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Abstract: Because rice is one of China’s staple foods, studying the total factor productivity (TFP)
of rice is of great importance for China’s food security. There are many similarities between rice
production in China and Japan. Japan has achieved an effective supply of high-quality rice under the
constraints of insufficient production resources and limited environmental capacity. In this paper,
we use the DEA Malmquist index method to comparatively analyze the production efficiency of
the rice industry in China and Japan, as well as its trends and changes. The contribution of each
decomposition index is analyzed by using grey correlation, and kernel density estimation is used to
analyze the dynamic evolution of rice productivity in both countries. The empirical results show that
rice TFP in Japan is higher than that in China. Technological progress is an important driver of TFP
and is the main reason for the difference in rice TFP between the two countries. The concentration of
rice TFP distribution in China is decreasing, and regional differences are increasing, whereas in Japan,
the opposite trend is observed, with the proportion of areas of high TFP increasing in both countries.

Keywords: total factor productivity; rice; DEA Malmquist

1. Introduction

China is the largest rice producer in the world, with a total rice production of
149 million tons in 2021, accounting for about 30% of the world’s total production [1].
China is also the largest rice consumer, with a demand of 155 million tons, representing
about 30% of the world’s total demand in 2021, and imports of 4.6 million tons [1]. In China,
60% of the population depends on rice as a staple food, representing one of the main food
crops [2]. As shown in Figure 1, the supply and demand for rice in China have been stable
over the years, but the requirement for rice has increased in recent years, with the demand
exceeding the supply. Thus, improving total factor productivity of rice will become more
important to ensure food security in China [3]. Rice production in China is also facing
increasing resource constraints [4]. The massive use of pesticides and fertilizers has also
brought a lot of negative impacts on the ecological environment, which is contrary to the
concept of sustainable development. The efficiency of rice production can be improved by
fully utilizing all factors and avoiding low output due to redundant or insufficient inputs,
which is important for the sustainable development of the rice industry.

Japan is also one of the world’s leading rice producers, achieving an effective supply
of high-quality rice with only 0.03 hm2 of paddy land per capita, with production and
commercialization of high-quality rice above the global average. Japan is a typical country
with a large population and scarce land, and its agricultural sector faces problems [5] such
as scarce arable land, an aging rural labor force, and smallholder production, which are
highly similar to China’s agricultural development. Both countries have scarce arable land
per capita [6,7] and are limited by resources and scale. Unlike the extensive agricultural
economy in China, Japan has paid more attention to resources and environment, mainly
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relying on technology to improve unit yields. Given the similarity of agricultural endow-
ments between the two countries, they can learn from one another in terms of agricultural
policies and technologies. The analysis of rice productivity presented in this study can
provide a positive implication for improving rice production, as well as promoting the
sustainable development of the rice industry in China.

Sustainability 2022, 14, x FOR PEER REVIEW 2 of 17 
 

 

 
Figure 1. The supply and demand of rice in China’s from 2010 to 2021. Source: http://worldfood.api-
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Figure 1. The supply and demand of rice in China’s from 2010 to 2021. Source: http://worldfood.
apionet.or.jp/graph/num.cgi, 3 January 2022.

Total factor productivity (TFP) is the counterpart to single-factor productivity, re-
flecting the weighted combined factor productivity of various factors, which is more
comprehensive than the general concept of single-factor productivity [8]. Total factor pro-
ductivity (TFP) growth involves both technological progress and improvements in technical
efficiency [9]. The production frontier approach, which distinguishes between frontier
technological progress and changes in technical efficiency by constructing optimal frontiers
for production units, is the current mainstream approach to TFP accounting.

Previous studies have measured rice productivity in different countries using different
methods. Umetsu et al. [10] used Malmquist productivity indices to examine regional
differences in TFP, efficiency, and technological change in the Philippine rice sector of
the post-Green Revolution era. Hossain et al. [11] applied the translog stochastic frontier
production model (SFA) and data envelopment analysis (DEA) to estimate efficiencies
over time, as well as the TFP growth rate for Bangladeshi rice crops. Donkor et al. [12]
selected 470 smallholder rice producers from two districts in the Upper East region to
analyze the factors influencing the efficiency of Ghana’s rice industry using a stochastic
meta-frontier model. Véronique Houngue et al. [13] estimated the technical and allocative
efficiencies in Benin by using a stochastic frontier approach and the marginal value product
approach. Krishna Prasad Devkota et al. [14] employed machine learning diagnostics, key
performance indicator calculation, and dynamic simulation to characterize and decompose
yield gaps for rice production in Nepal.

Earlier studies on the TFP of rice in China employed different perspectives.
Hu Wen et al. [15] measured and decomposed TFP and its decomposition terms for 12 main
Japonica-producing regions in China based on the factor endowments perspective using the
DEA Malmquist index method and performed convergence tests between provinces. Xue
Simeng et al. [16] conducted a comparative analysis of the production efficiency of the rice
industry in China and Japan from 2004 to 2014 using the DEA Malmquist index method,
with the yield per hectare of the main product as the output variable, on the basis of which
astringency was tested. From the perspective of carbon emissions, Chen Zhukang et al. [17]
analyzed the growth of the TFP of rice considering carbon emissions and provincial differ-
ences in China using the Malmquist–Luenberger productivity index based on directional

http://worldfood.apionet.or.jp/graph/num.cgi
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distance function and a panel Tobit model. Dehua Zhang et al. [18] measured the pro-
duction efficiency of China’s main grain-producing regions from the perspective of grain
subsidies, employing the DEA Malmquist index model, and analyzed the influencing
factors in terms of spatial dimensions and index decomposition.

Previous research shows that there are well-established studies on TFP of rice and
abundant discussion on the TFP of rice in China, whereas there is less literature on the
measurement and analysis of rice production efficiency in Japan and even less literature on
the comparative analysis of rice production between China and Japan. The main objective
of this paper is to examine the driving forces of rice production in China and Japan and
conduct a comparative analysis of the two countries across different regions and over
time using the DEA Malmquist approach and kernel density estimation. Based on this
empirical analysis, policy recommendations for the improvement of rice productivity and
the sustainable development of the rice industry in China will be presented.

The main contribution of this paper is threefold. First, this study extends the literature
on the comparative analysis of rice productivity between countries, whereas past studies
have mainly focused on one country. Second, the impacts of technological progress and its
three components on rice production in both China and Japan are quantitatively evaluated
by employing the DEA Malmquist method. Third, in this study, we not only perform static
time-series analysis but also further estimate the dynamic evolution of rice productivity in
both countries by using kernel density estimation.

In this paper, the TFP of rice is measured and compared between China and Japan us-
ing one of the most popular methods of measuring TFP, the non-parametric DEA Malmquist
index method, with the output value of the main product as the input variable. The correla-
tion coefficients of each decomposition of TFP were measured by grey correlation analysis
to assess the degree of influence of each factor. Furthermore, kernel density analysis was
used to analyze the dynamic evolution of TFP in the rice industry in China and Japan.

2. Materials and Methods
2.1. Data Description

Considering the integrity and availability of data sets, the analysis in this study was
based on rice yield and input in China and Japan from 2004 to 2018, including 18 provinces
in China and 9 rural areas in Japan. The areas we chose cover the most rice-producing
regions in the two countries. For measurement of efficiency, the following inputs were used:
(I) biochemical inputs, which include the cost of seeds, fertilizers, farmyard manure, and
pesticides; (II) mechanical inputs, which include the expenditures of machinery, energy,
irrigation, and other mechanical materials; (III) labor inputs, including the cost of both
families and hired labor for rice production. Owing to varying statistical standards, in the
analysis, we used only direct labor to measure the labor inputs in Japan.

The study was carried out through a unified conversion of the data by multiplying
the production costs per mu in China by 15 and per 10a in Japan by 10. The four variables
involved in the study were treated in the same way. To eliminate the influence of price
movements, the input and output variables were calculated by deflating the nominal values
of the corresponding price indices. We used deflators in the agricultural price index from
the two countries’ statistical yearbooks.

2.2. Methodology
2.2.1. DEA Malmquist Index

The production frontier approach is the dominant method for TFP measurement specif-
ically including both parametric and non-parametric methods. Numerous studies [19–24]
have employed a non-parametric approach represented by the data envelopment approach
(DEA), which uses linear programming and pairwise solutions without pre-determined
functional forms. Several studies [25–28] have adopted parametric methods represented by
the stochastic frontier production function, which uses econometric methods to estimate
the unknown parameters in the frontier production function to determine the ratio of



Sustainability 2022, 14, 7407 4 of 16

actual output to potential output. Compared with stochastic frontier analysis, the data
envelopment approach (DEA) is more widely used because it can handle decision units
with multiple input and output indicators at the same time and does not require a specific
function.

In the present study, we applied the DEA Malmquist method to measure TFP in
the rice industries of China and Japan, further decomposed into technical change, pure
technical efficiency change, and scale efficiency change. The theoretical basis [29,30] of
the DEA Malmquist index is as follows. Assume that the input vector and output vector
for t (the base period) are xt and yt, respectively; and Dt. ( xt, yt) represents the distance
function in period t. To avoid possible differences due to arbitrary period selection, the
geometric mean is used as the Malmquist index to measure productivity change from
period t to period t + 1. The equation can be expressed as follows:

t f pch = M
(
xt+1, yt+1; xt, yt)= {[Dt+1(xt+1,yt+1)

Dt+1(xt ,yt)
][

Dt(xt+1,yt+1)
Dt(xt ,yt)

]}
1/2

=
Dt+1(xt+1,yt+1)

Dt(xt ,yt)
{[ Dt(xt ,yt)

Dt+1(xt ,yt)
][

Dt(xt+1,yt+1)
Dt+1(xt+1,yt+1)

]}
1/2 (1)

If t f pch > 1, TFP increases over the period from t to t + 1; t f pch < 1 indicates that
TFP decreases between t and t + 1; and t f pch = 1 suggests no change in TFP from t to t + 1.

The DEA Malmquist index can decompose the change in total factor productivity
(tfpch) into two components: technical efficiency (effch) and technical progress (techch).
Technical efficiency scores of the input-minimizing cases with constant returns to scale and
represents the degree of efficiency in the allocation and use of resources. Technological
progress means frontier shift during the period from moment t to moment t + 1, revealing
the degree of change in production technology.

The change in technical efficiency can be expressed by the first term in Equation (1):

e f f ch =
Dt+1(xt+1, yt+1)

Dt(xt, yt)
(2)

Furthermore, under the condition of variable returns to scale, technical efficiency
change can be decomposed into pure technical efficiency change (pech) and scale efficiency
change (sech), as shown as Equation (3), with the subscripts V and C denoting variable
returns to scale and constant returns to scale, respectively.

e f f ch =
Dt+1(xt+1, yt+1)

Dt(xt, yt)
=

Dt+1
V

(
xt+1, yt+1)

Dt
V(xt, yt)

Dt+1
C

(
xt+1, yt+1)/Dt+1

V
(
xt+1, yt+1)

Dt
C(xt, yt)/Dt

V(xt, yt)
(3)

The pure technical efficiency change can be expressed as:

pech =
Dt+1

V
(
xt+1, yt+1)

Dt
V(xt, yt)

(4)

The scale efficiency change can be expressed as:

sech =
Dt+1

C
(
xt+1, yt+1)/Dt+1

V
(
xt+1, yt+1)

Dt
C(xt, yt)/Dt

V(xt, yt)
(5)

The second term of Equation (1) can be arranged to denote the technical progress
(techch) as follows:

techch = {[
Dt(xt, yt)

Dt+1(xt, yt)
][

Dt(xt+1, yt+1)
Dt+1(xt+1, yt+1)

]}
1/2

(6)
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Hence, the formulation of decomposition can be expressed as:

t f pch = e f f ch× techch = pech× sech× techch (7)

2.2.2. Grey Relational Analysis

Grey relational analysis is a method to measure the degree of association between
factors in a system [31]. By comparing the development and change trend of each factor in
the system, the strength of the relationship between the factors is described quantitatively
by the grey correlation degree. This method is based on the similarity of the geometry of the
series curves to determine whether they are closely related or not; the closer the curves are,
the greater the correlation between the corresponding series and vice-versa [32]. Compared
with the traditional multifactor analysis method, grey correlation analysis requires fewer
data points and is less computationally intensive, which makes it easy to be widely used.
In the present study, we used this method to measure the degree of association between
each of the decomposition indices.

2.2.3. Kernel Density Estimation

Kernel density estimation is a popular non-parametric method used to estimate the
probability density function of a random variable, which essentially simulates the true
probability distribution curve by fitting the data points of the sample with a kernel func-
tion. Kernel density estimation is more robust and less model-dependent than parametric
estimation [33]. In this paper, we used kernel density estimation to analyze the dynamic
evolution of TFP trends in the rice industry in both China and Japan. Epanechnikov kernel
functions and an adaptive bandwidth estimator were employed.

3. Results and Discussion

Table 1 shows the descriptive statistics of the yield and three production factor inputs
of rice. Except for the biochemical inputs in China, the means of other variables were higher
than the medians, with a right-skewed distribution. The mean of labor input of China was
higher than the sum of means of biochemical and mechanical inputs, which illustrates that
the costs of labor were much higher than the expenditure of biochemical and mechanical
inputs. In the case of Japan, the situation was different. The mean of mechanical inputs in
Japan were higher than the other two inputs.

Table 1. Descriptive statistics of major variables.

China Obs Mean Median Std. Dev. Min Max

Labor 285 815.3447 717.070 558.4033 189.2471 2888.727
Biochemical 285 422.6361 425.445 150.4349 153.302 830.1892
Mechanical 285 375.3693 341.904 206.2095 94.33266 1231.229

Yield 285 2363.161 2342.531 867.0626 841.0551 4526.169

Japan Obs Mean Median Std. Dev. Min Max

Labor 165 3411.307 3286.93 917.8172 1792.44 5866.58
Biochemical 165 1778.576 1741.15 347.6223 1137.98 2618.56
Mechanical 165 4239.06 4038.05 1105.849 2272.38 7570.23

Yield 165 12,522.66 12,068.7 2991.869 7522.49 21,751.38
Source: (1) National Farm Product Cost-benefit Survey. (2) Ministry of Agriculture, Forestry and Fisheries,
Situations about Rice.

As shown in Figure 2, per hectare costs of rice in China exhibited an increasing
tendency. In particular, the growth rate of the labor expenditure was much larger than the
biochemical and mechanical growth rates, and exceeded that of material capital (including
the biochemical, mechanical, and other material inputs) in 2013. Biochemical costs were
higher than mechanical costs, but the gap between them has narrowed over time.
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Figure 2. Per hectare cost of China’s rice production from 2004 to 2018. Source: National Farm
Product Cost-benefit Survey.

In contrast to China, labor expenditure was not a major expense associated with rice
production in Japan, but material inputs accounted for roughly 70% of the total inputs.
Mechanical inputs accounted for a much higher proportion than biochemical inputs, which
was in contrast to China’s situation. All input variables in Japan showed a similar variation,
with less fluctuation and a decreasing trend (Figure 3).
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Figure 3. Per hectare cost of Japan’s rice production from 2004 to 2018. Source: Ministry of Agriculture,
Forestry and Fisheries, Situations about Rice.

3.1. Estimation of Rice Industrial Production Efficiency in China
3.1.1. Temporal Feature Analysis

The production efficiency index of the rice industry in China was calculated and
decomposed based on the panel data of main product output value, labor input, mechanical
input, and biochemical input per hectare in 18 provinces of China from 2004 to 2018.

As shown in Table 2, the TFP of rice in China regressed as a whole during the study
period. Only half of the years showed progress in productivity. The average TFP change
index was 0.978, with an average annual decline of 2.2%. According to the decomposition
results of the Malmquist index, the average values of the technical efficiency and technical
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progress indices were 0.999 and 0.979, respectively, with a slight downward trend and an
average annual decline of 0.1% and 2.1%, respectively.

Table 2. Malmquist index summary of annual means in China.

Year Effch Techch Pech Sech Tfpch

2004–2005 1.051 0.850 0.996 1.055 0.893
2005–2006 0.911 1.028 1.003 0.908 0.937
2006–2007 1.082 0.958 1.006 1.075 1.036
2007–2008 0.942 0.905 0.934 1.008 0.852
2008–2009 1.026 1.238 1.081 0.949 1.270
2009–2010 0.987 0.895 0.977 1.009 0.883
2010–2011 1.015 0.855 0.988 1.027 0.867
2011–2012 1.001 1.139 0.993 1.008 1.139
2012–2013 0.954 1.142 0.959 0.994 1.089
2013–2014 0.909 0.795 0.916 0.992 0.723
2014–2015 1.212 0.943 1.181 1.027 1.143
2015–2016 0.901 0.997 0.912 0.988 0.898
2016–2017 0.973 1.081 0.990 0.983 1.052
2017–2018 1.067 0.980 1.056 1.011 1.046

mean 0.999 0.979 0.997 1.002 0.978

Technical efficiency is further decomposed in the condition of variable returns to
scale and affected by the pure technical efficiency and the scale efficiency. The technical
efficiency shows fluctuation basically consistent with the change in pure technical efficiency
after 2007. The scale efficiency index has become less volatile since 2009, fluctuating within
a range of only 3%. The pure technical efficiency index declined by 0.3%, and the scale
efficiency increased by 0.2%. The improvement in scale efficiency illustrates that the policies
of separating the three rights of land, encouraging rural land transfer, and promoting the
large-scale operation of rice production have been successful.

Technological progress in rice production in China has declined by 2.1% annually, with
only five years of technological progress. Possible reasons for the decline in technological
progress include the following: (1) The escalating prices of production materials and
labor force have increased the production cost of rice year by year, and cost margins have
decreased significantly. According to the National Farm Product Cost-benefit Survey, the
cost margins of rice production based on economic cost decreased from 62.71% to 5.38%
in China from 2004 to 2018, and the cash cost-based cost margin decreased from 190.06%
to 98.51%. As a result, producers are less motivated to adopt new planting techniques.
(2) As improved methods such as hybrid rice and super rice have become widespread in
China, the demand for these technologies by rice producers has reached saturation, and
the impetus for an increasing rate of technological progress has waned.

From the perspective of the growth source of production efficiency, the TFP of rice
production in China from 2004 to 2018 was jointly affected by technical efficiency and tech-
nological progress. After 2008, the trend of TFP tended to be consistent with technological
progress, and the role of technological progress became more pronounced.

3.1.2. Temporal Feature Analysis

As shown in Table 3, among the 18 rice-producing provinces in China, only Guang-
dong, Guangxi, Fujian, and Anhui have made progress in terms of TFP. Among them,
Anhui has exhibited largest increase, with an average annual growth rate of 3.2%. The TFP
of the other 14 provinces has declined to varying degrees, with three provinces growing
at a rate above the national average, seven provinces growing slightly below the average,
and the remaining provinces declining more than the national average. Among them,
Chongqing had the largest decline, with an average annual decline rate of 10.5%, which
is 13.7% lower than that of Anhui. This indicates that there are large differences in the
efficiency of rice production between regions in China. According to the data compiled
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from the China Statistical Yearbook, Chongqing’s financial support ratio for agriculture
was 8.67% from 2009 to 2018, which is lower than the national average of 9.4%, whereas
the ratio in Anhui was 11.08%. The difference in the government’s financial investment in
agriculture one possible reason for the large difference in total factor productivity of rice
between the two regions.

Table 3. Malmquist index summary of firm means in China.

Firm Effch Techch Pech Sech Tfpch

Chongqing 0.961 0.931 0.965 0.997 0.893
Zhejiang 1.001 0.944 0.994 1.007 0.937
Yunnan 1.027 0.943 1.001 1.026 1.036
Sichuan 1.013 0.957 1.001 1.012 0.852
Liaoning 1.001 0.965 1.000 1.001 1.270
Jiangxi 1.010 0.967 1.005 1.005 0.883
Jiangsu 0.999 0.977 1.002 0.998 0.867

Jilin 0.997 0.978 1.000 0.997 1.139
Hunan 1.005 0.972 1.003 1.002 1.089
Hubei 1.013 0.973 1.012 1.002 0.723

Heilongjiang 1.011 0.966 1.008 1.003 1.143
Henan 0.996 0.960 1.000 0.996 0.898
Hainan 0.992 0.993 0.994 0.998 1.052

Guizhou 0.994 0.996 0.999 0.996 1.046
Guangxi 0.998 1.006 1.002 0.996 0.978

Guangdong 0.990 1.016 0.994 0.997 1.006
Fujian 0.987 1.034 0.989 0.999 1.021
Anhui 0.985 1.048 0.985 1.000 1.032
mean 0.999 0.979 0.997 1.002 0.978

The decomposition of the TFP index shows that technical efficiency improved in nearly
half of the provinces, whereas only four provinces improved technologically, consistent
with the four provinces with t f pch greater than 1. The range of the technological progress
index is 11.7%, indicating that there are considerable differences in technological progress
with respect to rice planting. Under the condition of variable returns to scale, technical
efficiency can be further decomposed into pure technical efficiency and scale efficiency. The
pure technical efficiency of the eight provinces has increased, indicating that productivity
has been improved by simply using the input factors of production. The pure technical
efficiency of Liaoning and Hunan provinces has remained unchanged, whereas the pure
technical efficiency of other provinces has declined slightly. Scale efficiency generally
improved through changes in the scale of production factor inputs, but the improvements
were small. Seven provinces achieved improvements in scale efficiency, whereas Anhui re-
mained unchanged and the other provinces presented a scale efficiency index of less than 1.
The overall performance of scale efficiency is optimistic.

Overall, the progress of TFP is mainly driven by technological progress. As shown
in Table 2, provinces with technological progress above the national average also lead the
level of progress. Technological progress lags behind the national level, whereas provinces
that have improved their technical efficiency have not performed well in terms of TFP.
This indicates that it is difficult to drive progress in the TFP of rice production in China by
relying simply on improvements in technological efficiency.

3.2. Estimation of Rice Industrial Production Efficiency in Japan

The production efficiency index of the rice industry in Japan was calculated and
decomposed based on the panel data of main product output value, labor input, mechanical
input, and biochemical input in nine rural areas of Japan from 2004 to 2014. The results are
shown in Table 4.
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Table 4. Malmquist index summary of annual means in Japan.

Year Effch Techch Pech Sech Tfpch

2004–2005 1.097 0.962 1.028 1.067 1.056
2005–2006 1.037 0.892 0.999 1.038 0.925
2006–2007 0.967 1.277 1.001 0.966 1.235
2007–2008 1.004 1.180 0.987 1.017 1.185
2008–2009 1.014 0.817 1.006 1.009 0.829
2009–2010 1.021 1.158 1.008 1.013 1.182
2010–2011 0.962 1.166 0.989 0.973 1.122
2011–2012 0.836 0.992 0.846 0.988 0.829
2012–2013 1.207 0.768 1.202 1.004 0.927
2013–2014 0.990 1.350 0.996 0.994 1.336
2014–2015 1.040 0.979 0.994 1.046 1.018
2015–2016 0.955 1.098 1.006 0.949 1.048
2016–2017 1.017 0.994 1.002 1.015 1.010
2017–2018 0.980 1.134 1.000 0.979 1.111

mean 1.006 1.042 1.002 1.004 1.048

Rice production in Japan was optimistic during the period from 2004 to 2018. The
average TFP change index was 1.048, with an average annual growth of 4.8%. Four of
the years showed a recession, whereas the other years showed productivity progress. The
decomposition of TFP change shows that both technical efficiency and technical progress
improved, with mean values of 1.006 and 1.042, respectively. The amplitude of technological
progress is greater than that of technical efficiency, with an average annual growth of 4.2%.

Technical efficiency grew at an average annual rate of 0.6%, which was further de-
composed to yield an average annual increase of 0.2% for pure technical efficiency and
0.4% for scale efficiency, with relatively small fluctuations overall. With the development
of industrialization, a large number of labor transfers from agriculture to non-agricultural
industries, as well as the mechanization of rice production in Japan, has contributed to the
improvement in technical efficiency to some extent.

Technological progress in rice production in Japan has improved, with an average
annual increase of 4.2% in the period from 2004 to 2018. Possible reasons are as follows:
(1) Japanese farmers have a high level of literacy and are more receptive to new technolo-
gies. In addition, high land prices and high agricultural population density also drive
farmers to actively learn and adopt new technologies. (2) With the development of smart
agriculture in Japan, intelligent production management and agricultural information
dissemination mechanisms, which use computer networks as an important path, are in-
creasingly improved. Agricultural staff can analyze and judge accurate and timely data
in real time. (3) With the development of environmentally friendly agriculture in Japan,
the certification system and subsidy system of eco-agriculture and organic agriculture
have stimulated the enthusiasm of rice producers to use modern biological varieties and
innovative chemical fertilizer technology.

From the perspective of the growth source, the variation of production efficiency in the
rice industry is caused by both technical efficiency and technological progress. However,
the contribution of technical progress is greater than that of technical efficiency.

As shown in Table 5, the rice production efficiency of the nine rural areas in Japan
improved during the period from 2004 to 2018, and the difference in growth across regions
is small. The largest increase in productivity was observed in Tokai, with an average
annual increase of 6.4%, differing by only 3.3% from the slowest growth rate in Hokkaido.
According to the decomposition results of the Malmquist index, the change in technical
efficiency is small. That is, the change in input–output efficiency achieved through the
efficient use of input factors of production is small when production technology is assumed
to be constant in these regions.
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Table 5. Malmquist index summary of firm means in Japan.

Firm Effch Techch Pech Sech Tfpch

Chugoku 1.006 1.033 1.002 1.003 0.893
Shikoku 1.019 1.035 1.009 1.010 0.937
Kyushu 1.012 1.041 1.001 1.011 1.036

Kinki 1.008 1.041 1.005 1.003 0.852
Kanto 0.992 1.040 0.999 0.993 1.270
Tokai 1.014 1.050 1.003 1.010 0.883

Tohoku 1.017 1.045 1.002 1.015 0.867
Hokuriku 0.999 1.048 1.000 0.999 1.139
Hokkaido 0.989 1.043 1.000 0.989 1.089

mean 1.006 1.042 1.002 1.004 0.723

The index of change in technical efficiency was slightly less than 1 in three provinces,
and technical efficiency improved in the other regions. Under the condition of variable
scale, the variation of pure technical efficiency and scale efficiency in each region is less than
1%. Technological progress is the main driver of TFP growth. The technological change
index of nine rural areas in Japan was greater than 1, which means that all areas achieved
technological progress. Tokai achieved the most significant technological progress, with an
average annual growth rate of 5%, and its TFP growth was also greater than that of other
areas. Technical efficiency factors also played an important role in the growth of TFP. The
technical efficiency index of Hokkaido was the lowest, and its TFP also grew at the slowest
rate compared with other areas affected by this factor.

3.3. Grey Relation Analysis of TFP Decomposition Index

According to the grey correlation analysis method, the correlation coefficients of
TFP (Table 6) with technical efficiency and technical progress of rice in China are 0.656
and 0.767, respectively. This indicates that the TFP of rice in China is mainly affected by
technological progress, which can compensate for the loss of efficiency. This demonstrates
the role of mature technology efficiency but also reflects the limited promotion of new rice
technology in recent years. The findings are consistent with those of the DEA Malmquist
analysis. The correlation coefficients of comprehensive technical efficiency with pure
technical efficiency and scale efficiency are 0.780 and 0.715, respectively. This indicates that
pure technical efficiency and scale efficiency of rice in China jointly affect comprehensive
technical efficiency.

Table 6. Correlation coefficients of TFP decomposition indices of rice in China and Japan.

Country

Correlation Coefficient of Tfpch
with Effch and Techch

Correlation Coefficient of Effch
with Pech and Sech

e1 e2 e1 e2

China 0.656 0.767 0.780 0.715
Japan 0.622 0.658 0.617 0.714

In Japan, the correlation coefficients of TFP with technical efficiency and technological
progress in rice production are 0.622 and 0.658, respectively, indicating that technical
efficiency and technological progress act together on TFP. The correlation coefficients of
comprehensive technical efficiency with pure technical efficiency and scale efficiency are
0.617 and 0.714, respectively, indicating that the comprehensive technical efficiency of
Japanese rice production is mainly influenced by scale efficiency.

In Japan, the correlation coefficients of TFP (Table 6) with technical efficiency and
technological progress in rice production are 0.622 and 0.658, respectively, indicating
that technical efficiency and technological progress act together on TFP. The correlation
coefficients of comprehensive technical efficiency with pure technical efficiency and scale
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efficiency are 0.617 and 0.714, respectively, indicating that the comprehensive technical
efficiency of Japanese rice production is mainly influenced by scale efficiency.

3.4. Comparison of Rice Production Efficiency between China and Japan

From the perspective of dynamic changes, TFP in the rice industry in Japan is higher
than that in China. From 2004 to 2018, China’s rice production efficiency declined by 2.2%
annually, whereas that of Japan increased by 4.8% annually. Specifically, Japan’s technical
efficiency and technological progress indices are higher than those of China. A relatively
large gap in technological progress between the two countries represents an important
reason for the difference in productivity growth.

With respect to the growth source of production efficiency, the TFP of rice production
in China is mainly driven by technological progress, whereas in Japan, it is caused by a
combination of technological efficiency and technological progress. China’s technical effi-
ciency and technical change indices have declined, whereas those of Japan have increased,
with a difference of 0.7% and 6.1%, respectively.

From the perspective of further decomposition of technical efficiency, the comprehen-
sive technical efficiency of rice production in China is the result of the combined effect
of pure technical efficiency and scale efficiency, whereas in Japan, it is mainly affected by
scale efficiency. The scale efficiency of both countries has improved, but the magnitude is
small; that is, the change in TFP is relatively insignificant after adjusting the scale of inputs.
Pure technical efficiency improved in Japan and regressed in China, but the magnitude was
within 0.5%; that is, the magnitude of TFP change achieved through efficient use of input
factors was also small after removing changes in scale efficiency.

Technological progress is an important driving force of TFP progress for rice produc-
tion in both China and Japan. As shown in Tables 7 and 8, the minimum value of Japan’s
technological progress index is greater than 1; that is, rice production in Japan’s nine rural
areas achieved technological progress during the period from 2004 to 2018, whereas only
four provinces in China improved technological progress. The means and medians of the
Malmquist index for all regions in China are smaller than those in Japan, and only the
extreme values of individual indicators are larger than those for Japan, indicating that
the progress of rice production efficiency in all regions of China lags behind that of Japan.
Compared with Japan, rice production efficiency varies greatly in China. The regional
differences in the technological progress and TFP indices in China are 11.7% and 13.7%,
whereas in Japan, they are only 1.7% and 3.3%, respectively.

Table 7. Descriptive statistics of Malmquist index of China.

China Obs Mean Median Std. Dev. Min Max

effch 18 0.999 1.001 6.50% 0.958 1.023
techch 18 0.982 0.978 9.40% 0.943 1.037
pech 18 0.996 1.001 5.30% 0.958 1.011
sech 18 1.003 1.001 2.80% 0.995 1.023
tfpch 18 0.981 0.983 13.50% 0.903 1.038

Table 8. Descriptive statistics of Malmquist index of Japan.

Japan Obs Mean Median Std. Dev. Min Max

effch 9 1.006 1.008 3.00% 0.989 1.019
techch 9 1.042 1.041 1.70% 1.033 1.050
pech 9 1.002 1.002 1.00% 0.999 1.009
sech 9 1.004 1.003 2.60% 0.989 1.015
tfpch 9 1.048 1.050 3.30% 1.031 1.064

The gap in technological progress is the main factor contributing to the difference in
rice productivity growth between the two countries. Possible reasons for the technology
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difference between these two countries are as follows: (1) The proportion of financial
expenditures associated with agricultural research in China is lower than that in Japan.
According to the FAO, a country’s public investment in agricultural science and technology
needs to be at least 2% so that its agricultural development can be adequately supported
by science and technology [34]. Since 2007, this ratio has exceeded 4% in Japan, and in
2010 and 2011, it exceeded 5%, which is much higher than the current average of 2.37% in
developed countries [34]. (2) Farmers in China are less educated than those in Japan, and
their acceptance of new technologies is weaker [35]. By the end of 2017, more than 90%
of China’s agricultural workers were educated at a junior high school level or below [36];
in comparison, Japan’s overall high school enrollment rate exceeded 90% in 1975 and has
remained above 95% since 1992 [36,37]. (3) The conversion rate of agricultural science and
technology in China is lower than that in Japan. Since China’s 13th Five-Year Plan, the
contribution rate of agricultural technology progress has exceeded 60% [38]. However, in
Japan, the contribution rate reached 75% after the Second World War [39].

3.5. Kernel Density Estimation

The above analysis is based on the time-series changes of TFP in rice production
in China and Japan, as well as the average development trend. We used kernel density
estimation is used in order to depict the dynamic evolution of TFP, that is, the distribution
pattern over time, in a more detailed and intuitive way.

Figure 4 shows the dynamic evolution of TFP in 18 rice-growing regions of China from
2004 to 2018. The TFP of rice in China showed a clear bimodal distribution in 2010. In other
periods, the distribution of peaks was basically unimodal, with the right side of the curve
bulging outward with a rising trend, indicating that with the passage of time, it is more
likely to appear as double peaks. This shows that the TFP of rice production in China was
polarized in 2010, and the polarization weakened afterwards, although the trend still exists.
The center of the curve moved to the right, and the height of the wave decreased in 2010
and remained stable thereafter. The main peak kurtosis was weakened, and the wave peak
was more subdued. This indicates that the TFP of rice increased in most provinces of China
during the study period, although discretely. The interval of the kernel density curve did
not change significantly during the period under examination, but the right-trailing tail
gradually lengthened, indicating that regional differences in rice TFP in China were not
effectively controlled, and the number of provinces with high levels of TFP increased.
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Compared to 2005, the peak in 2010 was smaller, with a weaker peak, a bimodal distri-
bution, and a narrower range of variation, indicating a more concentrated and polarized
distribution of TFP during this period. The curve shifted significantly to the right in 2015,
with the interval increasing and the curve changing from a ‘double-peak’ to a ‘single-peak’
distribution compared to 2010 and the peak leveling off after a steep decline. This indicates
that TFP increased significantly in this period and that polarization was controlled, al-
though regional differences remained large. By 2018, the kernel density curve flattened out
more, with the right tail growing significantly. The center of the curve shifted leftward, and
the concentration of the distribution decreased. This indicates a decline in TFP during the
period, with regional differences remaining unabated, although the proportion of provinces
with higher levels of TFP increased. The right-hand tail of the curve bulged significantly,
showing a trend towards polarization.

Figure 5 depicts the dynamic evolution of TFP of rice in nine rural areas in Japan from
2004 to 2018. The kernel density curve basically shows a single-peak distribution with
decreasing wave height and diminishing kurtosis during the examination period. Over
time, the right tail became evident, with a skewed distribution. This suggests that there is a
low convergence in TFP of rice in Japan, whereas the proportion of areas with higher TFP
is increasing.
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Compared to 2005, the curve shifted slightly to the right in 2010, with a narrowing
of the interval and a decline in the crest. The left tail of the curve shortened significantly,
and the right tail elongated. This indicates that the proportion of regions with lower levels
of TFP in rice in Japan decreased significantly during this period, and the proportion of
regions with higher levels increased. TFP has increased in most regions, and the differences
between regions have narrowed.

The center of the curve shifted to the left after 2010, indicating a regression in TFP
in most regions after 2010. No significant change in the shape of the density function
curve occurred in 2015 compared to 2010. In contrast, in 2018 compared to 2015, the center
of the curve shifted to the right, the peak rose sharply, the interval narrowed, and the
wave broke after a steep decline before forming a bimodal distribution. This indicates
that the concentration of the distribution increased during this period, with most regions
progressing in terms of TFP and a phenomenon of polarization.

In terms of the distribution of TFP, the concentration of the distribution in China has
decreased, whereas in Japan, it first decreased and then increased. In terms of regional
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differences, the change in regional gaps in China is more stable, with a limited trend of
expansion, whereas the regional variations in Japan continue to decrease. Both countries
have a pronounced right tail in the kernel density graph, with a tendency to lengthen. This
indicates that the proportion of regions with higher levels of TFP has increased in both
countries, and the proportion of regions with lower levels of TFP is decreasing in Japan.

4. Conclusions and Policy Recommendations
4.1. Conclusions

1. The DEA Malmquist index shows that TFP in rice production was higher in Japan
than in China during the period under study, especially with regard to technological
progress. Both countries have achieved improvements in technical efficiency, but
neither country has generated large fluctuations in TFP through the efficient use of
input factors and adjustment of input scale.

2. Grey relational analysis reveals that for both China and Japan, technological progress
is the main driver of TFP development in rice production, and technological progress
can compensate for the loss of efficiency. Compared to Japan, China’s TFP is more
strongly correlated with technological progress. The gap in technological progress is
the primary reason for the productivity gap between the two countries. The difference
in technological progress between the two countries is related to the investment of
financial expenditures for R&D and the conversion rate of agricultural science and
technology achievements.

3. The regional disparities in TFP of rice production in China are more serious than those
in Japan. Moreover, in terms of the dynamic evolution of TFP, the regional differences
in the TFP of rice production in China also showed a tendency to widen, whereas the
opposite trend was observed in Japan. The proportion of high-level areas of TFP of
rice production in both countries also gradually increased, and that of low-level areas
was decreased.

4.2. Policy Recommendations

Based on the above analysis, the policy implications are as follows:

1. For both China and Japan, it is recommended to rely on technology rather than a large
number of factor inputs to improve the yield and productivity of rice. Extensive modes
of agriculture development do not work well in terms of improving rice productivity.
Based on the national situation of small farmers in a large country, China can reference
some policies of Japanese agriculture, such as by promoting the development of smart
agriculture and relying on machines and technology to improve labor productivity,
using the progress of agricultural science and technology to facilitate the sustainability
of the rice industry.

2. China should emphasize and invest more in agricultural science and technology. The
innovation of agricultural science and technology is the main factor in sustainable
agriculture development [40], and technological innovation in agriculture requires
financial support. The intensity of China’s investment in agricultural research is
much lower than that of developed countries and some developing countries. It
is necessary for government to increase expenditure with respect to agricultural
technology research. On the other hand, China should improve the transformation
rate of agricultural science and technology achievements by raising the awareness of
rice producers of scientific farming and fully applying agricultural technology to rice
production.

3. The regional differences in TFP of rice production in China are widening, which is
detrimental to the improvement and sustainability of the rice industry in the long
term. The central government should direct more financial support to provinces that
are lagging behind in agricultural technology. On the other hand, the government can
improve agricultural information dissemination mechanisms and promote technology
diffusion from areas with high levels of agricultural technology to other areas. Japan’s
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intelligent agricultural information dissemination mechanism based on the path of
computer networks has greatly improved the efficiency of information dissemination
compared with China, where there is still much room for improvement.
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