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Abstract: Land use conversion is the main cause for soil degradation, influencing the sustainability of
agricultural activities in the Ecuadorian Andean region. The possibility to identify the quality based
on the spectral properties allows remote sensing methods to offer an alternative form of monitoring
the environment. This study used laboratory spectroscopy and multi-spectral images (Sentinel 2)
with environmental covariates (physicochemical parameters) to find an affordable method that can
be used to present spatial prediction models as a tool for the evaluation of the quality of Andean soils.
The models were developed using statistical techniques of logistic regression and linear discriminant
analysis to generate an index based on soil order and three indexes based on the combination of
soil order and land use. This combined approach offers an effective method, relative to traditional
laboratory methods, to derive estimates of the content and composition of soil constituents, such as
electrical conductivity (CE), organic matter (OM), pH, and soil moisture (HU). For Mollisol index.3
with Páramo land use, a value of organic matter (OM) ≥8.6% was obtained, whereas for Mollisol
index.4 with Shrub land use, OM was ≥6.1%. These results reveal good predictive (estimation)
capabilities for these soil order–land use groups. This provides a new way to monitor soil quality
using remote sensing techniques, opening promising prospects for operational applications in land
use planning.

Keywords: remote sensing; soil quality; soil properties; indices; Andean region

1. Introduction

Soil is the main natural resource for food and energy production [1]. It controls the
movement of water in the landscape and functions as a biological filter for the possible
leaching of pollutants into environmental spheres [2]. However, soil can be degraded by
chemical and physical processes, which reduces its ability to function as a base for the
development of a healthy layer for vegetation. Therefore, acknowledging soil conditions
by the effects on vegetation can represent site conditions [3,4].

Gholizadeh and Kopačková (2019) [1] considered that conventional methods of soil
health evaluation in large areas involve several expensive and time-consuming variables
such as collection of field data, chemical analysis in a laboratory, and geostatistical interpo-
lation. Alternately, several studies have shown the possibility of characterizing soils and
identifying their quality by correlating both physicochemical and spectral parameters [5].
Therefore, the use of remote sensing spectrometry products in environmental evaluation
studies offers a complementary alternative to in situ monitoring procedures to aid in re-
search, control, and monitoring of the soil component. The application field for these
tools in the soil component is extensive [6] through the study of soil characteristics such
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as reflectance, degradation, and possible polluting agents with the processing of satellite
images permitting the inspection and monitoring of large areas in a fixed time and place [7].

In Ecuador, the properties and pedogenetic processes of soil have been studied in
terms of rock type, geomorphology, taxonomic classification, and soil order. An increasing
breach between the available information on the main soils and their quality [8] leads
to understanding the condition of the soil to allow for the planification of healthy and
sustainable territories, as determined by goals 12 and 15 of the Sustainable Development
Goals (SDG) [9]. These goals correspond to responsible consumption and production, and
life on land. Therefore, it is necessary to determine the quality of soil to develop fast,
feasible, and affordable estimation methods for monitoring and assessing areas.

In the study area, the predominate soils are Andisol and Mollisol, which originate from
weathering of volcanic material (ash) [10]. These relatively young soils can convey high
agricultural potential [11]. Andisols, also known as páramos, are clay loam soils capable
of retaining enormous amounts of water; on the contrary, Mollisols are fertile soils with
a high organic matter content that cover approximately 70% of the Cayambe canton, a
political–administrative unit of Ecuador, where the research’s basin is located. However, the
lack of land use and occupation policies has caused the expansion of agricultural activity
boundaries [12], causing the loss of the páramo. The main goal is to understand whether
there is any relationship between the spectra measured in the samples collected in field
with the corresponding bands measured by satellite, combining physicochemical analysis
to quantify and model the quality of Andean soils caused by agricultural activity. This will
be achieved by (i) compiling and analyzing the physicochemical parameters of soil based
on quality standards for agricultural activities, obtaining indices that classify the soils based
on their order (Andisol and Mollisol) and use, and (ii) determining whether the soil is asso-
ciated with some of the physicochemical qualities considered, validating land use and order
models based on field reflectance data, satellite reflectance, and physicochemical qualities.

There are several studies based on national models capable of predicting spectra
limited in an infrared laboratory with statistical algorithm analysis [13,14]. In this research,
with the use of these spectroscopic methods for the evaluation of soil quality, models
were developed for estimating indicators based on the combination of soil order, land use,
and physicochemical characteristics, using logistic regression analysis, linear discriminant
analysis, and regression trees. The approach offers a method that derives the estimates
using the ratio of laboratory/satellite spectra when the soil is well represented by the
calibration samples used to build the predictive models [13]. Therefore, the performance of
these local models can be used in other geographic spaces by incorporating the spectra into
a dataset for that area [15].

Consequently, the combination of laboratory spectroscopy and multispectral images
with environmental covariates is an adequate methodological alternative to obtain models
that are adjusted for the prediction of the quality of Andean soils, independently of other
methodological approaches that have been used [16–19].

2. Materials and Methods
2.1. Study Area

This study was done at Río Blanco basin, located in the Cayambe canton, Pichincha
province, Ecuador (Figure 1), where agricultural activities are mainly related to the dairy–
floricultural corridor via the cultivation of exportation products, such as roses and summer
flowers (17.32 km2), livestock for milk production (399.201 km2), and, in smaller quantities,
agricultural activity, especially high Andean crops (10.984 km2) [12]. Unfortunately, in
Río Blanco basin, no studies have been aimed towards soil quality. The few studies
available are related to land use and occupation, risks associated with the presence of the
Cayambe volcano, agriculture [20], soil rehabilitation with Cangahua [21], and watershed
management [22].
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Figure 1. Geographical location of the study area and location of the soil sampling points
(Google Maps).

The existing black and brown soils in the basin can retain high amounts of water and
organic matter content, known as Mollisol and Andisol [10]. The soils have been influenced
by the volcanic activity of the Cayambe during its genesis, causing slopes ranging from
gentle to steep [7]. Vegetation coverage is characterized by the presence of cultivated grass
(27%), herbaceous and shrubby moorland (45.6%), flowers and short-cycle crops (16.5%),
and eucalyptus trees (8.1%) [10].

2.2. Sentinel-2 Satellite Images

The satellite imagery used for this research was acquired by the Sentinel-2 (S2) satellite
constellation (2A and 2B Earth Observing Missions) launched in 2015 and 2016, which has
been used extensively for monitoring land cover and vegetation [23,24]. The S2 satellites
are identical and operate in a sun-synchronous orbit at a mean altitude of 786 km. The main
S2 payload is a multi-spectral instrument (MSI), which is a push-broom sensor that registers
the radiation reflected from the Earth passing through the atmosphere in 13 spectral bands
distributed in four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial
resolution. Figure 2 depicts the range and spectral response functions of the S2A/S2B MSI
instruments for these bands [25]. The S2 satellites have a swath width of 290 km. The
visible bands (VIS) B1, B2, B3, B4 at 10 m resolution; near-infrared bands (NIR) B5, B6, B7,
B8A at 20 m resolution and B8 at 10 m; and shortwave infrared (SWIR) B11 and B12 are
most useful for retrieving geophysical surface parameters [26].

Meanwhile, the 60 m resolution bands are used for atmospheric corrections, which
are of crucial importance for most EOS applications and permit the development and
evaluation of robust atmospheric correction algorithms such as Sen2Cor. In the study area,
located inside a swath overlap, the revisit frequency of each satellite is four to five days
in an 11◦ forward-looking view angle; the presence of two identical satellites allows a
geometric revisit time between two and three days, supporting near-continuous monitoring
of vegetation and land surface processes [26].

The imagery used in this research was acquired on 16 July 2018 by the Sentinel
2B platform (see Supplementary Materials). The Level-2A product was used after the



Sustainability 2022, 14, 7426 4 of 28

processing carried out in the Level-1C product available in the Open Access Hub of the
European Space Agency (ESA) DataHUB server [27]. The identifier of the product is
referenced as S2B_MSIL1C_20180716T153619_N0206_R068_T17NRA_20180716T202613.
Furthermore, in the text, it will be referred to as S2BL2A.
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2.3. Soil Sampling

Soil samples were collected during four field trips during the months of June, July, and
August 2018. The samples were placed in hermetically sealed sleeves for physicochemical
analysis (Figure 3a,b), and in two bulk density cylinders (Figure 3c) for spectroradiometry
analysis. The cylinder lids were covered with geomembranes to keep the samples unal-
tered, as explained by Yánez and Arciniegas (2019) [7], to comply with the provisions of
Section 2.5.
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A total of 36 surface soil samples (0–10 cm) were collected from the study site using
core drilling, cylinders, a stainless-steel shovel, and a GARMIN GPSMAP 62sc handheld
navigator (accurate to within ±4 m). After removing vegetation from the soil surface in
a quadrant of approximately 30 × 30 cm, 1 kg of soil sample was collected from each
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sampling point. The number of samples was calculated by the type of composite sample
according to Ecuadorian environmental standards (Book VI, Annex2) [29], establishing two
samples per homogeneous zone, and one sample for zones ID02 and ID08, which presented
collection problems.

2.4. Physicochemical Parameter Measurements

To determine the quality of soil, the physical, chemical, and biological components
of the soil and their interactions must be considered; despite the different measurements
possible, not all parameters are relevant for the soil in a particular scenario [30]. In this
study, the physicochemical components were selected considering two criteria: The first
was based on the reflectivity of the soils that are conditioned to organic matter, that interfere
with the spectral curves [31], and the second according to Friedman et al. 2001 [32], who
set a minimum number of indicators for agricultural activities, due to human use and
management. The parameters measured were soil moisture, pH, electrical conductivity
(CE), and organic matter (OM). Other parameters, such as heavy metals, could not be
measured for economic reasons.

For the 36 soil samples, the analysis was carried out as follows: For soil moisture,
pH, and conductivity, the methods established in NOM-021-RECNAT-2000 (Mexican offi-
cial standard that establishes the specifications of fertility, salinity, and soil classification)
were used [33]. The AS-05 gravimetric method was applied to soil moisture, the AS-02
electrometric method was applied to pH, and the AS-20 method was applied to electrical
measure conductivity.

For the determination of OM, the soil samples were sent to the certified soil, foliar,
and water laboratory of the Agency for the Regulation and Control of Phytosanitary and
Zoosanitary (Agrocalidad) of Ecuador, where the volumetric PEE/SFA 09 method (Walkley
Black’s analytical method consisting of wet oxidation of the soil sample) was applied [34].

2.5. Spectral Measurements in Laboratory and Satellite Image Sentinel-2

Spectral analysis of the soil samples was carried out in the Ecuadorian Space Institute
(IEE) laboratory, which facilitated the use of the ASD FieldSpec4 spectroradiometer (Ana-
lytical Spectral Devices). The equipment has a spectral resolution of 3 nm in the range of
350–1000 nm and 10 nm in the range of 1001–2500 nm. In this regard, the spectral bands of
the MSI sensor onboard satellite S2 are within the spectral range of the ASD instrument.

In the laboratory, the soil spectra were collected using a small spectralon placed in
the HiBrite MudLight device with an optical fiber connected to generate an artificial light
source (Figure 4). The ASD FieldSpec4 spectroradiometer was used to obtain soil spectral
data in the laboratory. The measurement protocol followed the methodology described in
Figure 5 [35].
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After the common configuration and control settings, i.e., output folders, connecting
optical fiber, etc., the appropriate integration time was set given the lighting conditions to
optimize the measurements. Subsequently, the dark current was also recorded. Then, a
reference target or white reference (spectralon) was measured until a horizontal line with
a reflectance value of 1 was presented. Laboratory soil spectra measurements followed
these pre-operation phases, and the resulting measured spectra were processed with
the corresponding software (ViewSpec Pro). An important issue that also needed to be
addressed was that of the signal-to-noise ratio, or SNR, during measurements, which is
related to the signal component. The spectra measurement procedure was performed using
the principle of a continuous fiber optic cable, as specified in [36]. This technique has the
advantage of significantly degrading the SNR, as it avoids interactions with other media
between the recording device and the sample. Soil measurements were carried out by
controlling the direction of the optical fiber to always point towards the target in order to
avoid anisotropy effects. Subsequently, an average of all measurements was made to obtain
the spectrum. Finally, the displays of the spectra that were selected were shown.

The S2BL2A product specified in 2.2 was used for the satellite image, with bottom-
of-atmosphere (BOA) reflectance, in which only the bands matching the S2 product were
considered. The centroid of each pixel was determined to obtain the spectral values per
band on a 20 × 20 m grid.

These laboratory spectroradiometry measurements and satellite images were used to
establish indices (the table in Section 2.8.1) that compare the physicochemical parameters
of the soil with the spectral bands of the S2-MSI sensor. Since it was agreed to only
use the equipment supplied in the Laboratory of the Ecuadorian Space Institute, in-field
spectroradiometry measurements were not possible. The measurements of the spectra
were carried out only in the laboratory, as in [37–39], generating a different model to those
already known to evaluate soil quality [40,41].

2.6. Land Use/Soil Order Dataset

Before the processing specified in Section 2.8, a dataset was built based on the in-field
soil samples (spectra and physicochemical parameters) and reflectance per homogeneous
area in the S2BL2A satellite image. These data consisted 345,408 observations as a product
of the combination of two datasets and constituted the geographic population of the area
under study. The data were then treated based on the combination of the variables “land
order” and “land use”, whose total set of observations was as follows (Table 1). The
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combinations shown in Table 1 allowed different models to be established based on soil
order and land use.

Table 1. Soil samples classified according to the order of the soil and by land use.

Land Use
Order of the Soil

Total
Andisol Mollisol

Agricultural 0 4284 4284
Shrub 968 13,496 14,464
Forest 40 18,476 18,516

Páramo * 188,760 38,072 226,832
Pasture 9892 71,420 81,312

Total 199,660 145,748 345,408
* A páramo is a fragile neotropical high mountain ecosystem. In Ecuador it has an average height of 3300 m above
sea level.

Model 1 was established from the dataset by applying a simple random method of 5%
of the population to compare what was provided by each sample until one dataset was left
as a result of the information provided between one model and another being the same.
The data were divided into training and testing groups. The training dataset consisted of
70% of the total number of observations in the sample, and the test dataset consisted of
30% of the total number of observations in the sample. With the dataset the model was
elaborated and later executed.

Model 2 was developed from the dataset by selecting those corresponding to the
Andisol soil order (Table 1), with 199,660 observations. Three categories were selected:
Shrub, Páramo, and Pasture, leaving Forest out of the analysis due to its low frequency.
Composite samples of 70% of each land use category were randomly selected, thus leaving
a composite sample of 139,734 random observations, which were part of the training dataset.
Therefore, the test dataset contained the remaining 30% of the 59,886 observations.

For the Mollisol order, considering the data’s trend, based on the geographical distri-
bution of the different land uses (Figure 6), it was observed that some of the soils had a
particular use owing to their nature and population growth, among other characteristics of
the area.
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The dataset corresponding to the Mollisol soil order (Table 1), with 145,748 observa-
tions, was considered to form Model 3 from a stratified random sample of 70% of the total.
This allowed us to consider two subsets based on land use, resulting in two more models.
The first subset (Model 3), called “Mollisol 1”, was made up of Forest, Páramo, and Pasture;
the second subset (Model 4), “Mollisol 2”, was composed of Agriculture and Shrub. Each
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training dataset represented a 70% stratified random sample based on the categories of
Mollisol 1 (Table 2) and Mollisol 2 (Table 3). Consequently, the test dataset included the
remaining 30% of the data. For Mollisol 1 it was 38,391, and for Mollisol 2, 5335.

Table 2. Training sample to obtain the discriminant function in the classification of land use of the
Mollisol 1 order.

Land Use Forest Páramo Pasture Total

Samples 12,933 26,650 49,994 89,577
Ratio 0.1444 0.2975 0.5581 1.00

Table 3. Training sample to obtain the discriminant function in the classification of land use of the
Mollisol 2 order.

Land Use Agriculture Shrub Total

Samples 2998 9447 12,445
Ratio 0.2409 0.7591 1.00

2.7. Homogeneous Zones

The area of the Rio Blanco basin was extracted from the hydrological database of
the Cayambe canton. Land use was extracted from the national productive systems
database [10], and slope data and soil order data were obtained from a geopedology
base map [10]. The multi-criteria technique was applied to create homogeneous zones [7]
considering the following criteria: soil order and land use. This made it possible to es-
tablish a spatial analysis unit for correlation evaluation tests, determining the number of
samples to be taken in the field. In total, within the Rio Blanco basin, 31 zones with similar
characteristics were identified in previous work [7], of which 19 were analyzed for easy
access in the study area (Figure 7).

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 29 
 

 
Figure 7. Homogeneous areas analyzed in the study. 

Using the physicochemical laboratory analysis results, the Thiessen polygons were 
calculated in each homogeneous zone from the soil-sampling points. Likewise, the topol-
ogy of spatial relations (intersection and inside) was applied [42] with the spectral values 
per satellite band to identify the spatial relationship of the satellite spectral values con-
cerning the physicochemical characteristics of each homogeneous zone [43]. 

The Mexican (NOM-021-RECNAT-2000) [33] and Ecuadorian (Book VI, Annex 2) en-
vironmental standards [29] were also considered to establish homogeneous areas as a unit 
of spatial analysis. This allowed sampling points to be defined based on the criteria of 
slope, soil order, and land use, resulting in 19 homogeneous areas (Figure 7). 

2.8. Regression and Spatial Analysis 
To identify the relationship between the spectral behavior of soil in the laboratory 

and satellite images associated with the physicochemical qualities of soils, we proceeded 
to apply regression techniques based on the theory of machine learning, which makes 
them useful for predicting outcomes, identifying patterns, and making decisions with 
minimal human intervention [44]. Subsequently, discriminant analysis techniques, geo-
statistics, and non-parametric models (regression trees) were applied. 

This study started by creating a logistic regression model (Figure 8) with the depend-
ent variable “soil order” (Andisol, Mollisol), and as explanatory variables, the reflectance 
levels of the spectral behavior of soil in laboratory and satellite images, called Model 1, to 
later select those variables that were statistically significant, from which this model gen-
erated the soil index required (Table 4). The basic form of the logistic regression model is 
as follows (Equation (1)) [45]: 

logit (yy) = βo + β1x1 + β2x2 + ⋯ + βixi (1)

where 
y: soil order dependent variables Andisol and Mollisol; 
xi: independent variables (predictors): wavelengths of the spectroradiometer convoluted 
by the spectral response of soils in the laboratory (B04c, B05c, B06c, B07c, B08c, B08Ac) 
and bands corresponding to the MSI sensor of satellite S2 (B04s, B05s, B06s, B07s, B08s, 
B08As); 
βo: constant (intercept); 
βi: coefficients of predictor variables. 
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Using the physicochemical laboratory analysis results, the Thiessen polygons were
calculated in each homogeneous zone from the soil-sampling points. Likewise, the topology
of spatial relations (intersection and inside) was applied [42] with the spectral values per
satellite band to identify the spatial relationship of the satellite spectral values concerning
the physicochemical characteristics of each homogeneous zone [43].

The Mexican (NOM-021-RECNAT-2000) [33] and Ecuadorian (Book VI, Annex 2)
environmental standards [29] were also considered to establish homogeneous areas as a
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unit of spatial analysis. This allowed sampling points to be defined based on the criteria of
slope, soil order, and land use, resulting in 19 homogeneous areas (Figure 7).

2.8. Regression and Spatial Analysis

To identify the relationship between the spectral behavior of soil in the laboratory and
satellite images associated with the physicochemical qualities of soils, we proceeded to
apply regression techniques based on the theory of machine learning, which makes them
useful for predicting outcomes, identifying patterns, and making decisions with minimal
human intervention [44]. Subsequently, discriminant analysis techniques, geostatistics, and
non-parametric models (regression trees) were applied.

This study started by creating a logistic regression model (Figure 8) with the dependent
variable “soil order” (Andisol, Mollisol), and as explanatory variables, the reflectance levels
of the spectral behavior of soil in laboratory and satellite images, called Model 1, to later
select those variables that were statistically significant, from which this model generated
the soil index required (Table 4). The basic form of the logistic regression model is as
follows (Equation (1)) [45]:

logit (yy) = βo + β1x1 + β2x2 + · · · + βixi (1)

where

y: soil order dependent variables Andisol and Mollisol;
xi: independent variables (predictors): wavelengths of the spectroradiometer convoluted
by the spectral response of soils in the laboratory (B04c, B05c, B06c, B07c, B08c, B08Ac) and
bands corresponding to the MSI sensor of satellite S2 (B04s, B05s, B06s, B07s, B08s, B08As);
βo: constant (intercept);
βi: coefficients of predictor variables.
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Table 4. Models and indices by soil order and soil order–land use.

Model Index Description Dependent Variable Independent Variable

Model 1 index.ma.1 Separates soil order:
Mollisol, Andisol

Mollisol
Andisol Field bands, Satellite bands,

Model 2 index.2 Separates land use of
the Andisol order Andisol Field bands, Satellite bands,

Shrub, Páramo, Pasture

Model 3 index.3 Separates land use of
the Mollisol order

Mollisol (Mollisol 1 group) for
land use: Forest, Páramo,

Pasture

Field bands, Satellite bands,
Forest, Páramo, Pasture

Model 4 index.4 Separates land use of
the Mollisol order

Mollisol (Mollisol 2 group) for
land use: Agriculture, Shrub

Field bands, Satellite bands,
Agriculture, Shrub

Several logistic regression trials with the dependent variable of soil order were tested.
The statistically significant variables (p ≤ 0.05) were verified until the most highly significant
set of variables was obtained. The statistically significant model consisted of a combination
of independent variables related to the reflectance levels of the soil spectra in the laboratory
and satellite image.

The land use variable was related to the taxonomic classification of soil, so when
considering only this variable, there was no way to separate the different land uses and
generate an index that allowed us to estimate the physicochemical characteristics based on
the land use variable of soil. To resolve this difficulty, the soil order variable was considered,
and within each of these categories—Andisol and Mollisol—the land use variable that
yielded the best classification levels by soil order was analyzed, as discussed in Section 2.6.
Considering land use as the dependent variable, a statistical methodology known as linear
discriminant analysis was applied (Figure 8) [46], which allowed a linear combination
of variables to be identified that could be used to determine the group to which each
individual belonged. In this case, the individuals were identified as homogeneous areas
in which different soil samples were collected to develop Model 2, Model 3, and Model 4
(Table 4).

2.8.1. Obtaining Index

The standardization of the coefficients from the logistic regression model (Model 1)
followed a pattern where each coefficient was divided by the sum of its coefficients, in such
a way that the sum of the coefficients of the index was equal to 1 (Equation (2)).

index.ma.1 = k + cso[i] ∗ xi + . . . . . . (2)

where

k: constant;
cso[i] = standardized soil order coefficients;
xi: independent variables (predictors): wavelengths of the spectroradiometer convoluted
by the spectral response of soils in the laboratory (B04c, B05c, B06c, B07c, B08c, B08Ac) and
bands corresponding to the MSI sensor of satellite S2 (B04s, B05s, B06s, B07s, B08s, B08As).

From the linear discriminant function, the coefficients of the models were standardized
by land use by soil order of the models: Model 2, Model 3, and Model 4, where each
coefficient of the model was divided by the sum of its coefficients in such a way that the
sum of the coefficients of the indices (Index 2, Index 3, Index 4) was equal to 1 Equation (3).

index = cso[1] ∗ x1 + . . . . + cso[i] ∗ xi (3)

where

cso[i] = standardized coefficients of land use by soil order;
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xi: independent variables (predictors): wavelengths of the spectroradiometer convoluted
by the spectral response of soils in the laboratory (B02c, B03c, B04c, B05c, B06c, B07c, B08c,
B08Ac, B011c, B012c) and bands corresponding to the MSI sensor of satellite S2 (B02s, B03s,
B04s, B05s, B06s, B07s, B08s, B08As, B011c, B012c).

In this case, the data were treated based on the combination of soil order and land use,
and the entire set of observations is shown in Table 1.

An association analysis was applied between each physicochemical parameter and
the indices, which determined no linear trend between the different pairs of variables
that were compared. The geostatistical surface was created using the inverse distance
weighted (IDW) method, which assumes that closer objects are similar to those far apart.
Therefore, any unknown location will probably have an equal value to the nearest known
locations [47]. It was possible to determine how the order of soil and land use were spatially
distributed in terms of probability and to establish predictions of each physicochemical
parameter through a set of non-parametric models known as decision trees [48], where the
dependent variable can be categorical or numeric. The regression tree model was applied
since the dependent variable was each of the calculated indices and was numerical, and
the explanatory variables (covariate) were the order of the soil and the order–land use,
together with each physicochemical parameter, considered as independent variables, as
shown examples in Table 5, which are explained in Section 3.5. The space defined by the
regression tree models, as part of a non-parametric analysis, consisted of dividing the
predictor space into boxes (regions) [49]. For example, the areas were a function of Index 1
and the order of soil to estimate the physicochemical organic matter (OM) parameter to
make the prediction. Consequently, a regression tree model was generated to describe the
association between each index and each physicochemical parameter, as shown in Figure 8.

Table 5. Regression trees.

Regression Trees Dependent Variable Covariates (Soil Order and/or
Land Use)

Physicochemical Parameter
Covariate (Examples)

ARMAH index.ma.1 Soil order: Andisol—Mollisol Soil moisture

ARUSAMO index.2 Soil order: Andisol
Land use: Shrub, Páramo, Pasture OM

ARUSM3MO index.3 Soil order: Mollisol 1
Land use: Forest, Páramo, Pasture OM

ARUSM4MO index.4 Soil order: Mollisol 2
Land use: Shrub, Agriculture OM

For a better understanding, the general methodological framework was divided into
three parts, as shown in Figure 8. All statistical and graphical calculations were performed
using RStudio software [50].

2.8.2. Validation

The validity of Model 1 was tested by calculating the confusion matrix [49] to de-
termine the classification error of the samples and the accuracy, together with the Kappa
statistic to indicate the degree of agreement between the measured data and the predicted
value by the model, concerning their order in Andisol or Mollisol, as well as the sensitivity
and specificity, which indicate the probability of correctly classifying the soil samples from
the model. The Kappa coefficient must be equal to zero. When the Kappa coefficient differs
from 0, it means that the data obtained from the validation model, as predicted data, agree
with the measured data used to generate the model. Sensitivity refers to the ability of a
model to identify the order of soils. In contrast, specificity indicates the ability of the model
to identify soil samples that do not correspond to the order of the soil to be classified.
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In Model 2, among the different land uses of the order Andisol with each of the
two sets of test data selected randomly, the classification errors were evaluated using the
confusion matrix and the accuracy metric.

For Model 3, among land uses such as Forest, Páramo, and Pasture of soil order
Mollisol, those that did not participate in the elaboration of the model needed to be
classified based on Model 3 and have their corresponding confusion matrices calculated in
order to determine the classification error and accuracy metric.

The same criteria applied for Model 4, between the agricultural and shrubland uses of
the soil order Mollisol.

Once each model was validated, the effects of soil order and land use on each
physicochemical parameter were determined; one-way analysis of variance (ANOVA)
was used [49], with a dependent variable for each physicochemical parameter and an
independent variable for the order and land use of the soil. Several ANOVA models were
tested for soil order and other land use models within each order. For each case, the null
hypothesis was that the mean of each physicochemical parameter is the same in each order
of soil, or the mean of each physicochemical parameter is the same for each land use within
each order, versus the alternate hypotheses indicating that at least one pair of mean values
is different. The statistical decision criteria are based on a significance level of 5% (α = 0.05);
thus, if the p-value is less than or equal to 0.05 the null hypothesis is rejected, and it can
be concluded that the effect of the independent variable is significant in relation to the
mean of the dependent variable. Otherwise, if the p-value is greater than 0.05, then the
available data do not yield enough information to conclude that the independent variable
is significant in relation to some variation of the dependent variable.

3. Results
3.1. Physicochemical Analysis

The different soil samples were analyzed using standardized physicochemical meth-
ods. The soil moisture results were in a range from 12.23% to 74.99%. The areas that
predominated with the highest percentage of soil moisture were moors, and those with the
lowest soil moisture were forest and shrub areas. The lowest water content was observed
in Mollisol.

Regarding pH, the most acidic soils corresponded to undisturbed moors, whereas the
least acidic soils corresponded to cultivated pastures. The range was 4.55 to 5.76, which,
according to Mexican regulations, ranges from moderately acidic to strongly acidic, and
according to Ecuadorian regulations, it would be out of range.

The electrical conductivity of the soils was within the limits established by both
the Ecuadorian and Mexican regulations, <200 µS/cm and <1 dS/m, respectively. The
areas with the lowest electrical conductivity were moors, whereas the highest electrical
conductivity was observed in grasses.

For OM, the values ranged from 2.78% to 16.06%. According to Mexican standards,
the zones range from very low to very high levels for soils of volcanic origin. The zone
with the lowest OM percentage was forest, followed by passage areas, and the zone with
the highest OM content was páramo areas.

3.2. Analysis of Spectral Signatures

In this section the behavior of each band was determined with respect to the intensity
of reflectance of the soil samples. For each cylinder, two spectral measurements were made
in opposite sections of the same tube, and for each soil sample 10 spectral measurements
per section were averaged for a single representative spectrum per homogeneous area,
which resulted in graphs (Figure 9a,b) as a function of reflectance and wavelength per
sample in each homogeneous area.
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Figure 9. Spectral measurements in the laboratory according to land use. (a) Shows the curves by
homogeneous zones ID10, ID11, ID13, ID1, ID15. (b) Shows the curve by homogeneous zone ID16.

The reflectance of the spectra was graphically analyzed in the laboratory to determine
the behavior of the soils related to their spectral signatures of the Andisol and Mollisol
orders. The spectral signatures obtained in the laboratory presented a pattern related to the
typical spectral signature of soils, ranging from the visible range (VNIR) to near-infrared
(NIR) to short-wave infrared (SWIR).

The graph in Figure 9a shows the pasture curves, where sample ID11 of the Andisol
soil order presented the same intensity of reflectance as sample ID14 of the Mollisol order,
which were the highest compared to the other samples. Sample ID10 of the Mollisol order
had a medium intensity of reflectance, unlike sample ID15 of the Mollisol order and sample
ID13 of the Mollisol order with lower values of reflectance intensity. This variation in the
curves is related to the properties and state of these soils [51], considering the variation
of each of the land uses. Thus, in the graph in Figure 9b, sample ID16 of the Mollisol
order, with agricultural land use, may indicate changes in the characteristics and status of
agricultural use in the months of June, July, and August.

It can be said that the graphs made a difference in the behavior of the soil order based
on the associated land use.

This could be related to the reflectance records of the Sentinel-2 satellite images
(Figure 10a,b) to improve spectral differences by calculating soil order indices based on
land use and physicochemical parameters, as explained in the next section.
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3.3. Development and Validation of Models Based on Soil Reflectance Levels in Laboratory and
Satellite Image
3.3.1. Model 1, by the Orders of Andisol and Mollisol Soils

From the logistic regression calculation, Model 1 was obtained, whose structure is
shown in Table 6.

Table 6. Logistic regression of Model 1 based on the reflectance levels of the soil spectra in the
laboratory and satellite image.

Variables Estimated
Coefficients Error Std Value z Pr(Z > |z|) Decision

(Intercept) −6.125 × 100 8.011 × 102 −76.459 <2.0 × 10−16 p < 0.0001
B04c −7.596 × 103 5.784 × 101 −131.317 <2.0 × 10−16 p < 0.0001
B05c 9.382 × 103 1.080 × 102 86.872 <2.0 × 10−16 p < 0.0001
B06c 9.149 × 103 1.284 × 102 71.263 <2.0 × 10−16 p < 0.0001
B07c −1.395 × 104 1.105 × 102 −126.278 <2.0 × 10−16 p < 0.0001
B08c −3.630 × 100 4.775 × 100 −0.760 0.447 p > 0.1000

B08Ac 3.021 × 103 2.114 × 101 142.912 <2.0 × 10−16 p < 0.0001
B04s 5.655 × 100 1.151 × 100 4.913 8.96 × 10−7 p < 0.0001
B05s 4.412 × 101 1.417 × 100 31.131 <2.0 × 10−16 p < 0.0001
B06s −5.892 × 101 1.968 × 100 −29.941 <2.0 × 10−16 p < 0.0001
B07s −5.889 × 101 2.164 × 100 −27.216 <2.0 × 10−16 p < 0.0001
B08s 8.076 × 100 5.844 × 101 13.819 <2.0 × 10−16 p < 0.0001

B08As 8.902 × 101 1.933 × 100 46.059 <2.0 × 10−16 p < 0.0001
p-value of the model: p < 0.0001.

The coefficients of Model 1 were both positive and negative. This model was composed
of explanatory variables, consisting of a combination of the spectral behavior of the soil in
the laboratory and satellite image, with the particularity that there are reflectance levels
related to the characteristics of red, red border, and near-infrared. Classical vegetation
indices were composed, but in this case, the objective was to classify the order of the soil in
Andisol and Mollisol. Furthermore, one of the independent variables was not significant
(B08c), which did not influence the global significance of this logistic regression model
(p < 0.0001).

Based on the training dataset, we obtained a confusion matrix (Table 7).

Table 7. Training dataset from Model 1 based on reflectance levels of soil spectra in laboratory and
satellite image.

Predicted Data
Data Real

Total
Andisol Mollisol

Andisol 137,147 6006 143,153
Mollisol 2615 96,018 98,633

Total 139,762 102,024 241,786

The confusion matrix indicated a training error of 3.5%, which means that the model
was good for classifying soils in relation to their order in Andisol or Mollisol based on
the spectral behavior of the soil in laboratory and satellite image, and satellite related to
the red reflectance of any modality. The false-positive and false-negative coefficients were
relatively low (Table 7), at 1.9% (2615/139,762) and 5.89% (6006/102,024), respectively. In
other words, 2615 soil samples of the Andisol order were classified as Mollisol, and 6006
Mollisol soil samples were classified as Andisol. We then evaluated the model using a test
dataset to describe the validation process.

Model 1 Validation
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The diagnostic evaluation of Model 1, from the diagnostic statistics using the test
dataset, was generally good because the accuracy, sensitivity, and specificity were above
95%. On the other hand, the p-value of the Kappa statistic (Table 8) was more significant
than 0.05 (p > 0.05), indicating that the null hypothesis that the measurements obtained
through Model 1 were equivalent to the real data is not rejected.

Table 8. Diagnostic statistics for the validation of Model 1.

Statistical Value Statistical Value Statistical Value

Success 0.9644 Kappa 0.9268 Sensitivity 0.9811
CI 95% 0.9633–0.9656 Specificity 0.9416

3.3.2. Model 2 for Variable Land Use of the Andisol Order

As explained in Section 2.8.1, to classify land use according to the Andisol soil order,
linear discriminant analysis was applied (Figure 8). The following results were obtained
(Table 9).

Table 9. Median reflectance levels of soil spectra in laboratory and satellite image, according to the
group defined by land use for the Andisol order.

Laboratory (B0ic) Satellite Image (B0is)

Land Use B02c B03c B04c B05c B06c B07c B08c
Shrub 0.0679 0.0765 0.0980 0.1108 0.1229 0.1381 0.1644

Páramo 0.0733 0.0855 0.1183 0.1363 0.1514 0.1693 0.1995
Pasture 0.0554 0.0650 0.0878 0.1012 0.1137 0.1290 0.1461

Land Use B08Ac B11c B12c B02s B03s B04s B05s
Shrub 0.1680 0.3096 0.2812 0.0090 0.0363 0.0228 0.0698

Páramo 0.2006 0.3537 0.2843 0.0147 0.0400 0.0400 0.0785
Pasture 0.1600 0.3409 0.3161 0.0166 0.0481 0.0354 0.0848

Land Use B06s B07s B08s B08As B11s B12s
Shrub 0.2134 0.2502 0.2791 0.2710 0.1296 0.0624

Páramo 0.1591 0.1844 0.2083 0.2065 0.1594 0.0902
Pasture 0.2413 0.2940 0.3272 0.3208 0.1791 0.1006

The spectral values of the soil in the laboratory had greater weight in the classification
of the different land uses than in the satellite image as a function of spectrometry in the
laboratory and satellite image. Regardless of the sign, the coefficients of the soil spectral
values in the laboratory were greater than the coefficients of the values in the satellite
image. Consequently, the first component of this linear discriminant function explains
that 96.5% of the total variability of the three different land uses had lower coefficients;
even though the reflectance values in the satellite image were lower, these variables were
important for the classification of land use as a function of the Andisol soil order. The
first and second discriminant components were the linear combinations of the variables
that best discriminate between the three land uses of the Andisol order, which in this
case corresponded to the entire spectrum of soil in the laboratory and satellite image,
respectively. Figure 11 shows the results of the soil classification based on the linear
discriminant function model (Model 2).

The numbers 1, 2, and 3 represent the mean of each dataset. The means were quite
separate, which implies a good classification of the land use of the Andisol order. In addi-
tion, based on the first linear discriminator, better discrimination was observed between
the soils of Pasture and Páramo or between soils of Shrub and Páramo use than between
the soils of Shrub and Pasture use. This situation could be because these land uses, in some
cases, have relatively small neighboring units. Based on the training dataset, a confusion
matrix was obtained (Table 10). In Figure 11 and Table 10, a good classification of the land
uses of the Andisol order was observed, with a classification error of 0.51%.
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Figure 11. Classification of land uses of the Andisol order.

Table 10. Classification of land uses of the Andisol order based on Model 2 for the training set.

Real Land Use
Land Use

Predicted by Model 2 Total

Shrub Páramo Pasture

Shrub 671 0 0 671
Páramo 0 132,132 0 132,132
Pasture 693 12 6220 6925

Total 1364 132,144 6220 139,728

Model 2 Validation
From the first group data for Shrub, Páramo, and Pasture land uses of the Andisol

order, corresponding to the 30% that were not part of the model calculation, a confusion
matrix was obtained (Table 11) from which a good classification of the land uses of the
Andisol order was obtained, whose classification error was only 0.50% and accuracy 99.5%.
Similar results were obtained for the second set of randomly selected data.

Table 11. Classification of land uses of the Andisol order based on Model 2 for a first test set.

Real Land Use
Land Use

Predicted by Model 2 Total

Shrub Páramo Pasture

Shrub 289 0 2 291
Páramo 0 56,628 0 56,628
Pasture 295 5 2667 2967

Total 584 56,633 2669 59,886

3.3.3. Model for Variable Land Use of the Mollisol Order

(a) Model 3 for the variable of land use of the Mollisol order 1 from all wavelengths of
the soil spectrum in laboratory and satellite image

The results were obtained from the application of LDA (Table 12).
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Table 12. Coefficients of the linear discriminant function with dependent variable of the land use
of the Mollisol 1 order and independent variables of reflectance levels of soil spectral behavior in
laboratory and satellite image.

Field Coefficients Satellite Coefficients Field Coefficients Satellite Coefficients

Bands LD1 Bands LD1 Bands LD2 Bands LD2

B02c −708.68 B02s −5.48 B02c −410.48 B02s 13.59
B03c 2125.64 B03s 20.24 B03c 466.47 B03s −33.49
B04c −3693.53 B04s −13.93 B04c −883.87 B04s 17.64
B05c 887.38 B05s −5.09 B05c 451.14 B05s 9.81
B06c 2377.94 B06s 3.01 B06c 105.54 B06s −12.59
B07c −805.64 B07s 3.55 B07c 327.71 B07s −7.35
B08c 180.12 B08s −0.92 B08c −280.28 B08s 3.01

B08Ac −388.23 B08As −5.63 B08Ac 468.29 B08As 16.89
B11c −32.67 B11s 4.67 B11c −25.013 B11s −4.61
B12c 50.53 B12s 1.16 B12c 6.73 B12s −1.11

For the Mollisol 1 order, observing the coefficients of the linear discriminant function
(Table 12), it resulted that the spectral behavior of soils measured in the laboratory exhibited
a higher contribution to discriminate land uses Forest, Páramo, and Pasture for the Mollisol
1 order, compared to the coefficients derived from the satellite image. Consequently, the first
component of this linear discriminant function (LD1) explained 70.9% of the total variability
of the three different land uses, implying that although the reflectance values in the satellite
image had lower coefficients, these variables were important for the classification of land
use from the Mollisol 1 soil order. The first and second discriminant components were the
linear combinations of the variables that best discriminated between the three Mollisol 1
land use types. Figure 12 shows a representation of the linear discriminant function for
this particular case of Mollisol 1 land use, with a minimum overlap between Páramo and
Pasture, with a classification error of only 0.47% and an accuracy of 99.52%.
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(b) Model 4 for the variable of land use of the Mollisol 2 order from all wavelengths of
the soil spectra in laboratory and satellite image

The following results were obtained from the application of LDA (Table 13):
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Table 13. Coefficients of the linear discriminant function with dependent variable of the use of soil of
the Mollisol 2 order and independent variables of the reflectance levels of the soil spectra in laboratory
and satellite image.

Ground Bands Ground Coefficients LD Satellite Bands Satellite Coefficients LD

B02c 2796.26 B02s −2.27
B03c −3969.19 B03s −1.87
B04c −6701.17 B04s 4.90
B05c 18,157.90 B05s 2.94
B06c −10,820.44 B06s 3.71
B07c −311.00 B07s −2.37
B08c −1444.39 B08s 0.21

B08Ac 2194.74 B08As −1.85
B11c 35.04 B11s 1.42
B12c −36.25 B12s −8.34

In relation to the coefficients of the linear discriminant function (Table 13), it was found
that the soil spectral values measured in the laboratory had a higher contribution for the
classification of the considered land uses compared to those of the satellite image. Regard-
less of the sign, the coefficients of the soil spectrum in the laboratory were higher than the
coefficients of the spectrum in the satellite image. Consequently, the only component of
this linear discriminant function explained 100% of the total variability of the two different
land uses, which implies that even though the spectral values of the satellite image had
lower coefficients, these variables were important for the classification of these land uses as
a function of the Mollisol 2 soil order. Figure 13 represents a good classification of the uses
of soils order Mollisol 2.
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Model 4 Validation
For the validation of Model 4, we tested 30% of the remaining data, called the test

dataset, to classify the soils based on Model 4, and obtained the following confusion matrix,
shown in Table 14.
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Table 14. Classification of land use of the Mollisol 2 order based on Model 4 for the test dataset.

Real Land Use
Land Use Predicted by Model 4

Total
Agriculture Shrub

Agriculture 1286 0 1286
Shrub 0 4049 4049

Total 1286 4049 5335

In Table 14, for the remaining 30%, a good classification of the land use was observed
in Agriculture and Shrub for the Mollisol 2 order, considering the same behavior indicated
in the training data.

3.4. Index Development
3.4.1. Index for Andisol and Mollisol Soil Orders from Model 1

According to the methodological process indicated in Section 2.8.1, the index.ma.1
(Mollisol Andisol Index) was obtained (Equation (4)):

index.ma.1 = − 0.21 − 272.64B04c + 336.76B05c + 328.37B06c

− 500.64B08c − 0.13B08c + 108.45B08Ac + 0.20B04s (4)

+ 1.58B05s − 2.11B06S − 2.11B07s + 0.29B08s + 3.20B08As

The index.ma.1 separates the soils according to their order into Andisol and Mollisol.
If the index values are positive, they correspond to soils of the Andisol order; if index.ma.1
takes negative values, they correspond to soils of the Mollisol order. The descriptive
statistics of index.ma.1 are shown in Table 15.

Table 15. Descriptive statistics of the index.ma.1 according to the order of the soil.

Orden
Descriptive Statistics

Minimum Q1 Median Mean S Q3 Maximum

Andisol −0.6407 0.0936 0.1908 0.2377 0.1792 0.3310 1.3658
Mollisol −3.6134 −2.1854 −1.9723 −1.4961 0.5688 −0.1383 0.4836

Global −3.6134 −0.3100 0.0669 −0.1340 0.5868 0.2290 1.3658

For the soils of the Andisol order, the mean level of the index was 0.2377 with a
relatively low level of variability, equal to 0.1792. For soils of the Mollisol order, the mean
level of the index was lower, −1.4961, presenting a higher level of variability equal to
0.5688, which can also be classified as a high level of variability. In this way, index.ma.1
classifies soils according to their order.

3.4.2. Indices Depending on the Variable of Land Use of the Andisol and Mollisol Orders

(a) Index for the Land Use of the Andisol Order from Model 2

The index obtained from the discriminant function of Model 2 was expressed as
follows (Equation (5)):

index.2 = − 22.24B02c − 67.95B03c − 149.75B04c + 402.09B05c

+ 438.95B06c − 705.75B07c + 108.45B08Ac + 0.20B04s

+ 29.83B11x − 23.95B12c − 2.67B02s − 2.49B03s (5)

+ 2.90B04s + 1.13B05s + 1.56B06 − 0.99B07s

+ 0.18B08s − 0.89B08As + 0.67B11s − 1.55B12s
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The descriptive statistics of Index 2 are displayed in Table 16.

Table 16. Descriptive statistics of Index 2 for land use of the Andisol order.

Land Use
Descriptive Statistics

Minimum Q1 Median Mean S Q3 Maximum

Shrub −1.98 −1.29 −1.14 −1.04 0.33 −1.04 −0.43
Páramo 0.25 0.49 0.53 0.54 0.06 0.58 1.14
Pasture −1.46 −1.30 −1.18 −1.12 0.22 −0.99 −0.28

General −1.98 0.48 0.52 0.45 0.38 0.58 1.14

For land use of the Andisol order, the mean level of Index 2 was higher in Páramo
(0.54), with a level of variability equal to 0.06 (the table in Section 3.5.2). For the land use of
the Pasture type of the Andisol order, the average level of Index 2 was −1.12, with a level
of variability equal to 0.22 (the table in Section 3.5.2). In the use of bushland of the Andisol
order, the mean level of Index 2 was −1.04, with a level of variability of 0.33. The level of
variability of the groups defined according to the land use of the Andisol order was very
different, representing the natural behavior of these variables.

(b) Index for the Land Use of the Mollisol 1 Order from Model 3.

The index obtained from the discriminant function of Model 3 is expressed as follows
(Equation (6)).

index.3 = 127.77B02c − 383.23B03c + 665.89B04c − 159.98B05c

− 428.71B06c + 145.25B07c − 32.47B08c + 69.99B08Ac

+ 5.89B11c − 9.11B12c + 0.99B02s − 3.65B03s (6)

+ 2.51B04s + 0.92B05s − 0.54B06s − 0.64B07s

+ 0.16B08s + 1.014B08As − 0.84B11s − 0.21B12s

For land uses of the Mollisol 1 order, the mean level of Index 3 was higher in forest
land use, at 0.79, with the highest level of variability, equal to 0.22 (the table in Section 3.5.3).
For the use of páramo land of the Mollisol 1 order, the mean level of Index 5 was −0.06, with
the lowest level of variability, equal to 0.12 (Table 17). The level of variability of the groups
defined as a function of the land use of the Mollisol order was different, representing the
natural behavior of these variables.

Table 17. Descriptive statistics of Index 3 for land use of the Mollisol 1 order.

Land Use
Descriptive Statistics

Mín Q1 Median Mean S Q3 Max

Forest 0.32 0.56 0.85 0.79 0.22 0.98 1.15
Páramo −0.11 −0.08 −0.07 −0.06 0.12 0.03 0.19
Pasture −2.19 −1.36 −1.23 −1.25 0.19 −1.18 0.082

(c) Index for the land Use of the Mollisol 2 Order from Model 4

The fourth index obtained from the discriminant function (Model 4) was obtained by
standardizing the coefficients of this model. Each coefficient of Model 4 was divided by the
sum of its coefficients in such a way that the sum of the coefficients of Index 4 was equal to
1, obtaining (Equation (7)):
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index.4 = − 27.40B02c + 38.90B03c + 65.66B04c − 177.93B05c

+ 106.03B06c + 3.05B07c + 14.15B08c − 21.51B08Ac

− 0.34B11c + 0.35B12c + 0.02B02s + 0.02B03s (7)

− 0.05B04s − 0.03B05s − 0.04B06s + 0.02B07s

− 0.002B08s + 0.02B08As − 0.01B11s + 0.08B12s

For land uses of the Mollisol 2 order, the mean Index 4 was higher in agricultural land
use, at 0.12, with the highest level of variability, equal to 0.02 (Table 18). For the use of
shrub soil of the Mollisol 2 order, the mean level of Index 6 was −0.07, with the lowest
level of variability, equal to 0.01 (Table 18). The level of variability of the groups defined
as a function of the land use of the Mollisol order was different, representing the natural
behavior of these variables.

Table 18. Descriptive statistics of Index 4 for the land use of the Mollisol 2 order.

Land Use
Descriptive Statistics

Mín Q1 Median Mean S Q3 Max

Agriculture 0.09 0.10 0.11 0.12 0.02 0.12 0.15
Shrub −0.11 −0.08 −0.07 −0.07 0.01 −0.07 −0.05

3.5. Regression Tree Models to Define Association between Indices and Physicochemical Parameters
3.5.1. Regression Tree Models of Physicochemical Parameters as a Function of Soil Order
through Model 1 (index.ma.1)

The first model predicted the values of index.ma.1. as a function of the covariates, soil
order, and physicochemical parameters. An example with soil moisture is presented, where
for soils of the Andisol order, the mean of the index.ma.1 (Figure 14) is equal to −0.134. If
the soil moisture (HU) is greater than or equal to 36.7 for soils of the Andisol order, the
predicted value of the index.ma.1 is on average equal to 0.109 (i = 0.109) for n = 74,000 soil
samples. However, if the soil moisture is less than 36.7, the predicted value of index.ma.1 is
on average equal to 0.382 (i = 0.382), for n = 65,700 soil samples. The same interpretation
for soils of Mollisol order.

Likewise, if the value of the index is positive, it corresponds to an Andisol soil order
and negative to a Mollisol soil order. The predicted moisture value is at least 36.7.

3.5.2. Regression Tree Models of Physicochemical Parameters as a Function of Land Use of
the Andisol Order through Model 2 (index.2)

As shown in Table 19, it was possible to obtain the effect of land use of the Andisol
order on the physicochemical parameters.

Table 19. Application of one-way ANOVA to determine the effect of land use of the Andisol order
on PFQ.

PFQ F-Value p-Value Decision

OM 21,289 <2 × 10−16 Significant
CE 82,125 <2 × 10−16 Significant
pH 19,808 <2 × 10−16 Significant
HU 5213 <2 × 10−16 Significant

An example of the non-parametric regression tree model is presented below (Figure 15),
with the dependent variable as index.2 and the independent variables as soil use and
organic matter (OM) for soils of the Andisol order (Table 20) (ARUSAMO).
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Table 20. Classification of land uses of the Andisol order according to the mean of organic matter.

Land Use
Mean of OM

Total
OM < 10.3% OM ≥ 10.3%

Shrub 677 0 677
Páramo 122,254 9878 132,132
Pasture 1138 5787 6925

Total 124,069 15,665 139,734
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3.5.3. Regression Tree Models of Physicochemical Parameters as a Function of Land Use of
the Mollisol Order through Model 3 (index.3)

In Figure 16, the regression tree model of index.3 can be observed as an example in
the function of land use of soil order Mollisol 1 and organic matter, which are related based
on Table 21 (ARUSM3MO).

Sustainability 2022, 14, x FOR PEER REVIEW 23 of 29 
 

 
Figure 15. Regression tree for Index 2, Andisol soil, and OM. 

Table 20. Classification of land uses of the Andisol order according to the mean of organic matter. 

Land Use 
Mean of OM 

Total 
OM < 10.3% OM ≥ 10.3% 

Shrub 677 0 677 
Páramo 122,254 9878 132,132 
Pasture 1138 5787 6925 
Total 124,069 15,665 139,734 

3.5.3. Regression Tree Models of Physicochemical Parameters as a Function of Land Use 
of the Mollisol Order through Model 3 (index.3) 

In Figure 16, the regression tree model of index.3 can be observed as an example in 
the function of land use of soil order Mollisol 1 and organic matter, which are related 
based on Table 21 (ARUSM3MO). 

 
Figure 16. Regression tree for index 3: land use of Mollisol 1 and OM. 

  

Figure 16. Regression tree for index 3: land use of Mollisol 1 and OM.

Table 21. Classification of the soil samples of the Mollisol 1 order according to the use of the soil by
the mean of OM.

Land Use
Mean of OM

Total
OM < 8.6% OM ≥ 8.6%

Forest 10,119 2814 12,933
Páramo 0 26,650 26,650
Pasture 41,775 8219 49,994

Total 51,894 37,683 89,577

OM was greater in Páramo (≥8.6%) than Forest and Pasture, with a misclassification
of 22% for Forest and 17% for Pasture (Table 21).

3.5.4. Regression Tree Models of Physicochemical Parameters as a Function of Land Use of
the Mollisol Order through Model 4 (index.4)

The land use regression tree model for soil order Mollisol 2 and OM, which are related
based on Table 22 (ARUSM4MO), are shown in Figure 17.

Table 22. Classification of the soil samples of the Mollisol 2 order according to the use of the soil by
the mean of OM.

Land Use
Mean of OM

Total
OM < 6.1% OM ≥ 6.1%

Agriculture 2998 0 2998
Shrub 94 9353 9447

Total 2979 9466 12,445
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OM was greater in Shrub (≥6.1%) than Agriculture (<6.1%), with a misclassification
of 1% for Shrub (Table 22).

4. Discussion

The results of this study allow for a description of the correlation between the physic-
ochemical parameters with index.2 (Andisol), index.3 (Mollisol 1), index.4 (Mollisol 2),
according to the soil order–land use homogeneous zones defined in Section 2.7 and based
on the criteria of Zebrowski 1997 [52]. In the case of the Mollisol order soil, the prediction
values for Páramo were ≥8.6% (Table 21), which maintained the characteristic behavior
of the Ecuadorian Andean zone, as cited by Podwojewski (1999) [53]. On the contrary,
for Forest and Pasture, the prediction models presented a behavior with a lower value
in organic matter (<8.6%) (Table 21), a less acidic pH and lower soil moisture percentage,
and a higher electrical conductivity [10]. This behavior shows the effects of the impact of
human activity, with a lesser value of OM in the Agriculture land use (<6.1%) (Table 22).

The results presented in this study differ from other studies that compared different
classification techniques using Sentinel-2 images [18,54], or considered the capacity of satel-
lite observations to monitor and determine the state of the vegetation due to environmental
stress factors by evaluating vegetation and chlorophyll indices [1].

Unlike other methodological approaches [17,55–57], this study demonstrates that the
combination of laboratory spectroscopy and multispectral images with environmental
covariates is an adequate alternative to establish spatial analysis models to predict the
quality of Andean soils in terms of physicochemical variables such as CE, OM, pH, and
HU. For this purpose, performing soil order–land use associations was revealed to be an
important possible tool for assessing the accomplished predictive models.

(1) Performance of the Models

Equation (4) shows the distributions of the logistic regression coefficients in the R-
NIR spectral range for soil order, with low false-positive (1.9%) and false-negative (5.89%)
coefficients. For the Andisol soil order, the mean level of the index (index.ma.1) was
0.2377, with a level of variability equal to 0.1792 (Table 15). For the Mollisol soil order,
the mean level of the index (index.ma.1) was −1.4961, with a level of variability equal
to 0.5688 (Table 15). The index values ranged from approximately −6 to 2, with some
outliers below −4 and a very low frequency of occurrence. This corroborates the potential
of promoting soil studies based on laboratory spectral data and remote sensors, such as Ali
Aldabaa et al. (2014) [19], who evaluated the feasibility of the methods for the prediction
of soil surface salinity by visible near-infrared diffuse reflectance spectroscopy (VisNIR)
and remote sensing (RS). Equations (5)–(7) show the distributions of the coefficients of
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the linear discriminant function in the VIS-NIR-SWIR spectral range for the order–land
use both in laboratory and S2 configurations. For land uses of the Andisol order, the
level of variability of the defined groups was very different, which represents the natural
behavior of these variables (Shrub, Páramo, Pasture), which, unlike previous research on
the VIS-NIR, presented greater sturdiness considering SWIR.

(2) Predictions of Physicochemical Parameters

The prediction performance of the R-NIR model, based on the Student t-test with
p < 0.0001 for OM, CE, pH, and soil moisture, shows that the mean of each parameter in
the Andisol and Mollisol soil order were different, concluding that the mean of each one
was lower for the Mollisol soil order, unlike CE, where its mean was higher in Mollisol.

Regarding the results obtained from the VIS-NIR-SWIR or full spectrum model, using
non-parametric regression tree models, excellent results were obtained for OM, pH, CE,
and soil moisture as explanatory variables of order–land use [57]. For Mollisol 1, the 95%
confidence intervals for the difference in means for the set of physicochemical parameters
(CE, OM, pH, HU) were negative for Pasture and Páramo, and for Forest. This means
that on average the given set of parameters had higher values in Forest. For the Mollisol
2 soil type, the 95% confidence intervals for the difference in means for the considered
set of physicochemical parameters were negative for Shrub and positive for Agriculture.
For Andisol-type soils, the 95% confidence intervals for the difference in means for OM in
Páramo are higher than the average OM in Shrub. Similarly, but in an opposite direction,
when comparing the mean OM in Pasture and Páramo land uses (p = 0.0000 < 0.05), the 95%
confidence interval for the mean difference was negative, which implies that the average
OM in soils used for pasture was less than the average OM in soils used for Páramo.
Very similar results were obtained in relation to the pH physicochemical parameter, and
in relation to CE and HU in all pairs of established comparisons there were statistically
significant differences.

In the methodological process, the nonparametric regression tree method was success-
fully applied to predict the values of the model covariates by soil order or land use order
(Figure 8). This statistical analysis methodology differed from those applied to date, like
Adeline (2017) [41], Bao (2017) [40], Soriano-Disla (2014) [17], and Ali Aldabaa (2014) [19],
where it was established that soil properties were derived from reflectance spectra that can
be applied from various sources of spectral measurements, such as measurements in the
laboratory, in the field, or from remote sensing systems.

These regression tree models were more flexible than those presented by Hill (2011) [55],
because they did not consider non-compliance with statistical assumptions such as nor-
mality or collinearity problems between predictor variables. The regression tree models
allowed for approximate estimates supported by 95% confidence intervals as a measure of
the variation range of each physicochemical parameter, allowing for a reading of this from
the top to the final nodes and vice versa, which was not possible in other applied models
(Figures 14–17; Tables 21 and 22) [19,55,56].

Soil quality and soil degradation are crucial to develop sustainable agricultural activi-
ties [58]. The usual methods for environmental soil monitoring are very labor intensive and
costly to cover large areas of land [1,13]. Satellite data in this field open up new research
opportunities with great applications, as large areas of land can be analyzed and soil quality
can be assessed in areas that are difficult to access [6,51].

Finally, this study is very valuable for the Ecuadorian Andean region for soil sustain-
ability. Additionally, the results obtained in this study could be adapted in future research
to other geographical regions after reviewing the soil order and land use that allow the
relationships observed in the proposed model indices to be confirmed.

5. Conclusions

Soil quality is an important factor in sustainable land management. Its evaluation
allows for the development and implementation of sustainable agriculture management
techniques. Thus, in this study, an alternative method for the prediction of the parameters
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OM, CE, pH, and soil moisture based on the R-NIR and VIS-NIR-SWIR models is presented
to demonstrate its applicability in the Ecuadorian Andean region. For this purpose, logistic
regression analysis and linear discriminant function analysis were used. This required the
establishment of homogeneous zones defined by soil order and land use combinations to
design and implement soil-sampling strategies and field–satellite spectral measurements.
The findings of this study suggest that soil + RS spectroscopy is a useful technique to
predict soil properties, presenting good potential as an impetus towards future soil studies.

According to the results of this study:

(1) The logistic regression function made it possible to predict the values as a soil order
function and each of the physicochemical parameters described above.

(2) The linear discriminant function made it possible to treat the data based on the
linear combination of the Andisol soil order variables by land use (Shrub, Páramo,
Pasture), Mollisol soil order by land use (group 1: Forest, Páramo and Pasture; group
2: Agriculture and Shrub).

(3) Non-parametric models had the advantage of predicting the values of the independent
variables OM, CE, pH, and soil moisture (soil properties).

Therefore, because of the achieved results, the proposed methodology might be ap-
plied to other regions and adapted to predict soil properties as a function of the site-specific
soil order and land use properties. Future research should explore the variability of soil
quality parameters geographically with the aim of building regional models.

Supplementary Materials: The Sentinel 2 dataset used in this study can be downloaded from
https://scihub.copernicus.eu/dhus/ (accessed on 20 August 2018).
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