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Abstract: Aquaculture is the fastest growing animal food production sector worldwide and is
becoming the main source of aquatic animal foodstuff for human consumption. However, the
aquaculture sector has been strongly criticized for its environmental impacts. It can cause discharge
and accumulation of residual nutrients in the areas surrounding the production farms. This is because,
of the total nutrients supplied to production ponds, only 30% are converted into product, while the rest
is usually discharged into the environment to maintain water quality in aquaculture culture systems,
thereby altering the physic-chemical characteristics of the receiving water. In contrast, this same
accumulation of nutrients is gaining importance within the agricultural sector, as it has been reported
that the main nutrients required by plants for their development are found in this aquaculture
waste. The purpose of this review article is to indicate the different aquaculture production systems,
the waste they generate, as well as the negative effects of their discharge into the environment.
Biofiltration and bioremediation processes are mentioned as alternatives for aquaculture waste
management. Furthermore, the state of the art in the treatment and utilization of aquaculture waste
as a mineral source for agricultural nutrition through biodigestion and biomineralization processes
is described. Finally, aquaponics is referred to as a biological production approach that, through
efficient use of water and recycling of accumulated organic nutrients in aquaculture systems, can
contribute to addressing the goals of sustainable aquaculture development.

Keywords: environment; eutrophication; particulate fraction; effluent; treatment

1. Introduction

Aquaculture is an activity aimed at the cultivation of aquatic animals such as freshwa-
ter or marine fish, molluscs, crustaceans, and emerges as a strategy to replace traditional
fishing, reducing the pressure exerted on natural freshwater or marine populations [1].
Aquaculture has experienced the highest average annual growth in the last 10 years, with
a projected contribution of 52% of fishery products for human consumption by 2025 [2].
Every year, this sector generated around 171 million tons with an approximate value of
36,000 million US dollars, of which 47% came from the aquaculture sector, with Asia being
the largest representative at 89% [3].

The aquaculture sector generates jobs and food products; however, it causes envi-
ronmental problems due to the discharge of organic matter (OM) and nutrient-rich waste
that pollutes the water [4]. The nutrients supplied to the farmed animals are not fully con-
sumed, with only 30% being utilized by fish, molluscs or crustaceans, the rest settling and
accumulating as a particulate fraction (commonly referred to as “sediment” or “sludge”)
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composed mainly of OM, nitrogen (N), and phosphorus (P) [5]. Previous research reports
an annual discharge of 27.0 kg/ha of N and 9.0 kg/ha of P in Norwegian fish farms [6].
Another report an annual discharge of 84.0 kg/ha of N, 21.0 kg/ha of P and 2400 kg/ha of
OM [7]. Whereas, in fish farms in Japan, the rate of OM accumulation is between 3.9 and
11.7 mg/day [8].

Generally, these nutrients are removed to maintain water quality in aquaculture
systems by discharging them into the environment altering the physico-chemical char-
acteristics of the receiving water, decreasing dissolved oxygen (DO) concentration, but
increasing; the total suspended solids (TSS), the biological oxygen demand (BOD), and
chemical oxygen demand (COD). Furthermore, it decreases benthic fauna [9]. In contrast,
this same accumulation of nutrients is gaining importance, as it has been reported that it
contains the main nutrients required by plants, with a high potential for their treatment
and reuse as sources for agricultural fertilisation [10].

Therefore, this article indicates the different aquaculture production systems, the
waste they generate, as well as the negative effects produced by their discharge into the
environment. Biofiltration and bioremediation processes are mentioned as alternatives for
the management of aquaculture waste. Furthermore, the state of the art in the treatment and
use of the aquaculture particulate fraction as mineral sources for agricultural fertilisation
by means of biodigestion and biomineralization processes is described. Finally, aquaponics
is eluded as a biological production approach which, through the efficient use of water and
the recycling of organic nutrients accumulated in aquaculture systems, can help to address
the objectives of sustainable aquaculture development.

2. Aquaculture Production Systems

Worldwide, the aquaculture is classified according to the degree of production inten-
sity (balanced feed, sowing density, artificial aeration, among others), such as extensive,
semi–intensive, and intensive. The extensive systems use basic management levels, since
they do not make use of ingredients for the production of this type of systems, the organ-
isms grow up on their own and productivity is limited by natural water conditions, stocking
density is low, which generate a production not greater than 500 kg/ha, the semi-intensive
systems make use of additional ingredients, such as feed with high protein content, thera-
peutic products to prevent disease, as well as chemical and organic fertilizers to increase
natural productivity of the system, support stocking densities from 10–30 fish/m3, and
reach production oscillating from 1000 to 2500 kg/ha, whereas in intensive aquaculture,
greater yields are achieved than what the capacity of the natural environment allows, by
means of techniques, such as balanced feed, artificial aeration, as well as mechanical and
biological filtration supporting densities from 60–120 fish/m3 and reaching productions
from 10,000 to 80,000 kg/ha; the aquaculture systems are classified such as flow, pond,
recirculating, weir and net cages and floating and bottom farming (Table 1) [2,11].

Table 1. Aquaculture systems used in the production of marine and freshwater organisms and waste
production.

Aquaculture System Characteristics Species Production Waste Production Reference

Flow

This system has rectangular canals
with an outlet drop at the end of the

structure allowing elevating O
concentration and releasing CO2. The
flow or canal system use run-off waters

coming from rivers or springs.

− Siluriformes
− Solea solea
− Oncorhynchus mykiss

The water is not retained
the sufficient time for

significant OM biological
decomposition processes

to develop, thus
continuous waste

produced is discharged to
the environment.

[12]
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Table 1. Cont.

Aquaculture System Characteristics Species Production Waste Production Reference

Pond

This system is made up of artificial
structures covered with high-density

plastic to retain water for long periods
of time, water quality is controlled by

natural, chemical, and biological
processes that occur in ponds. A

constant water source is necessary to
guarantee sufficient capacity to achieve
a daily recharge of at least 10% of total

pond volume to allow eliminating
NH4

+ and OM excess.

− Cyprinus carpio
− Cherax

quadricarinatus
− Dendrobranchiata
− Oreochromis niloticus
− Caridea

Around 80 to 90% of dry
matter and C, as well as

70 to 80% of N and P end
up as waste. From 1 to
100 kg/ha of daily feed

rate, approximately
350 mg/m2/day is

excreted by fish as waste.

[13–15]

Recirculating aquaculture
system (RAS)

This system consists of intensive fish
production that uses water treatments
to facilitate recycling. RAS generally

include: (1) Settlers and micro-screens
for collecting sediment and suspended
particles, (2) Nitrifying biofilters and
(3) Gas exchange devices to eliminate

dissolved CO2 and add the O.

− Maccullochella peelii
− Lates calcarifer
− Oreochromis niloticus
− Solae senegalensis
− Coregonus lavaretus

RAS consume a small
quantity of water (only 5%
per day to compensate for

the loss caused by
evaporation, solid

elimination, and plant
absorption) and generate

pollutants of small volume
but with a high

nutrient concentrate.

[16–18]

Open-net pen or net cage

This system basically represents
“fencing” a portion of water. Net cages
are systems that retain farmed species

in a confined area, excluding
unwanted animals from the

surrounding water body, this system
depends on the water course where

this type of system is located, in which
the number of pollutants dumped in

the environment cannot be controlled.

− Salmo salar
− Cyclopterus lumpus
− Oplegnathus

punctatus
− Lates calcarifer

Sites with bad circulation
imply low DO

concentration conditions,
and the accumulation of

metabolic waste promotes
algal growth and many
other benthic organisms
that adhere and colonize

around the cage, reducing
water movement through

the cage severely and
deteriorating
water quality.

[19]

Floating and bottom

This system uses similar principles to
those of open–net pen or cage-net
systems, which is why they also

depend on water movement as well as
its natural quality to supply the

necessary nutrients and conditions for
the development of farming bivalves.

This system is those
destined for bivalve
mollusk production

(oysters, mussels, clams,
and scallops)

Likewise, they cannot also
control the number of
pollutants dumped in

the environment

[20]

3. Aquaculture Waste

Waste produced by aquaculture is classified into four forms: gases (H2S), liquids
(effluents), semisolids, and solids (particulate fraction), of which the last two are known
as sediments or sludge [21]. Solid waste or sludge is further divided into two categories:
suspended solids and settleable solids [22].

3.1. Gas Emission from Aquaculture

Within the aquaculture systems, sulfur (S) is a residual chemical element that origi-
nated from metabolic waste produced by farmed organisms; its form is mainly as a sulfate
ion since, in aerobic sediment conditions in suspension, S decomposes as sulfide (S2−) and
oxidizes to sulfate (SO4

2−). However, in aquaculture, as feed applied to culture systems
increases, the accumulation of organic detritus is promoted, causing severe anoxia condi-
tions (lack of oxygen) in sediments, this situation makes anaerobic bacteria use the oxygen
molecules present in sulfate ions, increasing H2S production, any concentration of H2S
interrupts the respiration of the aquatic animals, causing them stress and making them
susceptible to diseases [23].
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3.2. Aquaculture Effluents

In most aquaculture systems, food supply is the main cause of water pollution and
deterioration. Only 30% of the provided nutrients turn into a product, whereas the rest
must be removed and generally dumped in the environment in the form of effluents (fluids
loaded with solid, liquid, or gaseous waste) [24]. Aquaculture effluents include organic
compounds, such as proteins, lipids, carbohydrates, vitamins, and minerals, while inorganic
waste products accumulate mainly as NH4

+, NO2
−, NO3

−, bicarbonates, and phosphates,
of which N and P are the main components from effluents that cause environmental
pollution [25]. The rate of pollutants released to the environment is directly ruled in function
of the amount of feed consumed and digestibility. Generally, pond and recirculation systems
produce a smaller number of effluents to be discharged but with much higher OM and
nutrient concentrations, while flow, net cage, or open-net pen, floating and bottom farming
systems emit greater flow but with a lower concentration of these pollutants [26].

3.3. Aquaculture Particulate Fraction

Waste conformed by N, P, and dissolved organic carbon compounds negatively affects
the environment [27], these particles are mainly formed from unconsumed food, waste
produced by fish, and the residual part where unassimilated forms accumulate the greatest
content of incoming nutrients to the aquaculture systems. Additional treatments are thus
necessary for the good use of minerals [28].

Within aquaculture production systems, up to 70% of the feed supplied may end up
as a particulate fraction at a daily average of 0.4–12.3% [29]. This matter usually contains
approximately 7–32% N, as well as 30–84% of P provided for the development of the
cultured organisms. Furthermore, the aquaculture particulate fraction is divided into two
categories; suspended solids and settleable solids [30]. Suspended solids are fine particles
ranging from 30 to 100 micrometers (µm), so they do not settle and remain suspended in
the water of aquaculture systems, making them very difficult to collect [22]. In contrast,
settleable solids are larger particles (100 > µm), which form sediment in a short period of
time, making them easier to collect and remove from culture systems [31].

4. Aquaculture Waste Effect on the Environment

One of the main effects on the environment caused by aquaculture is the eutrophication
of the surrounding areas of fish farms; this is because only 30% of supplied N is used in
fish farms. This is because the rest is discharged as effluent with each water recharge in this
system. Nutrient levels in the receiving bodies are thus elevated above normal and start an
ideal environment for anoxic sediments and changes in benthic blooms in the communities
in the areas where these residuals are dumped [32].

Change is generated by suspended solids, which reduce light penetration through
water, inhibiting the photosynthesis process of phytoplankton and marine grass, and
thus generating an increase in mortality of these organisms [33]. Subsequently, bacterial
degradation of dead plants consumes oxygen in water, affecting aquatic species farming
negatively. In extreme circumstances, profiles of aquatic organisms may transform into
species tolerant to sediments, which affects the aquatic food chain on its root. Furthermore,
when the particulate fraction settles in the bottom, it tends to biologically degrade due to
its OM content and, in consequence, transforms the bottom of ponds or cultivation areas to
anaerobic conditions [34].

Alterations may provoke significant changes in the community composition of benthic
organisms. For example, a report found that water quality and sediments were negatively
affected by effluents dumped at 50 and, 150 m while studying the impact of shrimp
effluents dumped on white clams (Dosinia ponderosa) at distances of 50, 150, and 300 m
from the discharge area. Physiological and stress conditions of clams in the affected areas
deteriorated from the discharge area; glucose, lactate, cholesterol, and aminotransferase
alanine were altered, and thermal shock protein transcriptions were expressed in these
clams [35]. Another investigation evaluated the environmental impact caused in part by
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yellowtail (Seriola quinqueradiata) farming on sediments and water quality during low
and high feeding times. They observed that the OM charge in sediments was significantly
higher than the control site (100 m in distance), covering an impact area of 10 m surrounding
the fish farm, accumulating a high level of enriched organic sediments. It subsequently
increases in high volatile sulfur acid in superficial sediments, as well as elevated NH4

+ and
phosphate (PO4

3−) concentrations [8].

5. Aquaculture Waste Treatment

In order to mitigate the impacts of waste in the environment, and at the same time
take advantage of the high degree of biodegradable organic substances and nutrients they
contain, the main treatment methods currently used are: biofiltration by means of artificial
systems made up of substrates and plants with the capacity to absorb and reduce the
content of nutrients, OM and toxic substances in wastewater [36]. Another method is
bioremediation by means of microbiological agents attached to a surface through a matrix
of extracellular polymeric substances with the ability to remove, attenuate or transform
pollutants in water [37]. This is alongside the use of deposit feeders such as polychaetes [38]
and sea cucumbers [39,40] due to their ability to assimilate particulate organic residues, as
they accelerate the depletion of organic matter pools through bioturbation, thus improving
sediment quality [41].

Moreover, it should be noted that the particulate fraction is the most harmful type of
waste produced by aquaculture systems. Therefore, if it is not removed from the ponds,
it can degrade, significantly increasing the concentration of TSS, causing a detriment to
water quality. In addition, the aquaculture particulate fraction is the residual part where
most of the nutrients entering the aquaculture systems accumulate in a non-assimilable
form. It is thus necessary to carry out additional treatments for the correct use of these
minerals [42]. Biodigestion and biomineralization are 2 of the most practiced strategies
for aquaculture particulate fraction treatment, where treatment results are expressed in
percentage reduction in pollutants such as COD, PO4

3−, NH4
+, NO2

−, NO3
−, TN, and TP,

as well as in quantity of recovered macro/micronutrients of agricultural interest [43–45].

5.1. Biofiltration of Aquaculture Waste

A microbial oxidative process transforms toxic metabolites such as NH3
+ or NO2

−

into chemical forms less toxic (ammonium or nitrate) to culture organisms through the
intervention of nitrifying bacteria [46]. Biofiltration of aquaculture waste consists of sub-
strate and plant systems used for filtration, reduction, and removal of suspended solids [47]
macro and micronutrients [48] as well as heavy metals [49]. Where the removal of these
components depends on a complex interaction of physical, chemical, biological processes
(sedimentation, adsorption, coprecipitation, cation exchange, photodegradation, phytoaccu-
mulation, biodegradation, and microbial activity) and mainly on the type of plant used, as
well as its absorption rate [50] in each retention time [51]. In recent years, the use of artificial
systems associated with halophytes [52] and macrophytes has been highlighted [53–55].

5.2. Bioremediation of Aquaculture Waste

The bioremediation is defined as the elimination, attenuation or transformation of
pollutants present in aquaculture waste, through the application of biological processes
carried out by autotrophic and heterotrophic communities, cyanobacteria, bacteria (purple,
sulphate reducing and non-reducing) and diatoms among another taxonomic groups, ag-
glutinated in a “biofilm” or “microbial mat” [56]. Understood as any group of organisms in
which cells stick together and adhere to a surface by excreting a matrix of extracellular poly-
meric substances, these communities act simultaneously and synergistically on each of the
organic and inorganic pollutants present in the water [57]. In recent years, the use of benefi-
cial biological agents such as bacteria [58,59], biopolymers [10,60,61], microalgae [51,62–70]
and macroalgae [71,72] have been used in bioremediation.
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5.3. Biodigestion of Aquaculture Waste

Biodigestion is a simple and efficient process; it is commonly used to stabilize mu-
nicipal and industrial organic waste. However, in recent years this approach has gained
importance as a form of aquaculture waste treatment. This process requires low energy cost,
and results in high methane (CH4) recovery, CO2 and H2S used in biogas production, as
well as achieving a reduction in the mass and volume of aquaculture particulate fractions.
In anaerobic digestion, nutrients such as NH4

+ and P are released from the nitrogenous
OM, which offers the feasibility of recovering these minerals [73].

Previous studies in the treatment of aquaculture particulate fractions have used anaero-
bic digesters such as batch-fed sequencing digesters [74] and fully stirred tank reactors [75].
They have been shown to facilitate the release of intracellular material, increasing its
biodegradability, thereby improving the biogas production obtained, with a shorter reten-
tion time for complete digestion. Evaluating the anaerobic digestion of particulate fractions
of a rainbow trout culture by batch reactors, found that, at 10 days, anaerobic digestion
solubilized 23.5% of the total Kjeldahl N as total ammonia nitrogen (TAN) and 53.0% of the
total P as orthophosphates, and the biochemical methane potential was 318 g CH4 g TVS0,
representing 65% digestion [74,76]. Otherwise, the addition of carbohydrates at a C/N
ratio 1 to 15 as a pre-treatment for anaerobic digestion of brackish aquaculture particulate
fractions in an anaerobic sequencing reactor (ASBR) increased gas production and COD
removal efficiency by 80% compared to untreated residuals. In addition, the concentrations
of soluble oxygen and PO4

− increased, generating an average gas production of 0.08 g
COD/L per day [77]. By gradually increasing the organic load (OLR) in aerobic digestion
of particulate fractions from brackish media, observed a 45% improvement in the yield
of methane produced was observed [78]. Another report, by applying four different pre-
treatments (chemical, mechanical, thermal, and biological), as elements of improvement
for anaerobic digestion of Nile tilapia waste, observed an increase in TAN release, as
well as an improvement in NO2

− and STT removal of 90 and 20%, respectively [76]. The
applied biodigestion processes in Atlantic salmon (Salmo salar) aquaculture waste and a
resulting solution as nitrogen fertilization source on barley (Hordeum vulgare) cultivation,
expressed aquaculture sludge reduction average of 20%, as well as relative agronomic
efficiency from 50–80% in compared with the traditional mineral fertilizers [77]. Studying
the effect of anaerobic digestion on particulate fractions of Nile tilapia culture as fertilizer
sources in lettuce (Lactuca sativa) culture, plants grown in the system supplied with the
anaerobic solution expressed significantly higher yields than the hydroponic control. This
result was attributed to the presence of NH4

+, OM, rhizobacteria, fungi and humic acids
predominantly in the anaerobic residues. They play an important role in nutrient uptake
and are utilized by agricultural crops [79]. Another report, studying anaerobic digestion in
particulate fractions of lesser weever (Echiichthys vipera), observed that CH4 production
increased in relation to the amount of particulate fraction used, achieving an 8% increase in
yield by increasing the maximum methane potential and maximum methane production
rate from 66.8 mL CH4/g VSfed a 70.9 mL CH4/g VSfed y de 4.40 mL CH4/g VSfed-d a
5.59 mL CH4/g VSfed-d, respectively [42].

5.4. Biomineralization of Aquaculture Waste

This is a strategy used for aquaculture particulate fraction treatment that consists of
any reaction series such as hydrolysis, acidogenic, and methanogenic. These have as an
objective to recover macro/micronutrients of the particulate organic fractions by means of
aerobic and anaerobic bioreactors (organic matter containers) that lead to the formation
of assimilable mineral elements for plants. By using organic carbon contained in residual
OM per microorganism in aerobic and anaerobic environments, transformation of organic
phosphorus into phosphates occurs whose accumulation in aquaculture systems may reach
similar levels to hydroponic solutions [80].

By valuating nutrient mobilization under aerobic and anaerobic conditions for aquacul-
ture particulate fractions, we found that treatment resulted in a 3.2-fold increase in reactive
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soluble P, while anaerobic treatment was unaffected. Both aerobic and anaerobic treatment
resulted in an increase in K+ concentrations from 1 to 28.1 and 36.8 mg/L, respectively.
It is concluded that conditions support the mobilization of P and K+ with lower losses
of NO3

−, improving the delivery of these nutrients for plant production, thus reducing
the emission of nutrients by the aquaculture particulate fractions. In contrast, anaerobic
conditions revealed a complete loss of NO3

−, posing the risk of unwanted by-products
and more complicated to manage under commercial conditions [45]. In determining the
organic reduction (COD and TSS) and nutrient recycling performance of a Nile tilapia
culture, observed that, the system was able to remove at least 50% of TSS and COD, as
well as obtaining consistent mineralization in the range of 10–60% for all of the macro and
micronutrients [81]. Moreover, aerobic reactor yield in aquaculture particulate fractions
and mineralization of macro/microelements as a nutrient supplement for commercial
hydroponics and demonstrated that acid conditions (pH below 6) could increase nutrient
mineralization and mobilization significantly, such as P, K and, Ca. However, the opposite
effect was observed with respect to waste particulate reduction. A better elimination yield
was obtained in the high pH reactor [82].

6. Aquaponics

Currently, the aquaculture sector has been searching for alternatives in development
and technology transfer with a vision directed to treatment and maximum use of resources
(food, water, soil, and energy) to achieve sustainability of this productive activity [83].
The use of aquaponics recirculating systems has been identified as a biological productive
approach, which, through the efficient use of water and recycling of organic nutrients
accumulated in the aquaculture systems, may help to deal with the objectives of sustainable
aquaculture development [84–86] (Figure 1).
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Figure 1. Aquaponic system for food production: Plants and fishes.

In particular, these systems should be helpful for arid regions with non-cultivable
soil [87] with greatly brackish waters not suitable for irrigation [88], as well as for marginal
land and urban areas [89]. The efficiency of these systems have been demonstrated to
achieve an efficiency of 99% in water recycling, reaching demand of use lower than
100 L/kg of harvested fish [90].

In aquaponics, the metabolic waste produced by an aquatic organism is converted
to NO2

− through nitrifying bacteria (Nitrosomonas and Nitrobacter), which are used as
a fertilizer source for plant production [44]. For example, used an aquaponics system
for Nile tilapia and tomato (Solanum lycopersicum) production, tilapia production was
similar to that of the conventional RAS systems while tomato production was similar to
that obtained by conventional hydroponics [91]. Furthermore, with a conventional RAS
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system, 3.4 t of fish can be produced per year, as well as sufficient residual nutrients to
harvest 35 t of tomato per year [92]. Another report compared lettuce production between
cultivated in conventional hydroponic and aquaponic solutions of Nile tilapia revealed
that the aquaponics solution increased plant growth by 39% [93]. A study evaluated
the nutritional quality obtained in basil (Ocimum basilicum) hydroponic and aquaponic
production associated with crayfish (Procambarus spp.), where chlorophyll and nutrient
content in leaves did not show significant differences between the productive systems [94].

Comparing the quality and production of aquaponics and hydroponics tomato fruit,
the different cultivation systems reached similar production yields. Furthermore, the
parameters, such as lycopene and ß–carotene were similar in both systems [95]. A study
reported the potential of aquaponics systems in the reduction in aquaculture particulate
fractions and their use was as a fertilizer source in tomato (S. lycopersicum) cultivation [96],
these authors found that the system assessed expressed a weekly collection capacity of
dry OM, of 2.7–3.0 kg, as well as a production yield of 36% higher than hydroponics.
Another report contrasted lettuce cultivation yield by fertilizing with only one traditional
hydroponics and aquaculture solution made from the waste of common carp farming. They
observed that on average, final fresh and dry weights were 7.9 and 33.2%, respectively,
higher than in the fertilized culture with the aquaponics solution [97].

Assessed growth rates of juniper (Anethum graveolens), eruca (Eruca sativa), corian-
der (Coriandrum sativum), and parsley (Petroselinum crispum) between hydroponics and
aquaponics systems associated with herbivore carp (Ctenopharyngodon idella) farming and
found that throughout the three seasons the aquaponics method had similar productions
to those of the hydroponics method [98]. A study reported the use aquaponics solutions as
an alternative to those of hydroponics in lettuce production and found that leaf mineral
content did not show significant differences between both treatments. Furthermore, in
the fertilized system with aquaponics solution, water savings of 62.8% were obtained,
as well as a reduction in fertilization demand of 72% [99]. Another study reported the
nutrient recovery starting from particulate fractions in an aquaponics system of crucian
carp (Carassius auratus), observing a recovery capacity of macronutrients of up to 46% and
18% for micronutrients [30]. Comparing aquaponics with hydroponics in the distribution of
N and P, as well as their use efficiency in cherry tomato, basil, and lettuce crops, observed
that, in aquaponics between 59–70% of the total N input was lost and between 30–41%
was assimilated as biomass, while in hydroponics a loss of 76–87% was estimated, and
only 14–24% was assimilated. Of the total P input, in aquaponics 38–54% was lost and
46–62% was assimilated as biomass, while in hydroponics 79–89% was lost, and only
11–21% was assimilated. It is concluded that hydroponics is less efficient in nutrient use
by expressing a 2 times higher N loss through off-gassing and up to 3 times higher P loss
through inorganic P compared to aquaponics [100]. Evaluating the yield of common chicory
(Cichorium intybus), grown in aquaponics, in soil fertilized with particulate fractions from
Nile tilapia farming, as well as with chemical fertilization, observed that, the aquaponic
system expressed higher yields during the first harvest cycle, during the second harvest
cycle, the parameters of number of leaves, fresh matter and dry matter showed higher
values for the plants fertilized with the aquaculture particulate fractions than those treated
with chemical fertilization. These results suggest a cumulative effect of nutrients in the soil
after successive applications of aquaponic particulate fractions, therefore, they can be a
viable option to fertilize vegetables in the soil and obtain similar and possibly higher yields
than those of traditional mineral fertilization [101]. Therefore, metabolic waste generated
in aquaculture aquaponics practices is not seen as a pollutant but rather as a strategic
sector to make fertilizing sources for culture nutrition, avoiding the damages caused by
eutrophication in the environment generated by aquaculture [18,43,102].

7. Conclusions

Achieving sustainable development in the aquaculture sector means allowing a certain
permissible level of pollutants in water, but without reaching values that deteriorate the
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waters of the culture systems, thus avoiding their discharge into the environment. For
this reason, the aquaculture sector is currently looking for alternatives in the development
and transfer of technologies, with a vision directed towards the treatment and use of these
wastes. In this sense, several treatment technologies have been presented to mitigate the
problem mentioned above in this work. As a first approach, biofiltration using artificial
systems associated with halophytic and macrophyte plants was studied as one of the
most efficient and straightforward methods to implement in aquaculture systems to re-
duce and eliminate suspended solids, macro and micronutrients, as well as heavy metals.
Furthermore, bioremediation was discussed through beneficial biological agents such as
biopolymers, bacteria, microalgae, and macroalgae for the transformation of pollutants
through the application of biological processes. Besides, anaerobic biodigestion protocols
were set in perspective as systems representing a low energy cost in reducing the mass
and volume of aquaculture waste and produce a high recovery of CH4, CO2 and H2S used
in biogas production. With regards to biomineralization through aerobic and anaerobic
bioreactors, this leads to the formation of plant-assimilable mineral elements by utilizing
the organic carbon and phosphorus contained in the aquaculture waste. Finally, aquaponics
practices have been addressed as an alternative to create a more sustainable aquaculture
industry, in which the flora not only acts as a treatment system, but also provides a valu-
able source of food and energy. Therefore, in aquaponics, metabolic wastes generated in
aquaculture practices are not seen as a pollutant but rather as a strategic sector for the
manufacture of fertilizer sources for crop nutrition, thus avoiding eutrophication damage
to the environment generated by aquaculture.
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