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Abstract: Using remote sensing combined with machine learning (ML) techniques is a promising
approach to classify soybean cultivars. Therefore, the objectives of this study are (i) to verify which
input dataset configuration (using only spectral bands, only vegetation indices, or both) is more
accurate in the identification of soybean cultivars, and (ii) to verify which ML technique is more
accurate in the identification of soybean cultivars. Information was extracted from five central
irrigation pivots in the same region and with the same sowing date in the 2015/2016 crop year,
in which each pivot was cultivated with a different cultivar, in which the cultivars used were:
CV1—P98y12 RR, CV2—Desafio RR, CV3—M6410 IPRO, CV4—M7110 IPRO, and CV5—NA5909
RR. A cloud-free orbital image of the site was acquired from the Google Earth Engine platform. In
addition to the spectral bands alone, a total of 13 vegetation indices were calculated. The models
tested were: artificial neural networks (ANN), radial basis function network (RBF), decision tree
algorithms J48 (DT) and reduced error pruning tree (REP), random forest (RF), and support vector
machine (SVM). The five soybean cultivars were classified by the six-machine learning (ML) models
in stratified randomized cross-validation with k-fold = 10 and 10 repetitions (100 runs for each
model). After obtaining the r and MAE statistics, analysis of variance was performed considering a
6 × 3 factorial scheme (models versus inputs) with 10 repetitions (folds). The means were grouped
by the Scott–Knott test at 5% probability. The spectral bands were the most accurate among the tested
inputs in the identification of soybean cultivars. ANN was the most accurate model in identifying
soybean cultivars.

Keywords: artificial neural network; random forest; remote sensing; spectral bands; vegetation
indices; Landsat

1. Introduction

Soybean (Glycine max L.) is the major Brazilian agricultural commodity. The estimated
national production in the 2020/21 harvest was 135.91 million tons, which represents
an increase of 8.9% over the previous harvest [1]. In the international market, Brazilian
production represents 37% of the 363.19 million tons produced globally [2], thus placing it
in a position of international prominence [3,4].

The increase in soybean production worldwide is due to several factors, among which
we highlight the genetic improvement, which has contributed to providing a diversity of
cultivars with suitable characteristics for the growing location and the management carried
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out on farms. Assessing phenotypic plant traits is a crucial step in the soybean genetic
breeding programs, and thanks to advances in remote sensing and data analysis techniques,
this process is becoming faster and more accurate [5]. The enhanced characterization
achieved by remote sensing and evidenced by statistical modeling allows the understanding
of several plant traits, even the most complex ones, assisting breeding programs in high-
throughput phenotyping (HTP) [6].

Silva Junior et al. [7] finds satisfactory results in differentiating soybean varieties using
vegetation indices (VIs) and wavelengths obtained from UAV-based imagery. Spectral
bands and VIs are positively correlated with several plant traits, such as leaf nitrogen
content in corn, regardless of the variety analyzed [8]. HTP has assisted in monitoring the
development of plants and their relationship with their environment [9].

Combining machine learning (ML) with remote sensing becomes a prosperous ap-
proach in extracting information from agronomic traits, making data processing automated
and more accurate [10]. This is because the use of ML enables the development of algo-
rithms to be used in large datasets and with complex information (such as spectral imagery
data) that requires integration among them [11].

Marques Ramos et al. [12], when using ML techniques combined with different VIs,
achieved satisfactory results in predicting maize yields, with Random Forest (RF) standing
out. Schwalbert et al. [13] used ML models applied to remote sensing data for soybean
yield, in which Artificial Neural Networks (ANN) outperformed other algorithms.

The hypothesis of our study is that using satellite imagery in data collection and ML
in data processing can assist in the identification of soybean cultivars, making this process
more accurate and faster. Therefore, the objectives were: (i) to verify which dataset input
configuration (only spectral bands, only vegetation indices, or both) is most accurate in
soybean cultivar discrimination, and (ii) to verify which ML technique is most accurate in
this classification modeling.

2. Materials and Methods
2.1. Experimental Area and Treatments Evaluated

The study area is located in the municipality of Pereira Barreto in the State of São
Paulo at the mouth of the Tietê River. According to the Köppen classification, the region
climate is tropical rain forest with summer rainfall and winter drought (Aw) [14]. Average
temperatures are between 26.8 and 21.2 ◦C, average annual rainfall is 1128 mm, and the
average altitude of the region is 347 m.

Aiming to set water availability parameters so that there is no influence of water deficit
on the VIs, in view of the differentiation only of soybean cultivars and not of other external
factors, data from irrigated areas were used, in which irrigation management allowed the
supply of water necessary for the proper crop development over the cycle (Figure 1).
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Data were collected from five irrigated central pivots and with the same sowing date
in the 2015/2016 crop season. Each pivot was grown with a different cultivar, which
consisted of the following materials: CV1—P98y12 RR, CV2—Desafio RR, CV3—M6410
IPRO, CV4—M7110 IPRO, and CV5—NA5909 RR (Figure 1).

2.2. Image Acquisition and Multispectral Models

A cloudless orbital image of the site was acquired from the Google Earth Engine
platform. The image is already corrected at the top of the atmosphere, where the conversion
from digital numbers to sensor radiation was applied to the linear transformation conver-
sion, the solar elevation and the Earth-Sun distance [15] for 2015/2016. The image used was
from the Landsat-8 satellite with the OLI sensor (USGS Landsat 8 Collection 1 Tier 1 and
Real-Time data TOA Reflectance) available in the LANDSAT/LC08/C01/T1_RT_TOA cata-
log for 18 January 2016, on path/row 222/074. The spectral bands used in this study were B1
(0.43–0.45 µm), B2 (0.45–0.51 µm), B3 (0.53–0.59 µm), B4 (0.64–0.67 µm), B5 (0.85–0.88 µm),
B6 (1.57–1.65 µm), B7 (2.11–2.29 µm), and B9 (1.36–1.38 µm), all with a spatial resolution of
30 m. Besides the isolated spectral bands, a total of 13 VIs were calculated, as described by
Table 1.

Table 1. Vegetation spectral models calculated from spectral bands obtained via Landsat 8 Collection
1 Tier 1 and real-time data TOA reflectance.

Vegetation Indices Equations

AFRI1600 (Aerosol Free Vegetation Index 1600)
(

Rλnir − 0.66 ∗ RλSWIR1
Rλnir+0.66∗RλSWIR1

)
ARVI2 (Atmospherically Resistant Vegetation Index 2) −0.18 + 1.17 ∗ ((Rλnir − Rλred)/(Rλnir + Rλred))

ATSAVI (Ajusted Transformed Soil-Ajusted VI) 1.22 ∗
[

(Rλnir−1.22∗Rλred−0.03)
(1.22∗Rλnir+Rλred−1.22∗0.03+0.08(1+1.222)

]
EVI (Enhanced Vegetation Index) 2.5 ∗

(
Rλnir−Rλred

(Rλnir+6∗Rλred−7.5∗Rλblue)+1

)
EVI2 (Enhanced Vegetation Index 2) 2.5 ∗ (Rλnir − Rλred)/(Rλnir + 2.4 ∗ Rλred + 1)
GNDVI (Green Normalized Difference Vegetation Index) (Rλnir−Rλred)

(Rλnir+Rλred)

GRNDVI (Green-Red NDVI) [Rλnir −
(

Rλgreen + Rλred
)
]/[Rλnir +

(
Rλgreen + Rλred

)
GVI (Tasselled Capvegetation) −0.2848 ∗ Rλblue − 0.2435 ∗ Rλgreen − 0.5436 ∗ Rλred + 0.7243 ∗

Rλnir + 0.0840 ∗ RλSWIR1 − 0.1800 ∗ RλSWIR2
GVMI (Global Vegetation Moisture Index) (Rλnir+0.1)−(RλSWIR2+0.02)

(Rλnir+0.1)−(RλSWIR2+0.02)
MNDVI (Modified Normalized Difference Vegetation Index) (Rλnir−RλSWIR2)

(Rλnir+RλSWIR2)

NDVI (Normalized Difference Vegetation Index) (Rλnir−Rλred)
(Rλnir+Rλred)

SBI (Tasselled Cap—brightness) 0.3037 ∗ Rλblue + 0.2793 ∗ Rλgreen + 0.4743 ∗ Rλred + 0.5585 ∗
Rλnir + 0.5082 ∗ RλCirrus + 0.1863 ∗ RλSWIR2

SIWSI (Normalized Difference 860/1640) (Rλnir−RλSWIR1)
(Rλnir+RλSWIR1)

For data acquisition from the 100 random repetitions (pixel by pixel) per cultivar on
the orbital image, the Google Colab platform was used in Python language through the
packages ee, os, and geemap [16].

2.3. Using Machine Learning Models

The models tested were: artificial neural networks (ANN), radial basis function
(RBF) network, the decision tree algorithms J48 (DT) and reduced error pruning (REPTree),
random forest (RF), and support vector machine (SVM). The ANN tested consists of a single
hidden layer formed by a number of neurons that is equal to the number of attributes,
plus the number of classes, all divided by 2. The J48 algorithm (DT) is a classifier for
generating a C4.5 decision tree with an additional pruning step based on reduced-error
strategy [17,18]. RBF is a feed-forwarded network in which training is performed in a
hidden layer, implementing a normalized Gaussian radial basis function and the k-means
clustering algorithm for the basis function of this hidden layer, and supervised learning
is used for the output layer [19]. REPTree uses the decision tree logic and creates several
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trees in different iterations. Afterwards, it selects the best tree using the information gain
and performs the reduced-error pruning as splitting criterion [20]. The RF model is able
to produce multiple decision trees for the same dataset and uses a voting scheme among
all these learned trees to classify new instances [21]. SVM performs classification tasks by
building hyperplanes in multidimensional space to distinguish different classes [22].

The classification of the five soybean cultivars was performed by the six ML models
in a 10-fold stratified randomized cross-validation with ten repetitions (100 runs for each
model). Different inputs were considered for each classification model: spectral bands
only (SBs), vegetation indices only (VIs), and SBs + VIs. The parameters obtained for
performance evaluation of the models and inputs were correct classification (CC, %) and
Kappa coefficient. ML analyses were performed on Weka 3.9.4 software using the default
setting for all tested models [23] using a CPU Intel® CoreTM i5 with 6 Gb RAM.

2.4. Statistical Analysis

After obtaining the r and MAE parameters, analysis of variance was performed
considering a 6 × 3 factorial scheme (models versus inputs) with ten repetitions (folds).
The means were grouped by the Scott-Knott test at 5% probability. Bar graphs were
generated for each parameter (r and MAE) considering the models and inputs tested.
Based on these statistics, the best ML technique was identified, and a confusion matrix
was developed for this technique and the different inputs evaluated. These analyses were
performed on R software [24] using the packages ExpDes.pt and ggplot2.

3. Results
3.1. Spectral Signature of Cultivars

The result of the spectral curves extracted from the corrected Landsat-8/OLI TOA
image for the 100 repetitions of each cultivar is represented in Figure 2. Visually, there is a
slight difference between the spectral signatures for the five cultivars, considering the eight
spectral bands analyzed. The variations occur more intensely when isolating each variety
cultivar’s maximum and minimum values (Figure 2a–f).
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IPRO—cv4 (e), and NA5909 RR—cv5 (f)).



Sustainability 2022, 14, 7125 5 of 12

The physiological appearance of the analyzed soybean cultivars (cv1 . . . cv5) as a
function of the mean spectral curves (Figure 3a) is shown to be healthy, and can be noticed
mainly by the high reflectance for B5 (~0.865 µm) and absorptions by B4 (~0.655 µm), B6
(~1.61 µm), and B7 (~2.2 µm).
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Figure 3. Vegetation indices calculated for the five cultivars (cv) evaluated using monotemporal
OLI/Landsat-8 images.

The OLI sensor’s reflectance values for all cultivars were consistent compared to the
target healthy green vegetation behavior. It is considered as collection data of the curves
the day of the scene passage in January, which refers to the vegetative vigor of the soybean
crop in the site studied, clearly in the phenological stage R5 (Figure 3).
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3.2. Correlation between Variables

Figure 4 demonstrates the correlogram between soybean cultivars and the spectral
variables (SB and VIs) evaluated. It is possible to see that all variables were significantly
related to the SB and VIs. The VIs showed a positive and high-magnitude correlation with
each other. Bands B1, B2, B3, B4, B6, and B7 correlated positively with each other and
negatively with all VIs. Band B5 correlated negatively with bands B1, B2, B3, B4, B6, and
B7, and positively with all VIs. Band B9 showed negative low-magnitude correlations with
the other bands and no correlation with the VIs.
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Figure 4. Correlogram between different spectral bands and vegetation indices evaluated on five
soybean cultivars (P98y12 RR—cv1; Desafio RR—cv2; M6410 IPRO—cv3; M7110 IPRO—cv4; NA5909
RR—cv5).

3.3. Scattering between Variables

A scatterplot of the correct classification (%) and kappa coefficient for discrimination
of five soybean cultivars using ML models and different inputs is shown in Figure 5. It
can be seen that using ANNs with the inputs SB and SB + VIs gives the highest values of
correct classification (%) and kappa coefficient for discriminating soybean cultivars. Using
these same inputs, the random forest (RF) algorithm obtained values close to the ANNs but
slightly inferior. It is important to highlight that regardless of the model and input tested,
there was low variability between folds, occurring just one outlier in some cases.
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Figure 5. Boxplot for the variables correct classification (%) and Kappa coefficient for discrimination
of five soybean cultivars using machine learning (ML) models and different inputs (vegetation
indices—VIs, Spectral bands—SBs and SBs + VIs).

3.4. Choosing the Best Model and Best Input

The unfolding of the significant interaction between model x input for correct classi-
fication (%) and Kappa coefficient for discrimination of five soybean cultivars are shown
in Tables 2 and 3, respectively. By analyzing the unfolding of models within input, ANNs
presented the highest mean correct classification and Kappa coefficient regardless of the
input used. For the input within model splitting, the spectral bands (SBs) and spectral
bands + vegetation indices (SBs + VIs) inputs had the highest mean correct classifications
and Kappa coefficients and did not differ for ANNs, DT, REPTree, and RF models.

Table 2. Unfolding of the significant model x input interaction for the correct classification (%) of five
soybean cultivars using machine learning (ML) models and different inputs (vegetation indices—VIs,
spectral bands—SBs, and SBs + VIs).

Model SBs * VIs SBs + VIs

ANN 92.18 Aa 88.30 Ba 91.12 Aa
DT 85.88 Ac 72.24 Bc 85.72 Ac
RBF 80.94 Ab 49.50 Be 74.88 Af
REPTree 82.92 Ad 68.32 Bd 82.46 Ad
RF 89.62 Ae 80.22 Bb 87.94 Ab
SVM 73.82 Bf 78.86 Ab 78.24 Ae

* Means followed by equal lowercase letters in the same column and equal uppercase letters in the same row do
not differ by the Scott–Knott test at 5% probability.

Table 3. Unfolding of the significant model × input interaction for the Kappa coefficient for discrimi-
nation of five soybean cultivars using machine learning (ML) models and different inputs (vegetation
indices—VIs, spectral bands—SBs, and SBs + VIs).

Model SBs * VIs SBs + VIs

ANN 0.91 Aa 0.86 Ba 0.89 Aa
DT 0.82 Ac 0.66 Bc 0.82 Ac
RBF 0.76 Ae 0.37 Ce 0.68 Bf
REPTree 0.79 Ad 0.60 Bd 0.78 Ad
RF 0.87 Ab 0.75 Bb 0.85 Ab
SVM 0.67 Bf 0.73 Ab 0.74 Ae

* Means followed by equal lowercase letters in the same column and equal uppercase letters in the same row do
not differ by the Scott–Knott test at 5% probability.
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3.5. Confusion Matrix Using ANN’s

Based on the results contained in Tables 2 and 3, the ANNs showed a better ability to
discriminate soybean cultivars. Thus, Figure 6 shows the confusion matrix obtained with
this model for each evaluated input. The diagonal (pink-scale values) shows the number of
correct classifications obtained for each cultivar. It can be seen that using SBs and SBs + VIs
as inputs provides the highest number of correct classifications. These inputs showed no
statistical difference between them (see Tables 2 and 3) and were superior to using VIs
as input.
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4. Discussion
4.1. Tested Models

Using machine learning has innovative potential in any area of science. The basic
requirement is that there must be enough data to train and validate the tested models,
making a considerable amount of data necessary [25]. Among the models tested, the ANNs
stood out for achieving higher means of correct classification and Kappa coefficient, being
the most accurate among the evaluated models in identifying soybean cultivars. Using
data derived from spectral images, Eugenio et al. [26] reached an adequate adjustment
and generalization capacity using ANNs to predict soybean yield. The modeling used by
ANNs can achieve high accuracy, leading to answers to cover several situations [27].

In some studies, the use of ANN has provided more reliable results than other mod-
eling techniques [28], such as Stepwise Multiple Linear Regression (MLR) and Principal
Component Regression (PCR) [29]. The ANNs are also a more accurate alternative in
predicting crop yields than traditional regression models [30].

Taratuhin et al. [31] found high accuracy using ANNs in predicting the earliness of
the soybean accesses. Taratuhin et al. [32] found high accuracy in modeling using ANN
in predicting several traits of soybeans under different climatic conditions. In eucalyptus,
it is widely used to estimate yield since adopting traditional methods is difficult due to
the number of independent variables and the complex relationship between them and the
dependent variable [33].

Using ANNs together with spectral bands and/or vegetation indices generates accu-
rate results in providing information about forest inventories with time and labor savings,
since they have the ability to learn and present information about non-linear data [34].
These coupled techniques successfully improve accuracy, speed, and reliability in several
research lines, as well as to farmers [35].

4.2. Tested Inputs

The use of remote sensing for measuring soybean agronomic traits has great potential
to revolutionize genetic breeding programs and production systems, especially because
this technology allows the quantification of phenotypic variables by combining images [10].
Traditional genotype selection programs are limited to costly and imprecise field anal-
yses, which can be improved using remote sensing technologies [5]. This technology
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demonstrates efficiency in classifying soybean varieties, as previously reported by Silva
Junior et al. [7,36].

When evaluating the inputs within each model, SBs and SBs + VIs obtained the
highest means for correct classification and Kappa coefficient. Even though both inputs
have achieved similar results, in a practical way, using the SBs would be more feasible
since to obtain them, it is not necessary to perform calculations such as those used in the
acquisition of the VIs.

Spectral bands are a reliable source for spatial and temporal detailing, making esti-
mates on variables such as chlorophyll and leaf area index in agricultural crops [37]. Silva
Junior et al. [38] have achieved accurate responses using spectral bands in discriminating
eucalyptus plants for different levels of boron fertilization.

In addition to the results exposed in the breakdowns for correct classification and
Kappa coefficient, the correlogram showed a significant relationship between spectral
bands and variables. These results demonstrate the efficiency of using the spectral bands
B1, B2, B3, B4, B6, and B7 to identify soybean cultivars. Using more than one spectral band
when processing the analyses, a detailed exploration of what is being evaluated is possible,
providing relevant information about the differentiation of soybean varieties [7,39].

Tables 2 and 3 show the efficiency of using spectral bands with artificial neural net-
works, which is highlighted by the results presented by the confusion matrix (Figure 5).
Using methodologies that evaluate the plant phenotype associated with computational
intelligence is an accurate and reliable way to measure characteristics when the crop is still
in the field [40].

Our findings demonstrate that it is possible to distinguish soybean genotypes more
accurately using spectral bands as input in the tested machine learning models. This
represents an important scientific advance for mapping soybean areas in world. For
example, in Brazil, a large number of soybean cultivars are used annually, which have
several different characteristics from each other, especially regarding the cycle. As in
Brazil, soybean is grown in the crop season, being able to distinguish soybean cultivars
demonstrates the possibility of introducing public policies for the prevention of end-of-cycle
diseases, harvest planning and off-season planting.

However, it is also necessary that more orbital data be evaluated in the discrimination
of plant species, seeking to achieve the absence of clouds, either through data with better
spatial resolution (Sentinel-2/MSI) or even via satellite constellations (PlanetScope). Possi-
bly the application of machine learning techniques can bring new results with the different
characteristics of the various orbital sensors, even those that are equivalent, as is the case of
the new Landsat-9 platform [41].

5. Conclusions

Spectral bands were the most accurate among the tested inputs in identifying soybean
cultivars. Artificial neural networks provided the highest accuracy in identifying soybean
cultivars. These findings demonstrate that it is possible to distinguish soybean genotypes
more accurately using spectral bands using public images (Landsat-8 satellite) as input
in the tested machine learning models. This represents an advance in soybean mapping,
allowing us to accurately identify the most planted cultivars in a given region. However, it
is also necessary that more orbital data be evaluated in the discrimination of plant species,
seeking to achieve the absence of clouds, either through data with better spatial resolution
(Sentinel-2/MSI) or even via satellite constellations (PlanetScope).

Author Contributions: Conceptualization, R.G., P.E.T., L.P.R.T. and C.A.d.S.J.; methodology, C.A.d.S.J.,
F.S.R., L.P.R.T., P.E.T. and D.C.S.; formal analysis, M.F.C., F.S.R. and R.G.; investigation, C.A.d.S.J., P.E.T.
and L.P.R.T.; writing—original draft preparation, D.C.S., R.G. and M.F.C.; writing—review and editing,
P.E.T., C.A.d.S.J., L.P.R.T. and R.G.; supervision, C.A.d.S.J. and P.E.T. All authors have read and agreed to
the published version of the manuscript.



Sustainability 2022, 14, 7125 10 of 12

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001, National Council for Research and Development
(CNPq)—Grant numbers 303767/2020-0 and 309250/2021-8, and Fundação de Apoio ao Desenvolvi-
mento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT)—numbers
88/2021, and 07/2022, and SIAFEM numbers 30478 and 31333.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Acknowledgments: This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, National Council for Research
and Development (CNPq)—Grant numbers 303767/2020-0 and 309250/2021-8, and Fundação de
Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul
(FUNDECT)—numbers 88/2021, and 07/2022, and SIAFEM numbers 30478 and 31333. We would
also like to thank the research laboratories of the State University of Mato Grosso (UNEMAT)—
https://pesquisa.unemat.br/gaaf/ (accessed on 16 May 2022) and of the Federal University of Mato
Grosso do Sul (UFMS).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the study
design; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References
1. Maher, T.M.; Spagnolo, P. Perspectives for the Future. ERS Monogr. 2016, 2016, 260–274. [CrossRef]
2. Dukhnytskyi, B. World Agricultural Production. Ekon. APK 2019, 7, 59–65. [CrossRef]
3. SojaMaps: Monitoring of Soybean Areas through Satellite Imagery. Available online: https://pesquisa.unemat.br/gaaf/

plataformas/sojamaps (accessed on 15 May 2022).
4. da Silva Junior, C.A.; Leonel-Junior, A.H.S.; Rossi, F.S.; Correia Filho, W.L.F.; de Barros Santiago, D.; de Oliveira-Júnior, J.F.;

Teodoro, P.E.; Lima, M.; Capristo-Silva, G.F. Mapping Soybean Planting Area in Midwest Brazil with Remotely Sensed Images
and Phenology-Based Algorithm Using the Google Earth Engine Platform. Comput. Electron. Agric. 2020, 169, 105194. [CrossRef]

5. Zhou, S.; Mou, H.; Zhou, J.; Zhou, J.; Ye, H.; Nguyen, H.T. Development of an Automated Plant Phenotyping System for
Evaluation of Salt Tolerance in Soybean. Comput. Electron. Agric. 2021, 182, 106001. [CrossRef]

6. Diao, C. Remote Sensing Phenological Monitoring Framework to Characterize Corn and Soybean Physiological Growing Stages.
Remote Sens. Environ. 2020, 248, 111960. [CrossRef]

7. da Silva Junior, C.A.; Nanni, M.R.; Shakir, M.; Teodoro, P.E.; de Oliveira-Júnior, J.F.; Cezar, E.; de Gois, G.; Lima, M.;
Wojciechowski, J.C.; Shiratsuchi, L.S. Soybean Varieties Discrimination Using Non-Imaging Hyperspectral Sensor. Infrared
Phys. Technol. 2018, 89, 338–350. [CrossRef]

8. Santana, D.C.; Cotrim, M.F.; Flores, M.S.; Rojo Baio, F.H.; Shiratsuchi, L.S.; da Silva Junior, C.A.; Teodoro, L.P.R.; Teodoro, P.E.
UAV-Based Multispectral Sensor to Measure Variations in Corn as a Function of Nitrogen Topdressing. Remote Sens. Appl. Soc.
Environ. 2021, 23, 100534. [CrossRef]

9. Feng, L.; Chen, S.; Zhang, C.; Zhang, Y.; He, Y. A Comprehensive Review on Recent Applications of Unmanned Aerial Vehicle
Remote Sensing with Various Sensors for High-Throughput Plant Phenotyping. Comput. Electron. Agric. 2021, 182, 106033.
[CrossRef]

10. Zhou, J.; Zhou, J.; Ye, H.; Ali, M.L.; Chen, P.; Nguyen, H.T. Yield Estimation of Soybean Breeding Lines under Drought Stress
Using Unmanned Aerial Vehicle-Based Imagery and Convolutional Neural Network. Biosyst. Eng. 2021, 204, 90–103. [CrossRef]

11. van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine Learning in Plant Science and Plant Breeding. iScience 2021,
24, 101890. [CrossRef]

12. Marques Ramos, A.P.; Prado Osco, L.; Elis Garcia Furuya, D.; Nunes Gonçalves, W.; Cordeiro Santana, D.; Pereira Ribeiro Teodoro, L.;
Antonio da Silva Junior, C.; Fernando Capristo-Silva, G.; Li, J.; Henrique Rojo Baio, F.; et al. A Random Forest Ranking Approach to
Predict Yield in Maize with Uav-Based Vegetation Spectral Indices. Comput. Electron. Agric. 2020, 178, 105791. [CrossRef]

13. Schwalbert, R.A.; Amado, T.; Corassa, G.; Pott, L.P.; Prasad, P.V.V.; Ciampitti, I.A. Satellite-Based Soybean Yield Forecast:
Integrating Machine Learning and Weather Data for Improving Crop Yield Prediction in Southern Brazil. Agric. For. Meteorol.
2020, 284, 107886. [CrossRef]

14. Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil.
Meteorol. Z. 2013, 22, 711–728. [CrossRef]

15. Chander, G.; Markham, B.L.; Helder, D.L. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+,
and EO-1 ALI Sensors. Remote Sens. Environ. 2009, 113, 893–903. [CrossRef]

https://pesquisa.unemat.br/gaaf/
http://doi.org/10.1183/2312508X.10006615
http://doi.org/10.32317/2221-1055.201907059
https://pesquisa.unemat.br/gaaf/plataformas/sojamaps
https://pesquisa.unemat.br/gaaf/plataformas/sojamaps
http://doi.org/10.1016/j.compag.2019.105194
http://doi.org/10.1016/j.compag.2021.106001
http://doi.org/10.1016/j.rse.2020.111960
http://doi.org/10.1016/j.infrared.2018.01.027
http://doi.org/10.1016/j.rsase.2021.100534
http://doi.org/10.1016/j.compag.2021.106033
http://doi.org/10.1016/j.biosystemseng.2021.01.017
http://doi.org/10.1016/j.isci.2020.101890
http://doi.org/10.1016/j.compag.2020.105791
http://doi.org/10.1016/j.agrformet.2019.107886
http://doi.org/10.1127/0941-2948/2013/0507
http://doi.org/10.1016/j.rse.2009.01.007


Sustainability 2022, 14, 7125 11 of 12

16. Wu, Q. Geemap: A Python Package for Interactive Mapping with Google Earth Engine. J. Open Source Softw. 2020, 5, 2305.
[CrossRef]

17. Al Snousy, M.B.; El-Deeb, H.M.; Badran, K.; Khlil, I.A. Al Suite of Decision Tree-Based Classification Algorithms on Cancer Gene
Expression Data. Egypt. Inform. J. 2011, 12, 73–82. [CrossRef]

18. da Silva, C.A., Jr.; Nanni, M.R.; de Oliveira-Júnior, J.F.; Cezar, E.; Teodoro, P.E.; Delgado, R.C.; Shiratsuchi, L.S.; Shakir, M.;
Chicati, M.L. Object-Based Image Analysis Supported by Data Mining to Discriminate Large Areas of Soybean. Int. J. Digit. Earth
2018, 12, 270–292. [CrossRef]

19. Soni, R.; Kumar, B.; Chand, S. Optimal Feature and Classifier Selection for Text Region Classification in Natural Scene Images
Using Weka Tool. Multimed. Tools Appl. 2019, 78, 31757–31791. [CrossRef]

20. Kalmegh, S.R. Analysis of WEKA Data Mining Algorithm REPTree, Simple Cart and RandomTree for Classification of Indian
News. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 438–446.
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