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Abstract: The complexity in the power system topology, together with the new paradigm in gen-
eration and demand, make achieving an adequate level of supply quality a complicated goal for
distribution companies. The electrical system power quality is subject to different regulations. On one
hand, EN-50160 establishes the characteristics of the voltage supplied by public electricity networks,
therefore affecting distribution companies. On the other hand, the EN-61000 series of standards
regulates the electromagnetic compatibility of devices connected to the network, therefore affecting
the loads. Power companies and device manufacturers are both responsible and affected in the issue
of quality of supply. Despite the regulations, there are certain aspects of the supply quality that are
not solved. One of the most important is the location of the disturbance’s origin. This paper presents
a review of the main techniques to locate the disturbance’s origin in the electric network through two
approaches: identification of the disturbance’s cause and the location of the origin.

Keywords: power quality; disturbance source location; power system reliability; power system
stability; disturbance direction

1. Introduction

The electric power system consists of the generation, transmission and distribution of
energy to customers. The complexity of this system, together with changes in generation,
demand, external factors such as weather conditions, load heterogeneity and other factors,
make achieving an adequate supply quality level a complicated goal for distribution com-
panies. IEEE describes the supply quality as “powering and grounding electronic devices
so that they are suitable for operation and also compatible with the wiring system and other
devices.” This is summarized by “Electromagnetic Compatibility”, which is defined as the
ability of an equipment or system to work successfully in an electromagnetic environment
without introducing intolerable electromagnetic disturbances into the network. With the
new paradigm in electrical systems, supply quality problems are becoming increasingly
serious because disruptive sources have multiplied. This problem has become a very
important aspect for both energy distribution companies and end users due to different
factors:

• Current loads are very sensitive to supply voltage conditions.
• Increased nonlinear loads cause harmonic disturbances that are on the rise in recent

years.
• Increased knowledge of end users in terms of supply quality that forces companies to

improve conditions.
• The distributed generation systems integration.

Power quality may represent an important factor in the competitiveness of several
activities. This competitiveness is affected by the costs associated with the power quality
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problems and the growing number of customers with high requirements regarding power
quality. Power quality problem costs are associated with production interruption, defective
products, large restarting process, indirect costs, etc. In [1], a survey in the Portuguese
industry concluded that costs associated with power quality problems represent, on av-
erage, 69% of annual electricity bills. In [2], it was concluded that the annual cost due
to power quality problems in the industry and service sectors in Shanghai can be set in
the range from USD 0.597 to 1.77 billion.According to [3], the cost associated with power
quality problems in the European industry is around USD 150 billion . This fact encourages
suppliers and the industry to locate disturbances’ origins to assign the responsibilities and,
consequently, the costs.

A first step in having an electrical system with adequate power quality is the definition
of supply quality regulations. There are numerous regulations in this regard with different
areas of action. IEC has an international level with more than 60 partner countries, CEN-
ELEC and AENOR focus more on the countries of Europe and IEEE has its scope of action
in America. IEC raised regulations on the supply quality that was adapted by CENELEC
(Europe) and AENOR (Spain) to the EN-50160 [4] and EN-61000 series. In EN-50160, the
main characteristics that the voltage supply must have at the point of delivery are defined
as the “voltage characteristics of electricity supplied by public electricity networks”. This
regulation is of direct application in energy supply companies, since they are responsi-
ble for energy reaching the customer with the required quality levels. In addition, the
EN-61000 series of standards addresses the electromagnetic compatibility of devices in an
environment:

• Part 1: General.
• Part 2: Environment.
• Part 3: Emission Limits and Immunity.
• Part 4: Testing and Measurement Techniques.
• Part 5: Installation and Mitigation Guides.
• Part 6: Generic Standards.

These standards are directly applicable to device manufacturers who are connected to
the grid. This rule limits the emission of disturbances by devices on the network.

As can be seen through the regulations, there are two main agents in the supply quality:
the generator, transporter and distributor of energy (electricity distribution companies)
and loads (device manufacturers). Utilities and manufacturers are both responsible and
affected in the supply quality issue. Electricity distribution companies are responsible
for quality at the point of supply, so failure to meet the levels of disturbances established
by the regulations may incur penalties. In the case of device manufacturers, they are
affected in two ways: if your product does not comply with the regulations, it implies the
noncertification of the product, and if the products are in an environment with low supply
quality, they can be damaged. Despite the regulations, there are certain supply quality
aspects that are not solved. One of the most important is the location of the disturbance’s
origin. On numerous occasions, the supply quality is poor due to actions outside the power
company, such as loads on users who introduce disturbances into the grid, although the
loads are also subject to individual quality regulations. Users often have low-quality power
problems in their facilities due to loads or processes they produce. For all this, detecting
the disturbance’s source has two important implications for power companies: it allows to
hold the user accountable for damages in case they are the disturbance’s source, avoiding
possible litigation, and it allows to locate the disturbance and propose improvements.

Therefore, disturbances can be divided between those produced in the electric sys-
tem, which is the distribution company’s responsibility, and disturbances due to loads.
As mentioned, the current loads, due to their electronic components, are generators of
disturbances, but they are also sensitive to them. The most common disturbances, their
impact and causes are showed in Table 1 [5].
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Table 1. Most common disturbances with their impacts and causes.

Category Causes Impacts

Voltage Sags

Lightning.
Contact with animals or trees.
Connection of large loads.
Starting an engine—three-phase fault (fast).
Power supply of a transformer.
Transformer socket change (fast).
Disconnecting capacitors.
Insulation failure.

Shooting sensitive equipment.
Reset control systems.
Motor lock/trigger.
Flicker.

Surges

Disconnect/reject large loads.
Missing phase.
Load switching.
Voltage regulation.
Condenser power supply.

Sensitive equipment firing.
Damage to isolators and windings.
Damage to power supplies.
Problems with equipment requiring constant tension.

Harmonics

Power supply of a transformer (pairs).
Nonlinear loads.
Industrial furnaces.
Transformers/generators.
Rectifiers.
Ferroresonance.

Faulty operation in sensitive equipment and relays.
Failures in the capacitors or fuses thereof.
Phone interference in old analogic circuits.

Frequency
variation

Loss of generation.
Extreme charging conditions.

Engines run at lower speeds.
Harmonic filters do not work properly.

Voltage
fluctuation

AC motor drives.
Currents with interharmonic components.
Welders and arch furnaces.

Flicker.

Unbalances
Unbalanced loads.
Unbalanced impedances.
Insulation failures.

Engine/generator overheating.
Interruption of three-phase operation.

Interruptions

Fuse burnt.
Switching switches.
Faults.
Control system failures.

Power loss.
Computer shutdown.
Engine firing.

Undervoltages
Loss of generation.
Very loaded network.
Low power factor.

All equipment without additional power.

Transients

Power supply of capacitors.
Rays.
Switching switches.
Voltage regulation.
Switching nonlinear loads.

Reset control systems.
Damage to sensitive electronic equipment.
Damage to insulators.

Low Power Factor
Nonlinear loads.
Rectifiers.
Switching switches.

Lower efficiency.
High power losses.
Heating of devices.
High voltage sags.

Electromagnetic Interference

Telecomunication systems.
Electronical devices.
Switching systems.
Electrostatic discharge.
Induction motors.

Lower efficiency.
Interruptions.
Malfunction of devices.

The disturbances produced in the electric system are mainly those related to failures
in insulation that produce voltage sags and unbalances, contact faults (animals or trees)
that produce surges, voltage sags and interruptions and operations in the network that
produce surges and transients. In the case of customers (equipment), the disturbances
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are from asynchronous motors that produce voltage sags during the starting process and
harmonics due to nonlinearities, welding machines or arc furnaces that produce voltage
sags, harmonics, unbalances, voltage fluctuations, converters that produce surges and
harmonics, nonlinear loads that produce harmonics and capacitor banks that produce
voltage sags, surges, harmonics and voltage fluctuations.

In the technical literature, there are numerous references for the location of the distur-
bance’s origin. It is a complicated topic, since networks are currently very complex due to
intricate topology, the integration of distributed generation that in addition to changing the
direction of traditional flow from medium voltage to low voltage introduces converters
that generate disturbances, the large number of nonlinear loads, etc.

This study presents a review of the main techniques to locate a disturbance’s origin in
the electric network. This study presents the following novelties:

• Solutions for improving the responsibility assignment. This review explores and ana-
lyzes a great number of options for suppliers and industrial users to locate the origin
of power quality problems. This review summarizes different available algorithms in
the technical literature, highlighting their characteristics, advantages, disadvantages
and the type of disturbances for which the algorithms are intended.

• Process to locate the poor power quality source. This review explores two different
approaches to achieve good-quality location of a disturbance’s origin; identification
of the disturbance cause and the location of the origin. A complete analysis with the
two approaches improves the accuracy of the disturbance origin location, knowing
the approximate location and the type of load that produced it. In the first of the
approaches, there is greater technical knowledge, but the complexity of the network
makes the second approach more difficult to analyze. Figure 1 summarizes the process
followed during the identification of the disturbance type and the location of the
origin.

• Fault location solutions. Faults in the electrical system are a very great source of power
quality problems. On this basis, this review analyzes different solutions to locate the
faults in the electrical system to achieve good-quality location of the origin of this
disturbance type.

PQ disturbance

Signals pre-
processing

Signals analysis

Features
extraction

Features selection

Disturbance
classification

Origin Location
Network topology

Figure 1. Summary of the identification and location process.
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There are some reviews of this topic in the technical literature. The review in [6]
focuses on analyzing international standards and solutions for improving power quality,
but it does not provide information about the different existing techniques to precisely
locate the source of disturbance. In [7,8], the existing methodologies for the Responsibilities
Assignment Problem are described and reviewed. In [9], the important novelty is that
these existing methodologies are compared through a laboratory setup. In the case of these
references, there is no mention of other algorithms of disturbance location. In [10], an
extensive review about the automatic recognition of PQ events is presented.The present
review complements previous ones, extending the analysis to other algorithms, not only
for location of the disturbance source, but also for identification of the disturbance type.
This fact can improve the quality of the outcomes.

The papers selected in this review were searched in the relevant data bases: IEEE
Xplore, Scopus, Engineering Village and Web of Science. The criteria used in this paper is
the search for the most relevant references regarding each topic. For the identification of dis-
turbing cause types, the main search keywords were “power quality disturbances”, “power
quality classification”, “power quality feature extraction”, “power quality signal analysis”,
“power quality pattern recognition” and “power quality disturbances identification”. In
the case of disturbing source locations, the main search keywords were “power quality
disturbances origin”, “disturbances source origin”, “responsibilities in power quality”,
“disturbance origin assessment”, “power quality event source location” and “locate power
quality disturbance source”. In this way, 100 papers from 1989 to 2021 were analyzed for
this review. As it can be seen in Figure 2, a higher number of papers are concentrated the
last 15 years. The journal with the most contributions to this review is IEEE Transaction on
Power Delivery, with 20 % of the contributions.

Figure 2. Histogram of the publication years of each paper.

2. Identification of Disturbing Cause Types

The first approach for the location of the disturbing element is the identification of
the type of loads that cause the disturbance. Different types of disturbances and their
most common causes were identified in the previous section, but perfect identification is a
more complex process. In the technical literature, there are numerous references in which
methods are proposed for the identification of loads based mostly on three steps: signal
analysis and feature extraction, feature selection and classification.
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2.1. Signal Analysis and Feature Extraction

There are different methodologies for analyzing and extracting signal characteristics
from network monitoring. Signal decomposition methods are mainly used.

2.1.1. Wavelet Transform

Wavelet Transform is an efficient tool for analyzing nonstationary signals with fast
transients. There are numerous modifications to the Wavelet Transform base to suit the
different characteristics of the problem. In [11,12], Wavelet Transform is used for signal
decomposition. In [13], a normalization and segmentation process is added before the
Wavelet Transform to obtain the distinctive characteristics of each event that are extracted
through a two-stage feature extraction process. In [14], an improvement in the Wavelet
method is presented for analyzing nonstationary signals of disturbances using Wavelet
Transform with modified frequency fraction that provides frequency-dependent resolution
with additional window parameters for better feature localization. An advantage of this
system is that the sine modulation signals are fixed on the axis of time, while a Gaussian
window dilates and moves it. In [15–17], Wavelet Transform with multiresolution analysis
is used for signal analysis. In the case of [15], the Wavelet Db4 family is used, and in [17], it
is combined with the Parseval theorem to calculate the energy distribution as it is a very
good parameter for the classification of supply quality events. In [18], features are extracted
through an entropy-based Wavelet normalization method. In [19], an adaptive harmonic
transform of Wavelet is used for the extraction of characteristics. The advantage of this
system is that it analyzes disturbances in voltage and current with better performance than
other methods, as it provides a better representation of quality signals.

2.1.2. S-Transform

The S-Transform is a generalization of Fourier’s short-term transformation, expanding
the continuous Wavelet Transform and overcoming some of its disadvantages. It can also
be said to be a Wavelet Transform with phase correction. It has several advantages over
Wavelet and Fourier. First, the modulated sine signals are fixed on the time axis which
identifies dilatations and transfers of the Gaussian window. In addition, it has no cross-
term problems and obtains a clearer signal than the Gabor transform. The disadvantage of
thiS-transform is that the clarity of the signal is worse than that of Wigner’s and Cohen’s
distribution function. Additionally, the characteristics obtained with the S-Transform
are more suitable for pattern recognition purposes than Wavelet’s. In general, the S-
Transform has excellent time-frequency resolution and needs fewer features than the
Wavelet Transform to achieve the same results.

In [20,21], the transform is used to extract the characteristics of the signals taking
advantage of that of Wavelet. In [20], the hyperbolic function of the S-Transform combined
with genetic algorithms is used to select the optimal characteristics. In [21], it combines
with an algorithm called Dynamics (Dyn) that significantly reduces the simulation time
of the S-transform. This article performs the extraction of 5 characteristics for further
classification. In [22,23], a multiresolution S-Transform is used to generate optimal feature
vector sets. In the case of [22], it is combined with the Parseval theorem to obtain the energy
vectors, and in the case of [23], it is based on a variable width analysis window that changes
frequently depending on the user needs.

2.1.3. Hilbert Transform

A real function and its Hilbert transform manage to create a strong analytical signal.
This signal can be represented with an amplitude and a phase where the derivative of the
phase can be identified as the instantaneous frequency. Therefore, the instantaneous fre-
quency is defined through the series itself and its mathematical transform. The S-transform
has limited use because it needs a signal with narrow bandwidth to make its result suitable.
Due to this limitation, an improved version is usually used, namely the Hilbert–Huang
transform that allows to break down the signal into different oscillation modes, because the



Sustainability 2022, 14, 7428 7 of 27

distorted wave can be understood as overlapping different oscillation modes. Empirical
decomposition is used to separate modes and Hilbert to obtain instantaneous amplitude
and phase for feature extraction.

In most cases found in the technical literature, the Hilbert–Huang combination [24–27]
is used.

2.1.4. Statistical Methods

The use of statistical methods based on statistical analysis of typical disturbed signals
can be used for characteristic extraction. In [28], the characteristics are extracted using
statistical methods combined with a decision tree with gradient enhancement to recognize
the sources of disturbance.

2.1.5. Empirical Decomposition in Set Modes

The Hilbert transform was modified into the Hilbert–Huang transform to improve its
characteristics through decomposition in different oscillation modes. In this case, empirical
decomposition in modes is used without the part of the Hilbert method and modified to
obtain empirical decomposition of modes by sets that allows to improve the first. Empirical
mode decomposition is affected by the effect of mode mixing (modal overlap), while
empirical mode decomposition by sets solves this problem. This method allows for better
capacity for scale separation, adding different series of white noise to the signal.

In [29], this system is used to obtain the moment and duration of the disturbance
and the frequency and amplitude of the signal. In the case of [30], it is combined with
multilabel learning so that empirical decomposition in set modes extracts the characteristics
of complex disturbances, defining differences in energy levels in each mode.

2.1.6. Discrete Cosine Transform

Discrete Cosine Transform is based on Fourier discrete transform but using only real
numbers. ThiS-transform expresses a sequence of several points as a result of the sum of
different sine signals for different frequencies and amplitudes. In the case of the Fourier
Transform, complex exponentials are used, while discrete cosine transforming works with
cosine. The advantages of this method are that it concentrates most of the information into
few transformed coefficients, the algorithm does not vary depending on the data it receives
and has great capacity to interpret the coefficients from a frequency point of view.

In [31,32], this method is used for the extraction of characteristics mainly for short
disturbances over time.

2.2. Feature Selection

The second stage is the selection of the most appropriate extracted characteristics for
the subsequent event classification. In this case, there are also different methodologies for
selecting the characteristics of signals from network monitoring.

2.2.1. Genetic Algorithms

Genetic algorithms base their behavior on the way human genes work. These algo-
rithms cause a population of data to evolve by subjecting it to random actions similar to
those that act in genetics (mutations, genetic combinations, etc.). Different criteria, at the
base of the problem necessities, are used to select the most appropriate characteristics.

In [33], a wrapping-based approach that integrates multiobject genetic algorithms
is used. In this article, Wavelet Transform and S-Transform are used to extract features.
Multiobject genetic algorithms are then trained to find a subset of relevant characteristics
that minimize classification errors and classifier size.
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2.2.2. Image Enhancement Techniques

There are image enhancement techniques for multiple applications, but in this case
these techniques are used to highlight in the image the characteristics of the different
disturbances.

In [34], image enhancement techniques are used to select the most appropriate features.

2.2.3. Principal Component Analysis (PCA)

This is a statistical procedure that uses orthogonal transformation to transform a set of
variable observations that may have correlation into a set of values that are not correlated
with each other, which are called major components.

In [11], Wavelet Transform is used for signal decomposition, and subsequently, analysis
procedures of the main component are used to select the characteristics most suitable for
subsequent classification.

2.3. Classification

The final stage in identifying disturbances is classification. At this stage, numerous
learning algorithms are used in which procedures are trained through features extracted
and selected with procedures from the previous steps.

2.3.1. Neural Networks

Neural Networks are a great exponent within the field of artificial intelligence. Neural
networks are inspired by the behavior of human neurons and their connections. They
consist of input elements, neurons, connections and output elements. These algorithms
have a training stage by which they are fed with the input signals. Target vectors are
established so that during training the network updates the weights and, in some cases, the
architecture. The latter is made in order to make the output vector the most similar to the
target vector.

In [35], Neural Network algorithms combined with a rule-based decision tree are used
for classification of both isolated events and event combinations. In [36], Neural Networks
are used for the classification of events using Wavelet for feature extraction and selection. In
the case of [37], Neural Networks are used for the identification of the harmonic source. It is
trained, first, to extract the most important characteristics of an intensity signal, and then for
classification models with multilayer perceptron, radial base function network and support
vector machines and with linear, polynomial and radial-based kernels. These models are
trained and tested using data derived from a Fourier analysis of the waveform obtained
in the presence of different devices. In the case of [15], probabilistic Neural Networks are
compared with multilayer with feedback using Wavelet with multiresolution analysis to
extract the characteristics, and it was concluded that probabilistic Neural Networks are
more efficient than multilayer Neural Networks. In [38], the increased effectiveness of
probabilistic Neural Networks for event classification was also concluded. In this case,
instead of performing it in the frequency domain, it is performed in the time domain,
so that the analysis and extraction of characteristics is conducted through mathematical
morphology models and with the Teager energy operator.In [39], convolutional Neural
Networks are used to detect and classify disturbances.

2.3.2. Genetic Algorithms

As described in the previous section for the feature selection stage, genetic algorithms
are algorithms inspired by individuals’ natural selection and genetic combination mech-
anisms. They are adaptive methods that can be used to solve search and optimization
problems, so they are suitable for the classification of types of disturbances.

In [12], genetic algorithms are used to classify faults. In this case, the analysis and
extraction of features is performed with Wavelet.
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2.3.3. Decision Trees

Decision-tree-based learning is used as a predictive or classification model. In decision
tree structures, the leaves represent the different classes and branches the characteristics
that lead to the classes.

In [40], a method based on decision trees is used for detection and classification. In this
case, the analysis of the signals is performed with a mode of variable decomposition. This
article discusses both simple and combined events. In [41], a rule-based decision tree is used
as a classifier, while analysis and feature extraction is performed with a multiresolution
S-transform. In [28], a gradient-enhanced decision tree is used to recognize the disturbance
source, compromised in the article is the fact that gradient-enhanced decision trees enable
better recognition efficiency.

2.3.4. Statistical Methods

In [42], a new approach to event classification using the Hidden Markov model
combined with Wavelet Transform is proposed. Wavelet Transforms result in the power
distribution of signals. They are then used as input to the Hidden Markov model. In
addition, the Dempster–Shafer algorithm is used to improve classification accuracy.In [43],
an expert system is used for classification that uses an analytical hierarchical process as
learning.

2.3.5. Euclidean Distance Methods

They are classification algorithms that base their decision making on the Euclidean
distance between the test case and the class models. In [42], a classification model based
on Euclidean distance, combined with a feature extraction based on the Discrete Cosine
Transform, allows to identify seven types of disturbance events.

2.3.6. Fuzzy Systems

Fuzzy systems are based on fuzzy logic, which adapts the problem to the real-world
language. It is based on different join, intersection, difference, denial, or addition operations.
For each fuzzy set there is an associated membership function for its elements that indicates
the extent to which that element is part of the fuzzy set. It is based on heuristic rules of the
form If . . . then . . . . These systems are used when the complexity of the process is very
high and there are no mathematical models that model it accurately (nonlinear processes,
subjective processes, etc.). It is widely used for decision systems, so it is suitable in the
objective of disturbances classification.

In [44], fuzzy logic is used to cluster signal characteristics extracted using Fuzzy C-
means algorithms combined with either particle swarm optimization or genetic algorithms
to improve efficiency.

2.3.7. Neuro-Fuzzy Systems

The union of Neural Networks and fuzzy logic allows a hybrid system combining
the human reasoning of fuzzy techniques and the learning and connective structure of
Neural Networks. The strength of these systems is the ability to involve two requirements:
interpretability and accuracy. Systems that focus on interpretability often use the Mamdani
model and focus on accuracy use the Takagi–Sugeno–Kang model. Normally, this combi-
nation generates expert systems. These systems emulate human reasoning by behaving
as an expert in an area of knowledge would. To perform this, expert systems are based
on pre-established rules and Bayesian Networks. For cases with similar problems that
adapt to the new problem, expert systems uses fuzzy logic. Bayesian Networks are based
in statistical and Bayes Theorem.

In [45], a Neuro-Fuzzy based on learning and classification is used. In [46], a new
technique allows learning about supply quality waveforms. The approach is the use of an
intelligent technique based on leveraging the adaptive learning capabilities of adaptive
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Neuro-Fuzzy systems. In [47], an expert system consisting of a combination of Neural
Networks and fuzzy logic is used to increase classification accuracy by up to 98.19 %.

2.3.8. Random-Forest Systems

They are systems in which predictive decision trees are combined so that every tree
depends on the values of a random vector that is tested. In terms of performance, it is very
similar to decision trees with gradient enhancement, but it is easier to train and adjust,
so Random-Forest is very popular and highly used. The main advantages of this system
are that it is one of the most efficient learning algorithms that is available both by results
and by simulation time, it provides information on the most important variables in the
classification, and is a very effective method to estimate data when there has been a loss of
them.

In [34], Random-Forest is used as a classifier using as input the optimal characteristic
values obtained from an analysis with an image enhancement system.

2.3.9. Support Vector Machines (SVM)

Support vector machines are a set of supervised learning algorithms used for classifi-
cation and regression.

In [48], the characteristics of the disturbances are extracted with an S-Transform and
then classified with a support vector machine with a directed acyclic graph. This DAG-SVM
system allows you to predict the types of disturbances. The high effectiveness of this system
is checked for both simple events and combinations. In [30], empirical decomposition in
set modes is used for feature extraction and multilabel learning based on a Wavelet vector
support machine.

2.4. Summary of Methods for Identification of Disturbing Cause Types

A summary of the different methods explained above is presented in Table 2.
Figure 3 represents the level of performance in the y-axis versus the level of complexity

in the x-axis versus the level of development of the purpose techniques that is represented
by the marker’s size.The evaluation of the performance, complexity and development of
each technique is obtained through a decision matrix. In this matrix, the level of perfor-
mance is weighted based on the results and conclusions obtained in each reference, the
level of complexity is weighted based on the complexity of the mathematical developments
and the processing costs associated with each reference and the level of development is
weighted based on the scope of the results, the number of references for each technique
and the applications of each technique. The assessment of the application of each technique
is not only made for the purpose of the paper but also for similar applications. The scope
of the results is evaluated with three stages; theoretical development, simulation applied
development and field applied development. In Table 3, the normalized weights from 0 to
1 for each method is showed. All this criteria is summarized in Figure 3.
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Table 2. Summary of methods for identification of disturbing cause types.

Method

Application

Modifications Advantages Disadvantages
Signal

Analysis
and Feature
Extraction

Feature
Selection

Classification

Wavelet [11,12] X

Wavelet + normalization + segmentation [13]
Wavelet + modified frequency fraction [14]
Wavelet + multiresolution analysis [15–17]
Wavelet + entropy-based normalization [18]
Wavelet + adaptative harmonic transform [19]

Efficient for analyzing nonstationary signals with
fast transients.
Better performance than other methods.

Cross-term problems.
The accuracy highly depends on the Wavelet function selected.
It is usually difficult to determine the decomposition scales.
Traditional Wavelet is not completely self-adapting.

S-transform [20] X

S transform + reduction in simulation time [21]
S-transform + multiresolution [22,23]
S-transform + Parseval theorem [22]

Identifies dilatations and transfers of the Gaussian
window.
The characteristics obtained are more suitable for
pattern recognition than Wavelet.
Excellent time-frequency resolution.
Fewer features than Wavelet to obtain the same result.

The clarity of the signal is worse than others.

Hilbert Transform X Hilbert–Huang combination [24–27]
The combination with the Huang algorithm improve its
characteristics.

Only Hilbert Transform needs a signal with
narrow bandwidth.

Statistical
Methods [28]

X X X

For feature selection:
- Orthogonal transformation [11]
For classification:
- Hidden Markov Model [42]
- Dempster–Shafer algorithm [42]
- Expert system with analytical hierarchical
process [43]

Simple algorithms. Less accuracy.

Empirical
decomposition
in set modes

X EMD + Hilbert Transform [29,30]
With set decomposition the problem of modal overlaps
is solved.
Better capacity for scale separation.

If there is mode mixing, EMD cannot decompose the
original data sequence correctly.

Discrete cosine
transform [31,32]

X

Simpler than Fourier.
Concentrates most of the information into few transformed
coefficients.
The algorithm is independent on the input data.
Great capacity to interpret the coefficients from a frequency
point of view.

Accuracy result only for short time disturbances and
heavy noise.
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Table 2. Cont.

Method

Application

Modifications Advantages Disadvantages
Signal

Analysis
and Feature
Extraction

Feature
Selection

Classification

Genetic algorithms X X
Multi-object genetic algorithms [33]
Genetic Algorithm + Wavelet [12]

For feature selection, minimize classification errors
and size.
For classification, represent adaptive methods.

The selection of the appropriate Genetic Algorithms is complex.
The complexity of the optimum algorithms is high.

Image enhancement
techniques [34]

X Highlights in an image the most appropriate charac-
teristics.

This technique applied to feature selection is a
low-usage technique.

Neural Networks X X

Neural Networks + rule-based decision tree [35]
Neural Networks + multilayer perceptron [37]
Neural Networks + radial-based function [37]
Neural Networks + support vector machine [37]
Neural Networks + kernels [37]
Convolutional Neural Networks [39]

Simple use for appropriate results. Complex use for the highest accuracy.

Decision tree X X

Decision tree + mode of variable decomposition [40]
Rule-based Decision Tree [41]
Gradient-enhanced Decision Tree [28]

Gradient-enhanced Decision Tree enables better
recognition efficiency.

Changes in the data greatly affect the stability of the system.
It is not suitable for regression and prediction of continuous
values.

Fuzzy Systems [44] X
Fuzzy C-means
Fuzzy + Genetic Algorithms

Efficient when the complexity of the process is very
high and there are no mathematical models.

Subjective or qualitative results.
An expert is needed to train the algorithm.

Neuro-Fuzzy
Systems [45–47]

X

Neuro-Fuzzy + Mamdami model
Neuro-Fuzzy + Takagi–Sugeno–Kang model
Neuro-Fuzzy + Bayesian Networks

Improves the interpretability and the accuracy. An expert is needed to train the algorithm.

Random Forest
Systems [34]

X X

High accuracy similar to Gradient-enhanced
Decision Tree.
One of the most efficient learning algorithms by
results and simulation time.
Very effective to estimate data when there has been
a loss of data.

The computational requirements and the train-
ing time are high.

Support Vector
Machines

X
Support Vector Machine + direct acylic graph [47]
Support Vector Machine + Wavelet [30]

High effectiveness for both simple events and
combinations.

It is not suitable for large data sets.
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Figure 3. Performance vs. complexity vs. development of the proposed techniques for type identifi-
cation.

Table 3. Normalized weights of each method.

Complexity Performance Development

Wavelet 0.33 0.71 1.00

S-Transform 0.50 0.86 0.78

Hilbert Transform 0.83 0.43 0.44

Statistical Methods 0.00 0.00 0.89

Empirical Decomposition 0.83 0.14 0.44

Discrete Cosine Transform 0.50 0.14 0.33

Genetic Algorithms 0.83 0.57 0.78

Image Enhancement Techniques 0.50 0.00 0.00

Neural Networks 0.17 1.00 1.00

Decision Tree 0.67 0.43 0.78

Fuzzy Systems 0.50 0.71 0.78

Random Forest 0.83 1.00 0.89

Support Vector Machine 1.00 0.71 0.67

3. Location of Disturbing Sources

The physical locations of disturbing sources have greater complexity than their identi-
fication. Identification is based to a greater extent on learning algorithms that, based on
the characteristics of each event, can estimate what type of event has occurred. The case
of localization has greater complexity because the networks are currently very complex
topologically, the distributed generation introduces converters that generate disturbances,
there are a large number of nonlinear loads, etc. Despite this, there are numerous solutions
that can be applied to locate the disturbing source in the technical literature. In the case of
localization, they are grouped by the type of disturbance they locate. First, references to a
system for the location of all disruptive loads are analyzed, and subsequently those that
study a system for specific disturbances.

3.1. Methods for Localization of All Kinds of Disturbances

There are numerous references regarding the location of all kinds of disturbances in a
network in the technical literature. Most of them are divided into two main methods. The
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first is the location of disturbances based on the disturbances’ interaction method, and the
second is the location in the base of the direction of disturbance.

3.1.1. Methods Based on Interaction Disturbance Methods

In [49], different alternatives are planned for the allocation of responsibility for dis-
turbances. To perform this, the aim is to compare the extracted components of the current
with the current in general. The decomposition in this paper is based on the FBD theory
proposed by Depenbrock for stationary cases that are presented by the German Standards
DIN-40110-1 [50] and DIN-40110-2 [51] . Finally, the method is based on the orthogonal
decomposition of current in 5 components related to asymmetry, phase displacement and
waveform distortion.

A causality assessment based on epidemiological criteria and the method of interaction
of disturbances is carried out in [52]. The disturbance interaction method is first applied to
compare currents with reference conditions. To assess the interaction of disturbances be-
tween company and customers, the measures should follow the guidelines of the Standard
IEC-61000-4-30 [53]. Subsequently, the interaction matrices and contributions of each of
the circuits are calculated in each disturbance. Finally, causality is assessed, understood as
the identification of elements belonging to a system and that with their conditions that are
combined result in a state of lack of supply quality. Several methods are discussed, among
which are: the critical impedance method [9,54], the multipoint method [9], the measures-
based index [9,55], the harmonic pollution method [9] and the DIN-40110 indicators and
IEEE 1459 [9,56] indicators. Specifically, in [9], existing methodologies for the Responsible
Assignment Problem are compared through a laboratory setup. This paper achieves useful
conclusions to select the most appropriate method. The accuracy of the results in the
critical impedance method is heavily dependent on the modeling of the feeding system
and the loads. In the case of the feeding system, the modeling is solved and employed
by many technical papers and standards, but in the case of the nonlinear loads, this fact
is not solved. This method would need different solutions for every case when nonlinear
loads are being modeled. In the case of the multipoint method, it is concluded that it is
one of the most important methods to evaluate the location of the disturbance origin, but
the analysis of the index obtained by the method is a very difficult task. This method
needs modification to improve the quality of the results. The harmonic pollution method
presents an interesting option to asses the contribution of several customers or utilities
in a disturbance. The advantage of this method is that it uses the currents measured and
does not need power quantities, which could increase the uncertainty of the method. In
addition, the use of the current, that is a physical variable, helps to understand the results
and simplifies the implementation. The main disadvantage of this method is the need
for simultaneous measurements and a high degree of knowledge of the system and load
impedances. Finally, the review analyzes the application of the German Standard DIN
40110. The advantage of this method is that the current decomposition proposed allows for
focusing on a specific component of the current and is universally applicable.

In [57], a statistical analysis is carried out to the [49] procedure to improve the alloca-
tion of responsibilities in the disturbance interaction method.

3.1.2. Methods Based on the Direction of Disturbance

The other main method that is repeated in the state of the art of disturbance location is
a method based on the direction of disturbance.

In [58], a systematic algorithm for locating the source of disturbance based on the
distribution scheme of monitoring sensors and the search for the direction of disturbance is
presented. The first step is to construct a graph that represents the topology of its incident
matrix to have a network matrix (impedance or support matrix). Next is the generation of
the coverage matrix that indicates the relationship between the location of the measurement
device and the line. The following task is the representation of the direction matrix, which
can be obtained by different methods: energy flow method, power harmonic flow method,
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etc. Finally, by multiplying the coverage matrix by the direction matrix, it is possible to
identify the likely locations of the disturbance. A distance calculation algorithm is used to
obtain better accuracy.

In [59], the coverage matrix defined in [58] is improved by calculating vectors through
the relationship between the absolute value of the final disturbance energy and the absolute
value of the disturbance energy peak. Vector coefficients allow to observe which line is
most likely to be the source of the disturbance.

In [60], an improvement of the disturbances diagnosis by modifying the coverage ma-
trix is proposed.This article locates the disturbing source by decomposing the disturbance
signal using the Wavelet Transform and extracting transient signals from the disturbance
power and stationary state, respectively. It uses two localization algorithms depending on
the characteristics of the disturbance. In addition, it proposes the use of evidence theory to
process information that comes from different sources and thus improve accuracy.

In [61], there is also a model proposing the use of the power disturbance direction
and the disturbance energy as a locator. In this case, the direction is obtained with an
orthogonal Wavelet transformation to obtain the high-frequency energy. The disturbance
direction information at each monitoring point is then used as input to a Bayesian network
system to locate the source.

3.1.3. Other Alternative Methods

In [62], the model proposed is more focused on low-voltage public networks. This
model is based on the correlation between the trend of supply quality parameters in a
low-voltage network and the characteristics of consumption connected to the MV/LV
transformation center. In [63], the authors intended to identify both the disturbance cause
and the cause through measures of tension and current.In the first step, a causal and
anticausal segmentation of the voltage registers of different monitoring points is performed
to find the transition segments. Disturbances are then preclassified based on the number
of transition segments. With a Kalman filter, a gross estimate of the location is obtained
that is fine-tuned through the information obtained through the phase angles of the current
before and after the disturbance, with the initial angles of the fundamental and subsequent
harmonics, etc.

3.2. Harmonics Localization Methods

In the case of harmonic locations, the methods are mainly divided in two categories;
one based on the equivalent circuit model and the other based on the harmonic state
estimation.

3.2.1. Methods Based on Equivalent Circuit Model

There are authors who perform a location of the customer or generator that produces
harmonics in the network using the theory of linear electrical circuits applying super-
position [64–66]. In [67], the superposition method described in the previous articles is
improved to obtain results without the need to know perfectly the equivalent impedances
of the system and customers. This article bases the selection of the responsibilities on the
the complex value of the harmonic currents generated by the supplier and the costumer. It
uses a tuned filter, a dominant impedance, in the coupling point between the source and
the load that provides the proportions of responsibilities.

In [68], a method which measures the voltage at two arbitrary points of the circuit
and obtains the stress ratio is used. This method is based on the relationship between the
voltage of two nodes in a system which have a constant value defined only by the source of
disturbances.

A method of dividing responsibilities based on the total distortion impedances is
presented in [69]. The first step in the method is to apply the waveform correlation
coefficient method to identify the harmonics of the circuits. The second step is to establish
the equivalent model of the multiple harmonic sources identified based on the equivalent
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circuit. The third step is the calculation of the harmonic impedance by linear regression
method. Finally, the estimation result of the regression equation with a higher fitting degree
is selected as the total harmonic impedance. The estimation accuracy can be improved if
the type of the disturbance is identified, and then the harmonic responsibility is obtained.
This method is compared with the method of estimating harmonic responsibility directly
based on Fourier, and the proposed method is more accurate.

3.2.2. Methods Based on Harmonic State Estimation

In [70], the authors propose a method based on the IEEE Std 1459-2010 [71], where
the harmonic distortion power is defined. Through the decomposition of the voltage and
current into fundamental and harmonic components, the distortion power is obtained.
This index can only identify the load condition, but it is difficult to locate the responsible
harmonics between the utility and the customer. The information of the grid is used to
obtain a threshold value to determine if the main harmonics source is the utility or the
customer. The threshold value is defined as the squared value of the background voltage
THD. If the harmonic distortion is larger than the threshold, the harmonic distortion is on
the customer side, otherwise it is on the utility side.

In [72], a software (HARM TRACER) is developed to identify the source and type of
harmonics in a radial distribution network based on harmonic measurements at a given
location on the network. This program is based on the direction harmonics flow in the
network relative to the measurement points.

In [73], as in [72], a method based on power harmonic flow direction is developed. In
this case, the Fourier series decomposition is used to identify the magnitude and phase of
the harmonic components. The differences between each angle of the voltage harmonics
and the current harmonics are identified, with differences ranging between 270◦ and 360◦

and 0◦ and 90◦ considered as the positive direction of the current.
In [74], two harmonic localization methods are compared: the harmonic power flow

direction method and the harmonic voltage and harmonic current correlation analysis
method. This paper concludes that, for the events analyzed, the harmonic power flow
direction method is more reliable.

In [75], a novel method is proposed to use less prior information. This method is the
result of the combination of the Complex Independent Component Analysis (CICA), which
is an advanced signal processing method designed to separate mutually independent com-
ponents and sparse component analysis. This article concludes that this method improves
the accuracy of the harmonic source location without the need of precise knowledge of
the system impedances. In practical application, this method requires many measurement
nodes and the knowledge of the number of harmonic sources to achieve good accuracy. For
this reason, a new blind source separation approach based on Sparse Component Analysis
is developed in [76]. The harmonic voltage is used as the input of the Sparse Component
Analysis to separate the harmonic current and the conditional entropy. The harmonic
current and the system node are calculated.The node with the minimum condition entropy
is the location of the harmonic source.

In [77], the authors propose a method based on the variation of the power system
resistance and transformer resistance by changing the transformation ratio in substations,
taking into account that the voltage total harmonic distortion depends on the transformation
ratio. The procedure calculates the derivative of the voltage total harmonic distortion with
respect to the transformation ratio. If the derivative increases, the influence by the source
of distortion on the load side increases, and if the derivative decreases, the influence by the
source of distortion on the supply’s main side increases.

Other methods include the state estimation technique for identifying the spectrum of
the injection bus current combined with least squares to locate the harmonic source [78].
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3.3. Methods of Voltage Sag and Capacity Switching Localization
3.3.1. General Methods to Locate Voltage Sag and Capacity Switching

A common method for identifying the voltage sag’s source in a system is based on the
direction of disturbance through power and disturbing energy. In [79], a joint analysis of the
voltage sag source identification and capacity switching is conducted. This paper uses the
voltage and current waveforms in the monitoring elements to calculate the instantaneous
power. The difference between three-phase instantaneous power during the event and
three-phase instantaneous power in the stationary state is called disturbing power. This
disturbance power analyzes the existence of a voltage sag or switching of capacities. The
disturbance energy is then calculated taking into account that changes in power and
disturbance energy indicate the direction of the sag’s source and capacity switching.

In [80], the flow direction method posed in [79] is used, but more specific rules for
capacity switching are defined. In this case, the net change in the disturbance energy
(the relationship between the maximum negative disturbance energy and the change in
the disturbance energy), the polarity of the initial peak of the disturbance power and the
polarity of the maximum peak of the disturbance power are analyzed.

Another method proposed in the technical literature is based on the relationship
between the magnitude of the voltage and the power factor versus the magnitude of the
current. This relationship is different depending on the location of the voltage sag sources.
In the case of [81], it is raised only for sags.

In [81], the origin of a voltage sag is obtained through the estimation of the equivalent
impedance of the nondisruptive side using the changes in voltage and current caused by
the disturbance. The sign of the equivalent impedance’s actual part can reveal where the
voltage sag occurred.

In [82], a method based on the analysis of energy and a method base on the impedance
variation during the disturbance are compared, and the advantages and disadvantages of
each method are presented.

In the case of [83], a clustering algorithm combined with decision rule is used to point
out the region that aggregates the place of origin. In this case, the clustering algorithm
analyzes the voltage signal and separates into clusters. Then, the Partial Decision Tree
algorithm defines the decision rule set to be compared with the characteristics of each
cluster.

In [84], a combination of the Adaboost algorithm and Neural Networks is used as a
base classifier to determine the zone where the voltage sag starts.

3.3.2. Power System Fault Location Algorithms

One of the most important sources of voltage gaps are the faults on the electrical
lines of the power system. For electricity distribution companies, the fault location is
essential to improve the supply quality. Fault location algorithms enable the isolation
and power restoration from the grid with the objective of developing a fully automatic
self-healing system. There are a multitude of methods used for fault location, but so far
no single method has been developed that is fully reliable, cost-effective and universally
used. Depending on the type of fault and the type of network in which the detection is
performed, the proposed algorithm will be more effective.

The are several methods for fault location using impedance-based methods. In [85],
a traditional impedance-based fault location method is used. The line reactance after the
occurrence of a fault is calculated and compared with the line reactance measured before
the fault occurs, so that the distance to the fault can be estimated. In [86], variations to
the traditional impedance-based method are made by making assumptions on the fault
resistance and the load current distribution along the feeder. The results show that the
method is limited to low-impedance faults and is not widely applied in practice. In [87],
the analysis is based on the symmetrical component theory. In this method, the total feeder
load is modeled as an equivalent load tap located at a certain distance from the substation
where the voltage gap due to a ground fault is maximum.
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More advanced methods include the fault location using traveling waves. This method
is based on the transient voltages and currents, called traveling waves (pulses), which are
generated at the fault location and propagate from that point in both directions towards the
line terminals. Because a current or voltage wave travels at the speed of light, it is possible
to estimate the distance to the fault point by measuring arrival times of the wave and its
reflection. In [88,89], an air-mode reflected pulse is used. This method can locate quite high
fault resistances. However, it requires a complicated system and no field tests have been
performed to verify the method. A different method is presented in [90], which is based on
injecting a continuous series of high-frequency pulses into the distribution network and
recording the response in order to build a snapshot of the system behavior under prefault
conditions. Once a fault is detected, the same procedure is performed. Due to the fault,
this time the response will be different. Considering the propagation speed of the pulse
through the line, the distance to the fault is calculated based on the time difference between
the moments when the pulse is injected and when the two responses are separated.

Artificial intelligence methods are also used for fault location. In [91], fault location is
obtained by training an adaptive neuro-noise inference system (ANFIS). The inputs to the
system are obtained by analyzing the waveform of a current measured at the substation.
In [92], a learning algorithm for the classification of multivariate data analysis (LAMDA)
is developed for fault location. Other approaches use Wavelet Transform to decompose
transients. These components contain information to locate the fault. This information is
used to train a fuzzy neural system in [93,94] and an artificial neural network in [95] to
locate the faults occurring in the network.

With the recent development and installation of intelligent elements for reading and
communication along the electrical system, a greater number of fault location methods
have been developed.

In [96–98], several methods based on monitoring smart meters implemented along
the feeder in the low-voltage grid areas are proposed. Despite the large number of these
devices implemented along the low-voltage grid, these types of methods are yet to be
verified in the field and are methods that need further development to be considered.

In the case of isolated neural and compensated networks, the fault’s location is more
complex due to the small fault currents produced. In [99], three methods based on the
measurement of the current negative sequence component are presented. One of the
methods is based on measuring the changes in the symmetrical components of the currents
during a fault condition. Under fault conditions, the negative sequence current is quite
significant with small variations from the feeder substation to the fault location, while it is
negligible after the fault point. This forms the basis of the method. However, the evaluation
of the method presented in this paper is based on simulations only. Furthermore, it does
not provide sufficient information on the negative sequence component behind the fault
point.

3.4. Methods for Localizing Unbalances

In the event that disturbances are caused by offsets in waveforms or unbalances of
voltage and current, there are also several methods for locating the disturbance sources.

In [49], the method of disturbances interaction focused on offset unbalances and
wave distortion is discussed. In this case, the sign of the active power negative sequence
measured at the common coupling point is used. If the sign is positive, it indicates that the
dominant asymmetry source is located on the power side, if negative it indicates that it is
on the client side.

In [100], a systematic theoretical approach is used to study voltage unbalance. This
unbalance is detected through asymmetry in lines and loads on interconnected networks.
A new term called a voltage unbalance emission vector is defined to determine the overall
influence produced by an asymmetric line or load on an unbalance. This identifies sources
that are dominant in the production of unbalances.
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3.5. Summary of Methods for the Disturbing Source Location

A summary of the different methods explained above is presented in Table 4. Figure 4
represents the level of performance in the y-axis versus the level of complexity in the x-axis
versus the level of development of the purpose techniques, which is represented by the size
of the markers. In the same way as in the methods for the identification of the disturbing
cause types, the evaluation of the performance, complexity and development of each
technique is obtained through a decision matrix. In this matrix, the level of performance
is weighted based on the results and conclusions obtained in each reference, the level of
complexity is weighted based on the complexity of the mathematical developments and the
processing costs associated with each reference and the level of development is weighted
based on the scope of the results, the number of references for each technique and the
applications of each technique. The assessment of the application of each technique is
not only made for the purpose of the paper but also for similar applications. The scope
of the results is evaluated with three stages; theoretical development, simulation applied
development and field applied development. In Table 5, the normalized weights from 0 to
1 for each method is showed. All this criteria is summarized in Figure 4.

Figure 4. Performance vs. complexity vs. development of the proposed techniques for disturbance
locations.
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Table 4. Summary of methods for the disturbing sources location.

Type of
Disturbances

General Method Combinations Input
Variables

Advantages Disadvantages

All kind of
disturbances

Interaction Disturbances Methods

- FBD theory + Orthogonal decomposition of current

(based on DIN-40110-1 and DIN-40110-2) [49]

Current

The method helps

the user to asses the contribution of each

circuit to the power quality problem.

- The complexity of the method is high.

- The interpretation of the results have a

degree of subjectivity.

- The waveform of the current is not

a typical value measured in the medium

and low-voltage systems.

-The method does not precisely locate

the disturbances’ origin.

- Causality assessment based on epidemiological

criteria (IEC-61000-4-30) [52]

- Critical Impedance Method [9,54]

- Multipoint method [9]

- Measures-based index [9,55]

- Harmonic Pollution method + DIN-40110 indicator

+ IEEE 1459 indicators [9,56]

- Statistical analysis [57]

Direction of disturbance:

- Disturbance Power

- Disturbance Energy Flow Method

- Disturbance Power Harmonic Flow Method

- Systematic algorithm based on scheme of monitoring

sensors [58]

- Wavelet signal decomposition + evidence theory [60]

- Bayesian network [61]

Current

- This method allows to locate the origin

of the disturbance with higher accuracy

than previous ones.

- In [58], good accuracy needs a complete deployment

of PQ sensors along the network.

- The location of the PQ sensors has a

great influence on the results.

- The inverse flow of current due to distributed

generation can affect to the accuracy of the method.

Correlation with characteristic values [62] Current and

voltage
- Simple method. - This method is very theoretical and the accuracy

decreases with the complexity of the real network.

Causal and anticausal segmentation of

voltage [63]
- Kalman filter [63]

Current and

voltage

- This method combines the identification

of the cause and the location of the origin.

- Simple method.

- It is not suitable for systems with distributed

generation. The part of classification and feature

selection needs improvement.

Harmonics

Equivalent circuit model

- Superposition [64–67]

- Nodes Ratio Voltage [68]

- Total Distortion Impedances [69]

Current and

voltage
-Simple methods.

- Necessity of storing a large volume of information

for cases with more than three disturbing sources.

- In nonlinear circuits, the disturbance should be

small compared with the operating mode of the device.

- If the origin of disturbance is located symmetrically

regarding test nodes, then it is impossible to locate

this source.

Harmonic State Estimation

- Harmonic Power Flow [70,72–74]

- CICA [75]

- Sparse Component Analysis [76]

- Variation of power system and

transformer resistances [77]

- Least Squares [78]

Current and

voltage

- These methods allow to locate the origin

of the disturbance with higher accuracy

than the previous ones.

- The location of the PQ sensors has a

great influence on the results.

- The inverse flow of current due to distributed

generation can affect to the accuracy of the methods.
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Table 4. Cont.

Type of
Disturbances

General Method Combinations Input
Variables

Advantages Disadvantages

Voltage sag
and capacity

switching

Direction of disturbance:

- Disturbance Power [79]

- Disturbance Energy Flow Method [79]

- Disturbance Power Harmonic Flow Method

- Net change in disturbance energy + polarity of

the initial peak of disturbance power + polarity

of the maximum peak of disturbance power [80]

Current and

voltage

- This method locates the origin of the

disturbance with high accuracy.

- The location of the PQ sensors has a

great influence on the results.

- The inverse flow of current due to distributed

generation can affect the accuracy of the methods.

Relationship between voltage and the power

factor with current [81]

Current and

voltage
- Simple method.

- This method is not tested in a practical way.

- This method does not locate the origin of the

disturbance, it just decides which part of the network it is in.

Equivalent impedance variation [82]
Current and

voltage
- Simple method.

- This method is not tested in a practical way.

- This method does not locate the origin of the

disturbance, it just decides which part of the network it is in.

- If distributed generation exists, the method is not valid.

Clustering algorithm - Decision rule [83] Current and

voltage

- This method identifies the location of the

smallest region of voltage sag disturbance.

- The location and number of PQ sensors has a

great influence on the results.

Adaboost algorithm - Neural Networks [84]
Current and

voltage

- This method identifies the location of the

region of voltage sag disturbance with an

appropriate accuracy.

- Existing data is needed to train the Neural Networks.

- The location and number of PQ sensors has a

great influence on the results.

- It is only tested for one source of disturbance.

Impedance-based methods [85–87] Current - The method is simple.

- It is not widely applied in practice.

- It is limited for low-impedance faults.

- The accuracy is lower than other methods.

Traveling waves [88–90]
Current and

voltage
- The accuracy is high.

- The method is complex.

- The integration of a new device in the network is needed.

- The accuracy is very dependent on the type of the network

and the type of fault.

Artificial intelligence

- ANFIS [91]

- LAMDA [92]

- Fuzzy neural system [93,95]

- Neural Networks [94]

Current and

voltage
- High accuracy in the fault location.

- These methods are complex.

- Existing data is needed to train algorithms.

Smart meter monitoring [96–98]
Current and

voltage

- Devices widely installed.

- The inversion in

additional devices is not needed.

- These methods are not tested in the field.
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Table 4. Cont.

Type of
Disturbances

General Method Combinations Input
Variables

Advantages Disadvantages

Negative sequence components [99]
Current and

voltage

- Simple method.

- The inversion in

additional devices is not needed.

- This method is not tested in the field.

Unbalances
Interaction Disturbance Methods

- Focused on offset unbalances and wave

distortion [49]

Current and

voltage

- The method helps

the user to assess the contribution of each

circuit to the power quality problem.

- The complexity of the method is high.

- The interpretation of the results have a

degree of subjectivity.

- The method does not accurately locate

the disturbance’s origin.

Voltage unbalance emission vector [100] Voltage - The method allows to identify the level of

contribution made by individual sources.

- The complex part of the method is the interpretation of the

results.



Sustainability 2022, 14, 7428 23 of 27

Table 5. Normalized weights for each method.

Complexity Performance Development

Direction of Disturbance 0.71 1.00 1.00

Interaction Disturbance Methods 1.00 0.50 0.50

Correlation with Characteristic Values 0.00 0.00 0.00

Causal and Anticausal Methods 0.14 0.00 0.00

Equivalent Circuit 0.29 0.50 0.50

Harmonic State Estimation 1.00 1.00 1.00

Relationship between Voltage and Power Factor 0.29 0.00 0.00

Equivalent Impedance Variation 0.14 0.17 0.17

Cluttering 0.43 0.17 0.17

Adaboost 0.71 0.17 0.17

Voltage Unbalance Emission Vector 0.57 0.33 0.33

Random Forest 0.83 1.00 0.89

Support Vector Machine 1.00 0.71 0.67

4. Discussion

The complexity of the power system encourages electrical companies to keep the
power quality at appropriate levels. In this paper. multiple methods to identify disturbance
types and locate their origin were presented.

In the case of the identification of disturbance types, the most common methods
are based on the signal processing through mathematical transforms (Wavelet—nine ref-
erences, Hilbert Transform—six references and S-transform—four references) and the
feature selection and classification of the disturbances through machine learning (Neu-
ral Networks—three references, Genetic Algorithms—three references and Neuro-Fuzzy
systems—three references). The combination of these types of methods allows obtaining
good levels of accuracy in the disturbance identification cause when the power systems
signals are monitored with high sample rates. In high-voltage systems, the monitoring is
very widespread, but in distributed or low-voltage systems there is a lack of monitoring
systems to acquire a signal with a high sample rate.

In the case of the disturbing source’s location, the most common methods are based
on Interaction Disturbances Methods with eight references and Direction of Disturbance
methods with six references.There are two main problems associated with the method
for the location of the disturbance. Firstly, the same disadvantage as that in the case of
the disturbance type identification, the sample rates of the electrical signals, although in
the Direction of Disturbance methods the suitable sample rate is not as high as in the
identification of the disturbance type. Secondly, the difficulty to locate the disturbance’s
origin when there is more than one disturbing origin. This last problem is the most
important entry barrier to develop this type of method in an electrical power system.
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