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Abstract: With the expansion of the internet, a major threat has emerged involving the spread of
malicious domains intended by attackers to perform illegal activities aiming to target governments,
violating privacy of organizations, and even manipulating everyday users. Therefore, detecting
these harmful domains is necessary to combat the growing network attacks. Machine Learning (ML)
models have shown significant outcomes towards the detection of malicious domains. However, the
“black box” nature of the complex ML models obstructs their wide-ranging acceptance in some of the
fields. The emergence of Explainable Artificial Intelligence (XAI) has successfully incorporated the
interpretability and explicability in the complex models. Furthermore, the post hoc XAI model has
enabled the interpretability without affecting the performance of the models. This study aimed to
propose an Explainable Artificial Intelligence (XAI) model to detect malicious domains on a recent
dataset containing 45,000 samples of malicious and non-malicious domains. In the current study,
initially several interpretable ML models, such as Decision Tree (DT) and Naïve Bayes (NB), and black
box ensemble models, such as Random Forest (RF), Extreme Gradient Boosting (XGB), AdaBoost
(AB), and Cat Boost (CB) algorithms, were implemented and found that XGB outperformed the other
classifiers. Furthermore, the post hoc XAI global surrogate model (Shapley additive explanations)
and local surrogate LIME were used to generate the explanation of the XGB prediction. Two sets of
experiments were performed; initially the model was executed using a preprocessed dataset and
later with selected features using the Sequential Forward Feature selection algorithm. The results
demonstrate that ML algorithms were able to distinguish benign and malicious domains with overall
accuracy ranging from 0.8479 to 0.9856. The ensemble classifier XGB achieved the highest result, with
an AUC and accuracy of 0.9991 and 0.9856, respectively, before the feature selection algorithm, while
there was an AUC of 0.999 and accuracy of 0.9818 after the feature selection algorithm. The proposed
model outperformed the benchmark study.

Keywords: network security; malicious domains; machine learning; ensemble models; explainable
artificial intelligence

1. Introduction

Nowadays, the expansion of the internet has raised the complexity of the network
globally, creating more gaps that attract hackers to perform illegal activities aiming to
target governments, violate companies’ privacy, or even manipulate individuals using
phishing websites [1]. One of the major threats that has grabbed researchers’ attention is the
detection of malicious domains. Moreover, it is no longer possible to ignore the relationship
between cyberattacks, information security, and their economic damage to organizations.

Sustainability 2022, 14, 7375. https://doi.org/10.3390/su14127375 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14127375
https://doi.org/10.3390/su14127375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1619-5733
https://orcid.org/0000-0003-1002-6178
https://orcid.org/0000-0003-3754-6894
https://orcid.org/0000-0002-3599-5090
https://orcid.org/0000-0002-4916-8977
https://orcid.org/0000-0001-7221-8998
https://orcid.org/0000-0003-0583-9449
https://doi.org/10.3390/su14127375
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14127375?type=check_update&version=2


Sustainability 2022, 14, 7375 2 of 22

In a recent report 2021, the International Data Corporation (IDC) showed that 87% of the
organizations suffered from DNS attacks [2].

The Domain Name System (DNS) has played a key role in the internet revolution. The
primary goal was to ease the users’ experience by translating the IP address of a website
into a memorable name and vice versa. When a user searches on a particular website,
the DNS will reach the nearest root name server seeking to answer the requested query.
Then, the root server will reach other top-level domain (TLD) servers—such as .com, .org,
and .edu, collecting parts of the domine name until it finally finds the IP address of the
website from the authoritative DNS server. Although it may seem that there is no control
over the DNS, local DNS servers enable the internet service provider (ISP) to monitor the
network traffic. Furthermore, DNS raises two main security concerns: it does not provide
any authentication mechanism between the nodes nor encryption mechanism over the
packet [3]. The vulnerability from the structural perspective, DNS traffic tends to move
towards a centric manner despite that the DNS is a decentralized system, leading the
attackers to attack multiple entities at once easily. Additionally, the availability of DNS
server information can threaten multiple companies, especially those who have poor DNS
configuration. Such exposure could affect the DNS server operations and jeopardize the
companies’ internal systems and data [4]. Initially, methods such as capturing network
traffic, web content, and URL inspection were used to detect malicious domains; however,
the demand for Artificial Intelligence (AI) solutions is needed to automate the process
of the detection. Initially, for the automated reasoning and decision making, either the
rule-based or case-based approach was used. Later, the Machine Learning (ML) approach
was introduced, and in the supervised ML, the main focus has been on the input and output
data rather than how the output was made using the input data.

Firstly, basic ML models were introduced, such as Decision Tree (DT), Naïve Bayes
(NB), linear regression, etc. These models contain good interpretability; however, they
could not perform well for the highly complex problems. The emergence of the advance
ML models that contain the complex structure and advance statistical methods such as
ANN and SVM, as well as ensemble methods like GB, RF, etc., has dramatically improved
the prediction and decision making. However, these models have introduced opaqueness
in the reasoning. This opaqueness sometimes can restrict the use of these models in real-life
applications. ML and DL models have contributed substantially for network and cyber
security problems, such as the intrusion detection system (IDS), DNS classification, etc. [1].
Despite the successful classification using ML and DL, most of the models failed to respond
to the subject, which is deducing why a certain DNS has been classified as malicious.
Considering this, these systems are less reliable and trustworthy.

Therefore, the current research trend has moved towards the development of the
models that, along with the good prediction performance, also demonstrate interpretability
and comprehensibility. The emergence of Explainable Artificial Intelligence (XAI) allows for
the conversion of the black-box models into glass-box models by generating explanations [5].
XAI-based models perform similar to the experts, and the models are more reliable and
trustworthy [6,7]. XAI systems’ objectives are not merely to enhance a task with respect
to the competence and accuracy, but also to offer explanations about how the particular
decision was made. XAI provides an insight into the complex logic innate in the model [8].

XAI has been applied in the cybersecurity system specifically in the detection of IDS.
Recently, Mahbooba et al. [9] performed a study to propose an explainable IDS model to
enhance trust in the model. The aim of the study was to develop a model similar to the
human way of reasoning to identify the effect of the malicious data for IDS. The stakehold-
ers have the right to know why the particular activity has been identified as malicious.
Correspondingly, Le et al. [10] used the XAI for the IDS not only to generate an explanation,
but also to help the cyber security professionals explore the validity and acceptability of the
decisions. These explanations will help them to evaluate their judgement and decision. The
study used the ensemble tree and shapley for the detection of IDS. Furthermore, Guo [11]
discussed that the emergence of 6G has greatly enhanced the use of Internet of Things
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(IOT), but, on the other hand, has posed a challenge for the security system. Various
applications like the clinical decision system, remote surgery, and autonomous vehicle
driving system require a transparent and trustworthy system [12,13]. Guo found that XAI
enhanced the trust between AI and humans by integrating interpretability, transparency,
and explicability.

Thus, it is essential to build interpretable ML models that will stimulate confidence in
the knowledge they engender and provide to decision-makers. Therefore, in the current
research, a post hoc XAI approach is used for the DNS classification.

In this paper, we propose a comprehensive comparison among Machine Learning (ML)
models, including Decision Tree (DT), Naïve Bayes (NB), Random Forest (RF), Extreme
Gradient Boosting (XGB), AdaBoost (AB), and Cat Boost (CB) algorithms, in order to
classify the malicious and non-malicious domains using publicly available DNS datasets.
Furthermore, XAI was used to generate the explanation at global and local level.

Our paper is structured as follows: Section 2 covers the previous related work,
Section 3 covers the material and methods, Section 4 discusses the experiments and results.
Furthermore, Section 5 contains the XAI, followed by further discussion in Section 6, and
finally, Section 7 concludes the paper.

Contribution
The contribution of the proposed study is multi-fold. We aimed to develop a model

with the enhanced performance in terms of accuracy, precision, recall, etc. without compro-
mising the interpretability of the model. The main contributions of the proposed study are
as follows:

• Comparative analysis of interpretable and non-interpretable ML models for the classi-
fication of DNS.

• Develop an interpretable model by using the post hoc XAI techniques to enhance
the trust.

• The current study achieved better results with reduced number of features when
compared with the benchmark in terms of all evaluation measures. The model can be
used as an effective tool for the identification of the malicious DNS.

2. Related Studies

ML and DL have been investigated for detecting the malicious domains for establishing
the protected cyber environment. Some of the recent studies are discussed below. Initially,
the studies that used the ML are discussed, followed by the DL models and the studies
using both ML and DL models.

Kidmose et al. [14] performed a study for classifying the malicious domain. They
classified the domain features into three groups, one being generic and the remaining two
being lexical features, specifically simple lexical features and advanced lexical features.
Across many instances, the study found that utilizing lexical features with the other features
can increase the detection efficiency of fraudulent websites using Random Forest (RF) with
the precision of 0.98. Furthermore, Zhu and Zou et al. [15] discovered that, as the detection
procedure progresses, the detection performance of a standard Support Vector Machine
(SVM) model decreases; however, a revised SVM technique (F-SVM) proposed by the
study is effective in maintaining a significant precision rate throughout the detection
phase. Due to its high performance, it is well-suited for online detection. F-SVM uses
the concept of reinforcement learning to tackle the issues of expensive model upgrading
costs. They achieved 0.983 precision rate in the real-time detection of malicious domains.
Besides, Almashhadani et al. [16] built a system called MaldomDetector that utilized easy
to compute features in order to classify malicious domain names. The study combined
several datasets from previous studies and used a randomness measuring algorithm to
build the MaldomDetector. The results showed that the built model obtained high detection
accuracy when compared with simple ML classifiers.

Moreover, Marques et al. [17] suggested a DNS firewall based on ML to enhance
spontaneous detection of fraudulent domain requests, using a dataset containing 34 at-
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tributes and 90,000 records derived from actual DNS traffic. The results demonstrate that
ML techniques successfully categorized malicious and benign domains, with the CART
algorithm having the best accuracy of 0.96 while using the Recursive Feature Elimination
method.

Similarly, Palaniappan et al. [18] investigated an ongoing DNS approach by identifying
it as safe or dangerous via the extraction of attributes as DNS, web, blacklisting, and lexical
sources. A compact dataset of roughly 10,000 domain names was employed to train and test
a Logistic Regression (LR) algorithm, which attained an accuracy of almost 0.60. Identically,
Magalhaes et al. [19] provide a study on the effectiveness of using machine learning to
detect fraudulent domain names taken from Alexa’s top 1 million sites. The Decision Tree
(DT) has the highest classifier performance with 0.92 accuracy in 11 s, while the Naive
Bayes (NB) achieves the shortest period with 2.77 s, but the accuracy drops to 0.76.

Some studies used the CIRA-CIC-DoHBrw-2020 dataset [20,21] in order to identify
malicious DNS over HTTP. These studies focused on implementing and comparing different
ML and DL models to assess the dataset. For instance, Singh and Roy [22] used the
DoH dataset to build and compare the performance of different Machine Learning (ML)
classifiers, namely K-Nearest Neighbor (KNN), Naive Bayes (NB), Random Forest (RF),
Logistic Regression (LR), and Gradient Boosting (GB). In the preprocessing phase, the
authors removed the null attributes, selected the most efficient features, and performed a
train-test split of 75–25 on the dataset. The results showed that GB and RF gave the best
performance with precision, recall, and F-score values of 1.0 each. Additionally, Singh
and Roy [23] applied further analysis on their previous work [22] by comparing RF with
an ensemble learning framework of three classifiers: DT, LR, and KNN. Additionally, the
DoHMeter was used as a tool for feature selection. The results showed that RF achieved a
1.0 accuracy on detecting both benign and malicious classes in contrast with the ensemble
framework. In another study, Behnke et al. [24] used two feature selection methods,
Chi-squared and Pearson’s correlation, in order to choose the top 20 features from the
dataset. After feature selection, 10-fold cross-validation was applied, and 10 ML classifiers
were employed: RF, Decision Tree (DT), LightGBM, XGB, Extra Trees (ET), GB, Linear
Discriminant Analysis (LDA), KNN, and AdaBoost (AB). The highest accuracy of 0.9978
was achieved by RF.

On the other hand, some studies used a DL approach in order to detect malicious
domains. Hence, Akarsh et al. [25] focused on real-time malicious domains obtained by
(DGA) using the LSTM architecture. The study performed both binary and multi-class
classification using two locally generated datasets. The binary classification gave the best
accuracy of 0.9871 and multi-class gave an accuracy of 0.683. In another study, Chen
et al. [26] proposed an LSTM model that incorporates the attention mechanism, where the
focus is more on important substrings in domains in order to improve the expression of
domains. Using a real-life dataset, the study successfully achieved a reduced false alarm
rate of 1.29% and false negative rate of 0.76%.

Likewise, Bharathi and Bhuvana [27] applied DL methods to recognize fraudulent
domain names by extracting textual characteristics from domain names and passing them to
LSTM and bidirectional LSTM. The results obtained performed best for binary classification
than multiclass classification when tested on a publicly shared dataset. The recall for LSTM
and bidirectional LSTM is 0.956 and 0.97, respectively. In addition, Ma et al. [28] presented
a hybrid malicious domain detecting model based on Doc2vec, LSTM, and RNN for intense
feature extraction and enhanced resilience. The composite result is linearly analyzed, and
the probability distribution is determined by applying the Softmax classifier. When the
hybrid model was compared to traditional domain identification algorithms, it came out on
top with a 0.9781 accuracy. Amaizu et al. [24] aimed at a hybrid network model that uses
a CNN and an LSTM to classify net traffic as benign, malicious, or non-DoH. The model
was trained for a total of 28 epochs and observed the outcomes. According to simulation
findings, the proposed technique has a 0.99 accuracy in distinguishing between benign,
malicious, and non-DoH classes.



Sustainability 2022, 14, 7375 5 of 22

Additionally, Vinayakumar et al. [29] obtained the data for the study from local DNS
records, and investigated the performance of several DL algorithms such Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and other classic ML models. Among
DL approaches, LSTM has performed the best in identifying malicious DNS requests. How-
ever, Xu et al. [30] merged n-gram with CNN, and they suggested a new n-gram integrated
character-based domain classification (n-CBDC) model. It simply needs the domain name
alone and can autonomously evaluate the chance that the domain name was produced by
domain generation algorithms (DGAs) without the assistance of manually obtained features
or DNS context data. This model worked well in finding domain generation algorithm
(DGA) domain addresses that were both comprehensible and centered on a wordlist. Con-
versely, Shi et al. [31] used Extreme Learning Machine (ELM) to detect malicious domain
names using their own generated dataset containing around 50,000 samples of malware
and benign domains combined. The ELM model obtained a high detection accuracy of 0.96.

Despite the fact that there have been various research studies on detecting malicious
domains, evaluating and identifying emerging fraudulent domains in a reasonable time-
frame is an important security contingency plan. However, there is a need for further
improvement and investigation. Most of the previous studies have proposed models that
have produced significant outcomes but suffer from the black-box problem. Those models
do not allow researchers to find the reason why the prediction was made. For critical prob-
lems where the misclassification cost is high, there is a need for finding why the particular
prediction was made. Therefore, there is a need to investigate the techniques that achieve
significant outcomes in terms of accuracy, precision, recall, etc., as well as to have better
interpretability. Post hoc XAI has integrated the interpretability in the complex models
without compromising the performance of the models [32]. The post hoc explainable AI
approach is applied after training the model; therefore, it will not affect the performance of
the model. The XAI enables to incorporate the interpretability in the opaque models like
SVM, ANN, ensemble-based models, and DL [33]. Therefore, in the current study we used
post hoc XAI along with the ML models to produce models with a significant outcome and
better interpretability.

3. Materials and Methods

This research aims to examine and classify domains as malicious or non-malicious
using a recent DNS dataset. Figure 1 contains the conceptual framework of the pro-
posed interpretable ML models for malicious domain detection. Initially ML models are
implemented, then XAI techniques are employed to develop the interpretable models.
Individually all the models are trained and tested using preprocessed features and selected
features using sequential forward feature selector. The best performing model will be used
to generate the explanations using XAI.

3.1. Dataset Description

The dataset used in this study was released by Marques et al. [34] in 2021 to classify the
data sample as malicious or non-malicious. It was created from DNS logs, where the non-
malicious domain were acquired from Rapid7 Labs [35] and the malicious domains from
SANS Internet Storm Center (SANS) public list [36]. The dataset is available on Mendeley
data repository [37]. Since it contains equal number of malicious and non-malicious
domains, 45,000 samples for each, it does not suffer from any class imbalance. Further, it
consists of 32 features of different datatype, i.e., text, Boolean, multi-class categorical, and
numeric. Table 1 contains the description of the dataset. The exploratory analysis of the
dataset attributes is represented in terms of mode percentage for the binary and three class
attributes, and for the numeric attribute, the mean (µ) and standard deviation (σ) are used.
However, for the multi-class attributes, only the number of categories is mentioned.
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Table 1. Description of the attributes in the Domain Name Service dataset.

Feature Datatype Description Mode Mean (µ) ± Std (σ)

Domain

Text

Encoded undisclosed DNS identifier

Ip Internet Protocol Address

RegisteredOrg Name of the organization registered the
domain in WHOIS

TLD Top-Level Domain

MXDnsResponse

Boolean

Mail Exchange request response from DNS True (25.05%), False (74.96%)

TXTDnsResponse Text File request response from DNS True (50.49%), False (49.51%)

HasSPFInfo Sender policy framework True (49.13%), False (50.87%)

HasDkimInfo Domain keys identified emails True (0.024%), False (99.9%)

HasDmarcInfo Domain-based message authentication True (1.99%), False (98.01%)

IpReputation IP is block listed or not True (4.51%), False (95.49%)

DomainReputation Domain name blocklist or not True (0.12%), False (99.88%)

DomainInAlexaDB Domain name registered in Alexa Database True (97.63%), False (2.361%)

CommonPorts Domain name in common port True (86.833%), False (13.17%)

DNSRecordType

multi-class
categorical

Information about domain and host names A (550.3%), Cname (39.9%),
MX (4.97%)

CountryCode IP address country code 20-Categories

RegisteredCountry Country code in WHOIS 27-Categories

CreationDate Domain name creation date in WHOIS 5 categories

LastUpdateDate Domain name last updated date in WHOIS 5 categories

HttpResponseCode Response code status 6 categories
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Table 1. Cont.

Feature Datatype Description Mode Mean (µ) ± Std (σ)

ASN

numeric

IP address associated with domain
available - 23,335.8 ± 37,004.9

SubdomainNumber Number of sub-domains in this DNS 103.07 ± 4243.8

Entropy Entropy of the DNS 2.87 ± 0.488

EntropyOfSubDomains Mean entropy of the subdomains 0.0031 ± 0.081

StrangeCharacters Non-English language characters 3.498 ± 4.4716

ConsoantRatio Ratio of consonant characters 0.4596 ± 0.146

NumericRatio Ratio of numeric characters 0.144 ± 0.147

SpecialCharRatio Ratio of special characters 0.007 ± 0.026

VowelRatio Ratio of vowel characters 0.262 ± 0.099

ConsonantSequence Maximum number of consonants 2.719 ± 1.699

VowelSequence Maximum number of vowels 1.3428 ± 0.555

NumericSequence Maximum number of numerals 1.516 ± 1.539

SpecialCharSequence Maximum number of characters 0.1124 ± 0.432

DomainLength Length of the DNS 26.44 ± 22.341

It can be seen from the table that some of the boolean features like ‘HasDkimInfo’,
‘HasDmarcInfo’, ‘IpReputation’, ‘DomainReputation’, ‘DomainInAlexaDB’, and ‘Common-
Ports’ have a less discriminative value. Most of the records have false values except for
the ‘DomainInAlexaDB’ attribute. Therefore, these attributes were not selected during the
feature selection mechanism. The entropy is calculated using Shannon entropy method. In
the DNS record type MX indicate the mail exchange, CName indicate the registered name
of the DNS, while A indicate the translator to convert DNS to IPv4 address. In the dataset
the minimum DNS length is 4 and maximum is 153.

3.2. Preprocessing and Feature Selection

The dataset initially contains a total of 32 features describing relevant information
about the malicious domains. ‘DomainName’, ‘DNSRecordType’, ‘CountryCode’, ‘Regis-
teredCountry’, and ‘RegisteredOrg’ attributes were removed. ‘DomainName’ and
‘DNSRecordType’ were removed from the dataset because they serve as identifiers in the
dataset. Furthermore, ‘CountryCode’, ‘RegisteredCountry’, and ‘RegisteredOrg’ contain
a huge number of null values; therefore, they were removed. However, binary encoding
was performed on the Boolean features like “MXDnsResponse’, ‘TXTDnsResponse’, ‘Has-
SPFInfo’, ‘HasDkimInfo’, ‘HasDmarcInfo’, ‘DomainInAlexaDB’, ‘CommonPorts’, ‘IpRepu-
tation’, and ‘DomainReputation’. Furthermore, the multinomial attribute like ‘TLD’ was
converted into sequential numbers. After the initial preprocessing, 27 features were se-
lected. Feature selection was applied using the Sequential Forward Feature Selector (SFFS).
This technique sequentially adds features to an empty set of features and assesses on
until the inclusion of more features does not diminish the criterion and the algorithm can
achieve the best performance and outcome. The algorithm for the SFFS is represented
below (Algorithm 1).
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Algorithm 1: Sequential Forward Feature Selection Algorithm

1. Create null set: Xn → {∅}, n← 0
2. Select optimum remaining features in a set:

x+ = argmaxx+∈Xn

[(
Xn + x+

)]
3. If modelper f ormance(Xn+x+) > modelper f ormance(Xn)

a. Update Xn+1 ← Xn + x+

b. n→ n + 1
c. Continue with Step-2

Figure 2 below shows the ranking of the selected features based on information gain.
The number of features after the feature selection was 10. The significance of the selected
features is shown in the Figure 2. Mostly, the feature selected in the current study was
similar to the baseline study [17] except for the numeric ratio and vowel ratio. While the
creation date was selected in the baseline, the forward sequential feature selector was not
selected for this feature. They used AutoML to select the features and develop the models.
In the current study, 10 features were selected, while in the baseline study, 9 features
were used.
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3.3. Machine Learning Models

The following models were used in the current study for the detection of malicious
DNS. In ML, some of the classifiers contain huge number of parameters and the value
of these parameters have a high impact on the learning performance of the classifier and
are known as hyperparameters. The value of these hyperparameters needs to be tuned
to find the most optimal value, with the aim to minimize the loss function. In the current
study, grid search uses the exhaustive searching mechanism for the optimal parameter
values. In each iteration, the algorithm finds the parameter values and then evaluates the
performance of the algorithm, and the values with the best outcome will be the final values
of the classifier’s parameter [38]. Gird search cross-validation is applied in the current to
find the optimal values for the set of classifiers using GridSearchCV method in the sk-learn
python library.

Decision Tree: A decision tree (DT) is a structure that resembles a flowchart, with
every inner node indicating an attribute test, each branch representing the test’s result,
and each leaf node (terminal node) storing a class label. By starting with the root node,
the technique for establishing classes for a provided dataset in a DT begins. This method
compares the root attribute values with the recorded (actual dataset) attribute values and
thus pursues the branch and leaps to the following node depending on the difference.

Naïve Bayes: Naive Bayes (NB) is a statistical classification algorithm that follows
the Bayes theorem, and each feature is unrelatable to the other features. Moreover, the
Bayes theorem states that the probability of target class A given predictor B is equal to the
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likelihood of the predictor B given target class A multiplied by the probability of target
class A and divided by the probability of predictor B.

Random Forest: Random Forest (RF) is a classification algorithm that calculates the
mean of outcomes of a collection of DTs with various subgroups of a dataset to enhance
the dataset’s projected accuracy. Instead of depending on an individual DT, the RF gathers
predictions from all trees and expects the ultimate result depending on the majority of
votes. Performance increases with more trees in the forest and the risk of overfitting is
reduced. Table 2 shows the parameters used for the RF classifier.

Table 2. Random Forest classifier parameters value.

Parameter Value

random_state 1
max_depth 15

min_samples_split 5
min_samples_leaf 1

Extreme Gradient Boosting: Gradient boosting (GB) is an ensemble method for de-
veloping predictive models. Generally, the approach is employed in regression and clas-
sification operations. Gradient boosting, like other boosting approaches, allows for the
generalization and optimization of differentiable loss functions. The Extreme Gradient
Boosting (XGB) technique extends the extent of gradient boosting. It mainly aimed at
increasing the performance and speed of a ML model. By parallelizing DT computations, it
enhances the model’s performance. Table 3 contains the parameter values of the XGB using
in the study.

Table 3. Extreme Gradient Boosting classifier parameters value.

Parameter Value

learning_rate 0.1
max_depth 5

min_child_weight 1
eval_metric mlogloss

AdaBoost: Adaboost (AB) is also an ensemble-based model that utilizes predictions
from tiny one-level DTs to create a single prediction. AdaBoost algorithms are used because
they attempt to utilize many weak models and then adjust predictions by adding further
weak models. The training approach starts with a single decision tree, which is used
to detect and weight misclassified samples in the training dataset. Table 4 contains the
parameter values for AB.

Table 4. AdaBoost classifier parameters value.

Parameter Value

n_estimators 100
learning_rate 0.01

CatBoost: CatBoost stands for categorical boosting. It is also based on the DT and
gradient boosting but with reduced parameters. Therefore, CatBoost takes less training
and testing time as compared with the other ensemble models. This model usually gives
good performance with the default parameters. CatBoost can be applied on the numeric
data after performing the data encoding. In the proposed study, most of the features were
categorical; furthermore, for the non-categorical attributes, data encoding was performed;
therefore, Catboost was used. Table 5 contains the parameters values for the Catboost used
in the current study.
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Table 5. Catboost classifier parameters value.

Parameter Value

iterations 5
learning_rate 0.8

3.4. Evaluation Metrics

The proposed model’s performance was compared in terms of accuracy, precision,
recall, F1, Area Under the Curve (AUC), and score time. Furthermore, the outcome of
the classifiers was also represented using a confusion matrix. The matrix contains four
variables, i.e., malicious DNS that is classified as malicious is represented as True Positive
(TP), and malicious DNS that is classified as non-malicious is represented as False Positive
(FP). Furthermore, non-malicious DNS that is classified as non-malicious is represented by
True Negative (TN), and non-malicious DNS that is classified as malicious is represented
by False Negative (FN).

Accuracy (Acc) represents the ratio of correctly classified DNS to the total number of
DNS in the test set.

Acc =
(TP + TN)

(TP + FP + TN + FN)
(1)

Recall (R), also known as sensitivity, represents the ability of the model to correctly
classify the malicious DNS.

R =
TP

(TP + FN)
(2)

Precision (P) represents ratio of correctly predicted malicious DNS to the sum of
correctly and incorrectly predicted malicious DNS.

P =
TP

(TP + FP)
(3)

F1-score represents the harmonic mean of precision and recall.

F1 =
(2× P× R)
(P + R)

(4)

Area Under the Curve (AUC) is used to test and compare binary classification model
performance. It quantifies your predictive classification model’s discriminating ability.

AUC =
(Percent Concordant + 0.5× Percent Tied)

100
(5)

Furthermore, for the detection of malicious DNS, time is one of the significant factors.
Therefore, score time is also calculated, which corresponds to the time taken for the model
to make the prediction. Score time is represented in seconds.

4. Experiments and Results

To perform the experiments, six ML models were used. The ML classifiers included
both simple classifiers, such as DT and NB, and ensemble classifiers, such as RF, XGB, RF,
AB, and Catboost. Python (ver. Python 3.10.1) was used to build the proposed models using
google collab. The libraries used in the study were pandas, numpy, matplot, sklearn, and
Dalex. The dataset used in the study initially contained 32 features and a target class that
classifies the samples into malicious and non-malicious domains. Two sets of experiments
were performed, i.e., the dataset before feature selection (number of features 27) and after
the feature selection (number of features 10). Feature selection was performed using the
forward sequential feature selector. The holdout method was used to divide the dataset into
training and testing with the ratio of 75:25. Figure 3 contains the flow of the experimental
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setup adopted in the current study. Table 6 contains the testing result of the classification
models before feature selection. However, Table 6 represents the testing results of the
classification model after the feature selection.
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Table 6. Classification results of the models before feature selection.

Classifier AUC Accuracy Recall Prec F1-Score Score Time

Decision Tree 0.9582 0.9006 0.8561 0.9385 0.8954 0.0077
Naïve Bayes 0.9392 0.9024 0.8840 0.9168 0.9001 0.0138
Random Forest 0.9989 0.9838 0.9886 0.9790 0.9838 0.5121
Ada Boost 0.9971 0.9721 0.9743 0.9697 0.9720 0.3601
XGB 0.9991 0.9856 0.9876 0.9836 0.9856 0.0962
Cat Boost 0.9974 0.9753 0.9841 0.9668 0.9754 0.0147

Tables 6 and 7 list the performance measures of the applied classifiers before and after
feature selection, respectively. XGB outperformed the other classifier with the full features
in terms of accuracy, AUC, precision, and F1-score. However, RF achieved the highest
recall, which is similar to the recall achieved by XGB. While the DT attained the least score
time of 0.0077 s. Furthermore, the accuracy of RF and XGB is also related in both the
experiments. Similarly, in the second experiment, with the selected features, XGB attained
the best outcome as compared to the other classifier with all the measures except the recall
and time elapsed. The performance of the XGB with selected features was reduced by
0.0038, which is a very small difference; however, the number of features was reduced from
27 to 10. However, the score time was reduced to more than half. Like the first experiment,
in the second experiment, DT achieved the least score time of 0.0078 s; nevertheless, it
achieved a lower outcome in other measures. However, NB achieved the lowest accuracy
of 0.8479 after the feature selection. While RF took the huge score time of 0.4500 s. Among
the ensemble models, CatBoost achieved the lowest score time, since one of the key benefits
of Catboost is that it is faster compared to the other ensemble models.

Table 7. Classification results of the models after feature selection.

Classifier AUC Accuracy Recall Prec F1-Score Score Time

Decision Tree 0.9700 0.9223 0.9066 0.9426 0.9243 0.0078
Naïve Bayes 0.9640 0.8479 0.9260 0.7580 0.8336 0.0137
Random Forest 0.9990 0.9812 0.9851 0.9773 0.9812 0.4500
Ada Boost 0.9963 0.9683 0.9718 0.9649 0.9683 0.3235
XGB 0.9990 0.9818 0.9857 0.9779 0.9818 0.0424
Cat Boost 0.9970 0.9721 0.9736 0.9709 0.9723 0.0088

Keeping in view the performance of the models and time elapsed, XGB with the
reduced features are selected as a final model for the detection of the malicious DNS. XAI
was applied on the XGB trained model with the reduced feature set. Figure 4 contains the
confusion matrix of the models without the feature selection algorithm. Figure 5 contains
the confusion matrix of the models with the selected features. Furthermore, Figure 6
contains the ROC curve of the models after the feature selection.



Sustainability 2022, 14, 7375 13 of 22

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

Keeping in view the performance of the models and time elapsed, XGB with the re-

duced features are selected as a final model for the detection of the malicious DNS. XAI 

was applied on the XGB trained model with the reduced feature set. Figure 4 contains the 

confusion matrix of the models without the feature selection algorithm. Figure 5 contains 

the confusion matrix of the models with the selected features. Furthermore, Figure 6 con-

tains the ROC curve of the models after the feature selection.  

 
 

Decision Tree Naïve Bayes 

 
 

Random Forest Ada Boost 

  

Extreme Gradient Boosting Cat Boost 

Figure 4. Confusion matrix of the models without using forward sequential feature selector. Figure 4. Confusion matrix of the models without using forward sequential feature selector.



Sustainability 2022, 14, 7375 14 of 22
Sustainability 2022, 14, x FOR PEER REVIEW 14 of 22 
 

 

  

Decision Tree Naïve Bayes 

  

Random Forest Ada Boost 

 
 

Extreme Gradient Boosting Cat Boost 

Figure 5. Confusion matrix of the models with the selected features using forward sequential feature 

selector. 
Figure 5. Confusion matrix of the models with the selected features using forward sequential feature
selector.



Sustainability 2022, 14, 7375 15 of 22

Figure 6. ROC curve of the models with the selected features using forward sequential feature
selector.

5. Explainable Artificial Intelligence (XAI)

In the past years, ML- and DL-based models have revolutionized automated predic-
tion and decision-making systems. Nevertheless, the non-linear models like SVM, ANN,
ensemble-based models, and DL have achieved empirical success in solving highly complex
problems by introducing and increasing several parameters and layers. This increase has
no doubt substantially enhanced the performance of the models, but also compromised the
interpretability of the models. These models are considered as the black-box models [5].
The opaqueness of these complex models sometimes leads to the resistance because the pre-
dictions or decision made are not justifiable. Similarly, in the cyber security, interpretability
of the prediction models is a significant factor as it enhances trust. Otherwise, they may
endanger critical information, making it vulnerable to threats.

Therefore, the focus of the proposed study is to develop the models for the efficient
and interpretable malicious domain detection using ML and XAI. Predictions with the
explanations empower the AI-based system with trust and reliability. Furthermore, it
allows us to address the question, “why has a particular prediction been made?” [39].
Some of the ML models are inherently interpretable, while others are non-interpretable
models. There are two types of interpretation: model specific and model agnostic. Model
agnostics have a post hoc interpretation that has been generated using XAI. These post hoc
interpretations introduce the interpretability without compromising the performance of
the model. Furthermore, the scope of the interpretation can be either global or local. In the
current study, the global interpretation is implemented using global surrogate and Shapley.
However, for the local interpretation, LIME is used.

5.1. Global Surrogate Model

The Global Surrogate Model (GSM) is a post hoc interpretation technique that is
learned to estimate the behavior of the prediction of the opaque models. The aim is to
approximate the predictions of a complex model (XGB) using a simple interpretable model
(e.g., a DT) that is intuitive, easy to validate, and explainable to a layman. These models
are applied on the already trained black-box ML or DL model rather than the training
dataset. These models provide the general description of how prediction has been made
by the model. In the proposed study, we extract the rules using the induced Decision Tree.
Figure 7 contains the induced Decision Tree for the proposed XGB model.
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The Algorithm 2 below is used to create an interpretable global surrogate Decision
Tree (DT) model for XGB.

Algorithm 2: Global Model Explanation with Surrogate Model Decision Tree

Input:
a. Train classifier ( f Model)
b. Pretrain Surrogate Decision Tree model (sgModel)
c. Dataset (Dset)

Output:
Global Explanation with Global Surrogate Model

Method:
//Get instance from Dataset and collect prediction from fModel

1. LOOP record IN Dset DO
//collect model prediction

a. Pred ← f Model(record)
//train the surrogate Decision Tree model

b. sgModel. f it(record, Pred)
2. return sgModel

The following rules are extracted from the global surrogate using DT for XGB.

→ if (NumericRatio > 0.05) & (ASN > 375.5) & (NumericSequence ≤ 3.5) → class: 1
(probability: 98.12%) | based on 39,205 samples

→ if (NumericRatio ≤ 0.05) & (NumericSequence ≤ 0.5) & (SubdomainNumber ≤ 25.5)
→ class: 1 (probability: 100.0%) | based on 36,965 samples

→ if (NumericRatio > 0.05) & (ASN ≤ 375.5) & (StrangeCharacters ≤ 6.5) → class: 1
(probability: 83.55%) | based on 4316 samples

→ if (NumericRatio > 0.05) & (ASN ≤ 375.5) & (StrangeCharacters > 6.5) → class: 1
(probability: 89.67%) | based on 3408 samples

→ if (NumericRatio > 0.05) & (ASN > 375.5) & (NumericSequence > 3.5) → class: 1
(probability: 57.84%) | based on 733 samples

→ if (NumericRatio ≤ 0.05) & (NumericSequence > 0.5) & (ASN ≤ 7618.5)→ class: 1
(probability: 98.15%) | based on 324 samples

→ if (NumericRatio ≤ 0.05) & (NumericSequence > 0.5) & (ASN > 7618.5)→ class: 1
(probability: 79.14%) | based on 302 samples

→ if (NumericRatio ≤ 0.05) & (NumericSequence ≤ 0.5) & (SubdomainNumber > 25.5)
→ class: 1 (probability: 99.19%) | based on 247 samples
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5.2. Shapley Values

Shapley values allow us to generate the global and local explanation of the ML models.
Shapley uses the concept of game theory to identify the contribution of each feature in
the prediction. In the current study, Shapley values were computed for the testing data
to check the global interpretation. Figure 8 contains the Shapley values for the malicious
DNS detection. The figure contains two colors for representing the higher and lower value
attributes. Red represents the high, while blue represents the low.
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The Algorithm 3 given below is used for calculating the Shapley value for a single
attribute is.

5.3. Local Interpretable Model-Agnostic Explanations (LIME)

Conversely, Local Interpretable Model-Agnostic Explanations (LIME) generate the
local interpretation of the model and is used to interpret the behavior of a model with a
single instance of dataset, i.e., it is used to explain the individual predictions or to find out
which input features are important for the particular prediction. For LIME, from the test
data, samples are randomly selected for generating an explanation. In the current study,
we randomly selected two samples, one sample for each category, i.e., malicious and non-
malicious. Figure 9 represents the LIME for the malicious instance and Figure 10 represents
the LIME for the non-malicious instance. In the figures, the green color represents the
features that are contributing to the malicious instance and the red color indicates the
features that are contributing the non-malicious class. In Figure 9, among the selected
features, the last update date contributes to the non-malicious domain class. However, the
remaining nine attributes contribute towards the malicious class.
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Algorithm 3: Global Feature Explanation with SHAP

Input:
a. Pretrain classifier ( f Model)
b. Example/instance (x)
c. Dataset (Dset)
d. Number of iteration N

Output:
Global Explanation with average SHAP values for each feature (S)

Method:
//Get instance from Dataset and collect prediction from fModel

1. LOOP n IN N DO
//select random instance from Dset

a. rec ← Dset(n)
//choose random premutation p of the feature values

b. Order instance x : x0 =
{

x1, . . . xn, . . . xp
}

c. Order instance rec : rec0 =
{

rec1, . . . , recn, . . . recp
}

//construct two new instances
//with features

d. n : x+n =
{

x1, . . . xn−1, xn, recn+1, . . . recp
}

//without features
e. n : x−n =

{
x1, . . . xn−1, recn+1, . . . recp

}
//compute marginal contribution

f. Cn
i = f (x+n)− f (x−n)
//compute SHAP value as the average

g. Ci(x) = 1
N

N
∑

i=1
Cn

i

h. S ← Ci(x)
2. return S
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The Algorithm 4 given below is used to create the LIME model.

Algorithm 4: Local Explanation with LIME

Input:
a. Train classifier ( f Model)
b. Instances (x) and it’s Perturb datapoints (x′)
c. Dataset (Dset) with N samples
d. Similarity kernel SKx

Output:
Local Explanation with LIME (L)

Method:
//create empty cluster
1. C ← {}
2. LOOP ind IN {1, 2, 3, . . . , N} DO

//collect Perturb data around (x′)
a. c

′

ind ← sample_around(x′)
//collect the data in cluster
b. C ← C ∪

(
c
′

ind, f Model(cind), SKx(cind)
)

//Calculate LR with c
′

ind as features, f Model(cind) as target
3. L← LinearRegression(C, N),
4. return L

6. Further Discussion

The proposed study aims to develop a model for the detection of malicious DNS
with the better performance, speed, and interpretability, which could protect the system
and data from the malicious attack. The models used were classical ML models like DT
and NB; furthermore, ensemble models like RF, AB, XGB, and CB were used with the
balanced malicious DNS dataset published by Magalhaes et al. [19]. Feature selection was
performed using the sequential feature selector. Furthermore, XAI was used to incorporate
the interpretability in the ensemble-based black-box ML models. The current dataset was
also used in the study by Marques et al. [17]. The authors initially published the dataset and
then used the ML models for the malicious DNS. They used several classical ML models like
SVM, LR, LDA, KNN, DT (CART), and NB. Furthermore, three feature selection algorithms
were compared like univariate filter, Recursive Feature Elimination (RFE), and feature
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importance. They found that CART achieved the highest results compared with the other
models. Table 8 contains the comparison of the proposed model with the benchmark.
As seen from the table, the proposed study achieved better results compared with the
benchmark. However, the score time of benchmark was 0.025 s, which is lower compared
with the current study, i.e., 0.0424 s. Nevertheless, score time is one of the significant
measures, but considering the outcome achieved in terms of recall, accuracy, precision, and
F1-score, the difference of the score time is acceptable.

Table 8. Performance comparison of the proposed study and the benchmark.

Ref Accuracy Recall Prec F1-Score Score Time

[17] 0.962 0.952 0.973 0.9590 0.025 s
Proposed Study 0.9818 0.9857 0.9779 0.9818 0.0424 s

To summarize, the proposed study achieved significant outcomes. Furthermore, the
XAI considered in the study enhanced the interpretability along with the performance of
the model. XAI has recently gained a lot of attention in several domains like healthcare,
education, business, engineering, cyber security, and network monitoring. Indeed, the
model achieved promising results but also suffers from the limitation that the study only
investigate a single dataset. Furthermore, the time to detect the malicious DNS needs to be
further reduced by investigating some light models like LGBM.

7. Conclusions

The significant effects of malicious domains motivated many researchers to find more
effective methods to classify malicious and non-malicious domains. Additionally, the
traditional approaches would not be beneficial in the near future due to the dependency on
human expertise that may not cooperate with the rapid development of the internet. In this
paper, we examined multiple ML models. such as DT, NB, RF, AB, XGB, and CB, to detect
malicious domains using the datasets containing 45,000 samples of each of the malicious
and non-malicious domains. Feature selection was performed using the forward feature
selector. Two experiments were conducted, i.e., using the preprocessed data (27 features)
and the reduced features data (10 features) after the feature selection. XGB outperformed
all the classifiers using 27 features with an AUC of 0.9991, accuracy of 0.9856, precision
of 0.9836, F1 score of 0.9856, while the RF achieved the highest recall of 0.9886 without
feature selection. The score time is one of the most important factors, and the results
achieved by XGB with and without feature selection were similar, while the score time was
much less; therefore, we considered XGB with the feature selection as the final model for
the XAI. The XGB algorithm using feature selection techniques produced values of 0.999,
0.9818, 0.9779, and 0.9818 in AUC, accuracy, precision, and F1-score, respectively, with the
score time of 0.0424. XAI was used for the global and local interpretation using the Global
Surrogate Model, Shapley, and LIME. The study outperformed the benchmark study except
for the score time and has thus shown promising results. However, there is still room for
improvement by investigating the performance of the proposed model with larger and
more datasets.
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