costs of crossing through specific environments [82]. The cumulated costs could then be
compared to the Reynold genetic distance between each pairwise individuals using the
Mantel test. This approach could be used once with the ecological corridor GE-O-01+02
and once with the alternative Machilly passage by allowing only one specific passage on
a resistance map. Then, the results should be compared considering the percentage of
explained variance and the p-value to find out if the individuals prefer to use one passage
over the other.

4.4. Management Recommandations

At the scale of the studied sector, we recommend, as a precautionary principle, re-
connecting both the Jussy and Foron areas and maintaining the alternative passage north
to Machilly, as the functional connectivity between the Jussy and Foron areas was not
confirmed. First, the most valuable parts of the ecological corridor GE-O-01+02 should be
defined and protected (i.e., allocated for only wildlife passage). Then, an integration of
guiding structures between the Foron and Jussy areas should be carefully planned, accord-
ing to regional constraints and limitations, and designed to help migrant and dispersing
animals find their way. Finally, a 16.5 km further section highway between Machilly and
Thonon is being planned and may cut off the alternative wildlife passage north to Machilly.
This potential disruption of connectivity should be considered in the planning of the future
highway, because if this northern corridor is interrupted, and as long as the functionality
of the corridor between the overpass and Jussy is not assured, there will be potentially no
longer sufficient gene flow between Les Voirons and Jussy subpopulations. This would
lead to the separation of the subpopulations into distinct genetic clusters and to the genetic
weakening of the Jussy subpopulation.

This study demonstrated that even short landscape stretches lacking guiding structures
like hedgerows for instance and with stochastic barriers to movement, such as cultivations,
roads, fences, or houses, could already trigger a genetic signature. The connection between
the Jussy and Foron areas seems to be impeded by the anthropized part of the Foron area
even if it is less than 500 m wide.

Finally, at the scale of our study, we suggest that the wild boar would not a be species
too sensitive to barriers to movement, such as highways, as it seems able to find alternative
passages and maintain a consistent genetic single population. We expect that species more
sensitive to landscape fragmentation such as roe deer [83] or red deer [79] would show
different results. Such monitoring should be repeated after further structuring time to
confirm the results of this study and to evaluate any new measures (e.g., construction of
linear guides such as favorable hedgerows in the Foron area). It would be instrumental
to the goals of the local government in confirming this evaluation with a more sensitive
species to fragmentation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su14127463/s1, Table S1: samples data; Table S2: microsatellite data.
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