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Abstract: The Kingdom of Plantae is considered the main source of human food, and includes several
edible and medicinal plants, whereas mushrooms belong to the Kingdom of fungi. There are a lot of
similar characteristics between mushrooms and higher plants, but there are also many differences
among them, especially from the human health point of view. The absences of both chlorophyll
content and the ability to form their own food are the main differences between mushrooms and
higher plants. The main similar attributes found in both mushrooms and higher plants are represented
in their nutritional and medicinal activities. The findings of this review have a number of practical
implications. A lot of applications in different fields could be found also for both mushrooms and
higher plants, especially in the bioenergy, biorefinery, soil restoration, and pharmaceutical fields, but
this study is the first report on a comparative photographic review between them. An implication
of the most important findings in this review is that both mushrooms and plants should be taken
into account when integrated food and energy are needed. These findings will be of broad use
to the scientific and biomedical communities. Further investigation and experimentation into the
integration and production of food crops and mushrooms are strongly recommended under different
environmental conditions, particularly climate change.

Keywords: phytoremediation; food crops; energy crops; polluted soils; plant mineral
nutrients; phytomedicine

1. Introduction

A great challenge faces humanity in producing edible plants, which should contain
enough amounts of mineral nutrients, and are required for human nutrition [1]. Although
both plants and humans require, in general, the same mineral elements for their healthy
growth and development, the ideal future crops for human nutrition should not include
toxic elements in the edible parts [2,3]. Mineral elements in the soil are taken up by the
plant roots and transported to the edible parts for human consumption through various
different transporters. Therefore, several studies focus on the edible plants from different
points of view for human health, including (i) studies of plant functional traits for human
health, especially unconventional edible plants [4–6]; (ii) producing biofortified plants
with a focus on the malnutrition/medicinal attributes [7–12], (iii) nutritional aspects of
plant-based diets for human diseases [13–15], (iv) studies of plant secondary metabolites
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and their extraction as bioactive compounds [16,17], (v) anti-nutrients of major plant-based
foods [18], (vi) food security and plant nutrition under problems of climate change [19],
and (vii) using mushrooms as bioindicators for pollution and its risks to health [20].

The production of enough food for the global population needs more efforts to exploit
every inch to cultivate and produce foods, as well as energy at the same time, because food
and energy are essential components for human life and sustainable development [21].
The production of food and energy gives rise to competition for cultivated soil. The
arable land that is already used for the cultivation of foods should be increased for more
food production, without any deducted lands for energy production. There is a difficult
equation concerning the energy–food nexus, which should be solved as reported in many
studies on the energy–food nexus from different points of view, such as the production
of biofuel based on the water–food–energy nexus [22], rice production and its nexus of
food–energy–emissions [23], the scarcity risk of the energy–food nexus [21], and sustainable
dairy farming under the security of energy, food, and water [24]. New non-exploited areas
such as polluted or marginal soils for energy production through soil restoration are
considered sustainable solutions for producing energy [25].

Higher plants and macro-fungi (mushrooms) are important species, which have many
common attributes (e.g., the nutritional and medicinal ones), although they have many dif-
ferences. Higher plants can form their own food (which contains chlorophyll as autotrophic)
from sunlight, water, and CO2, whereas mushrooms as saprophytes can biodegrade dead
organic matter by extracting enzymes [26]. Fungi are considered, in general, decomposers,
pathogens, parasites, or mutualists [27].

Therefore, this review is a comparative study between mushrooms as macro-fungi
and higher plants from mainly the human health point of view. This review includes also
phytomedicine and its potential for human health, the unconventional foods derived from
plants and mushrooms, soil degradation and its restoration by plants and mushrooms, the
integrated production of food and energy, and finally the agro-integration between food
crops and mushrooms.

2. Methodology of the Review

This review depended on collecting available published materials from the main
websites of major publishers such as Frontiers, Elsevier (ScienceDirect), Springer, Multi-
disciplinary Digital Publishing Institute (MDPI) journals, medical publications at the U.S.
National Institute of Health’s National Library of Medicine (PubMed Central or PMC), etc.
The main keywords were higher plants and macro-fungi, with the search broadened to in-
clude the words “sustainability”, “plant nutrition”, “unconventional food”, “mushrooms”,
“soil restoration”, “food crops”, and “energy crops”. The main steps used in this review
included the building of a table of contents after intensive reading, searching suggested
titles or sections, sorting the collected published materials (original articles, reviews, books,
and chapters) based on the reputation of both authors and the journal, and then starting
to write down the manuscript. At least five essential components of a successful review
should be found; (1) the update and clear idea, (2) harmony and logical arrangement of
their contents, (3) survey studies concerning some selected sections in the review through
some comprehensive and very update tables, (4) photos and drawing figures are important
in delivering the idea of the review faster than words, and (5) cited literature reviews, used
in this review. This is the first report on a comparative photographic study on mushrooms
and plants, which included many photos and drawing figures in this context.

3. Plant and Human Nutrition for Sustainability

Nutrition in plants and human presents many similarities and differences. It is the
process of obtaining or providing the organism with food necessary for its growth and health.
Several differences in the nutrition of plants and humans can be listed in Table 1. This nutrition
has a strong link to Sustainable Development Goals as a part of the global public agenda,
which can contribute to the structuring of global sciences and research [28]. Not surprisingly,
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considering the lessons learned from Covid-19, the required scientific studies should focus on
the area of sustainability and human health [28,29]. Richardson and Lovegrove [29] reported
on the nutritional status of some micronutrients (Cu, Fe, Se, and Zn, and vitamin D, A, B
vitamins, and vitamin C) and their possible and modifiable risk factor for COVID-19, which
support the normal functions of the human immune system. They confirmed that avoiding
deficiencies in the intakes of these micronutrients in patients could strengthen their resilience
to the COVID-19 pandemic. Finally, a number of important nutrients need to be considered
that could be found in vegetables, fruits, or edible plants (Figure 1).

Table 1. The main difference between the nutrition of both plants and humans.

Comparison Item Plant Nutrition Human Nutrition

Forming own food They can because of chlorophyll They cannot

Main requirements for nutrition Plants need sunlight, CO2 and water
as autotrophic

They metabolize large food molecules as
heterotrophic

Final product from nutrition Mainly glucose, energy, and oxygen Amino acids, monosaccharides, fatty
acids, and glycerol

Main organs involved in the nutrition Leaves, including their components
(chloroplasts, xylem, and phloem)

Mouth, esophagus, stomach, small
intestine and the large intestine

Amino acids forming Uptake of N, converted to NH3, form amino
acids and then proteins

Amino acids can be obtained from the
breakdown of proteins

Getting energy Both photosynthesis and respiration can be
used for forming energy (ATP)

Only the respiration process can produce
energy (ATP)

Storage of carbohydrates Plants can store glucose in the form of starch Humans can store glucose in the form
of glycogen

Enzymes involved
During nutritional processes, many enzymes:

amylase, cellulase, lipase, phosphatase,
phytase and urease

During metabolism, the main nutrients
are carbohydrates, forming glucose,

lipids (fatty acid) & proteins
(amino acids)

Essential elements for both
plants/humans

C, H, O, N, P, K, Ca, Mg, S, Fe, Mn, Cu, Cl,
Mo, Ni, Zn

C, H, O, N, P, K, Ca, Mg, S, Fe, Mn, Cu,
Cl, Mo, Ni, Zn

Suggested as essential Al, Co, Se, Si, Na As, F, Si, V, Cr, Sn, Ni

Essential element (only) B Na, Co, I, Se

Sources: [2,30–33].

Due to healthy nutrition being the backbone for human health, there is an urgent need
to explain the advances in nutrition science during the next years under the “One Health”
initiative [34]. Food supply chains should follow a sustainable food system (by reducing
food wastes and losses) in vegetables, fruits, and mushrooms under a circular economy
strategy [35–37]. The most important nutrition issues and their role in sustainability
included the potential of functional food for human health, attaining sustainable food
systems, the global crisis of production of healthy and sustainable proteins, nutrigenomics
and personalized nutrition, immunometabolism and nutritional immunology, performance
nutrition, managing old/new pandemics such as obesity and COVID-19, human gut
microbiomes and nutrition, nutrition and brain functions, fasting and identifying alternative
dietary strategies, human nutrition types (i.e., basic, applied, and clinical nutrition), and
nutritional aspects of emerging technologies [18,28,38,39]. Therefore, several books have
been published recently on the role of medicinal plants and human health, such as Frazier
and Matthew [40], Goyal and Ayeleso [41], Suleria and Barrow [42], Goyal et al. [43], Goyal
and Chauhan [44], Suleria et al. [45], Goyal et al. [46], and Masoodi and Rehman [14,15].
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Figure 1. The problem of producing enough foods needs fertile soil, which supplies the cultivated 
plants with proper nutrients. Shown are photos of some edible plants, which can supply human 
with needed nutrients for human health. The photos in details from the upper photos (tomato and 
pepper), in the middle (maize and strawberry), and in the lower photos of Jerusalem artichoke tu-
bers and fruits of color pepper, which show a good nutritional status as an important source for 
human health. All photos by El-Ramady. 

As an important component of the human diet, proteins derived from plants are con-
sidered more sustainable sources compared to protein-derived from animals, because 
plant proteins have many eco-benefits including higher eco-sustainability to maintain eco-
stability, greater food safety, fulfilling higher consumer needs, food affordability, and 
combating of "protein–energy malnutrition" [47]. Several studies have been published on 
plant-based proteins as a good source of many essential amino acids (serine, glycine, va-
line, alanine, cysteine, etc.), vital macro-nutrients, and are sufficient to achieve complete 
protein nutrition to sustain a better life for humans [19,48–51]. Along with providing 
amino acids in foods, protein can play a potential role in food formulations due to their 
distinguishing properties, including emulsification, water holding, gelling, foaming, 
thickening ability, and fat absorption capacity [52,53]. The main sources of plant-based 
proteins include many crops such as cereals (wheat (9.3–12.3%), rice (5.8–11%), maize (9–
11%), barley (12%), and sorghum (11%)), legumes (chickpea (19–27%) pea (23–31%), soy-
bean (37–44%), kidney bean (22–32%), faba bean (31%), lentil (23–36%), lupin (32–55%), 
and cowpea (28%)), pseudo-cereals (amaranth (14.5%), buckwheat (14.8%), and quinoa 
(13%)), nuts (peanuts (25–29%), almonds (29.9%), cashew nut (22.7%), Brazil nuts (19.7%)), 
and seeds (cottonseeds (38–45%), flax seeds (21–26%), sunflower (21–32%), pumpkin 
seeds (36.5%), and sesame seeds (18%)) [19,54,55]. Besides seaweed as a sustainable 
aquatic plant-based protein [3], and the previous non-traditional sources, there are many 
alternative plant-based proteins as reported in many publications [56–59]. These alterna-
tives may include pea protein isolate (86%) [60], pulse protein ingredients [55], and using 

Figure 1. The problem of producing enough foods needs fertile soil, which supplies the cultivated
plants with proper nutrients. Shown are photos of some edible plants, which can supply human
with needed nutrients for human health. The photos in details from the upper photos (tomato and
pepper), in the middle (maize and strawberry), and in the lower photos of Jerusalem artichoke tubers
and fruits of color pepper, which show a good nutritional status as an important source for human
health. All photos by El-Ramady.

As an important component of the human diet, proteins derived from plants are
considered more sustainable sources compared to protein-derived from animals, because
plant proteins have many eco-benefits including higher eco-sustainability to maintain
eco-stability, greater food safety, fulfilling higher consumer needs, food affordability, and
combating of "protein–energy malnutrition" [47]. Several studies have been published on
plant-based proteins as a good source of many essential amino acids (serine, glycine, valine,
alanine, cysteine, etc.), vital macro-nutrients, and are sufficient to achieve complete protein
nutrition to sustain a better life for humans [19,48–51]. Along with providing amino acids
in foods, protein can play a potential role in food formulations due to their distinguishing
properties, including emulsification, water holding, gelling, foaming, thickening ability,
and fat absorption capacity [52,53]. The main sources of plant-based proteins include
many crops such as cereals (wheat (9.3–12.3%), rice (5.8–11%), maize (9–11%), barley
(12%), and sorghum (11%)), legumes (chickpea (19–27%) pea (23–31%), soybean (37–44%),
kidney bean (22–32%), faba bean (31%), lentil (23–36%), lupin (32–55%), and cowpea (28%)),
pseudo-cereals (amaranth (14.5%), buckwheat (14.8%), and quinoa (13%)), nuts (peanuts
(25–29%), almonds (29.9%), cashew nut (22.7%), Brazil nuts (19.7%)), and seeds (cottonseeds
(38–45%), flax seeds (21–26%), sunflower (21–32%), pumpkin seeds (36.5%), and sesame
seeds (18%)) [19,54,55]. Besides seaweed as a sustainable aquatic plant-based protein [3],
and the previous non-traditional sources, there are many alternative plant-based proteins
as reported in many publications [56–59]. These alternatives may include pea protein
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isolate (86%) [60], pulse protein ingredients [55], and using proteins of lentil and quinoa
alternative proteins in dairy [61]. There is also an ongoing need for global abundant sources
of high-quality proteins for human nutrition. The plant’s nutritional quality is controlled
by several factors as presented in Figure 2. These factors include soil, plant climate, and
environmental conditions. These factors may also control the kind of protein in many
crops such as cereal proteins, which are low in their contents of amino acids (e.g., lysine,
tryptophan, and threonine), whereas the proteins of vegetables and legumes have a lower
amount of S-containing amino acids such as cysteine and methionine [47].
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4. Phytomedicine and Human Health

The science of producing medicines from herbs or medicinal plants could be defined
as phytomedicine. The historical background of this science may date back to early in
human evolution or several thousand years ago, when humans isolated, extracted and
purified many drugs from medicinal plants in ancient times for human health [62]. Phy-
tomedicine also involves all clinical, pharmacokinetic, pharmacological, and toxicity-based
studies of medicinal plants besides the exploring of different mechanisms of herb ex-
tracts [63]. Medicinal plants are in a continuous process of exploration, resulting in the
unearthing of novel plant-based pharmaceuticals to understand the molecular mechanisms
of conventional medication and its active ingredients, which may help the renovation of
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plant-derived medications and detection of novel phyto-agents [63]. Phytomedicine may in-
clude several issues such as using medicinal plants as wound healing agents [64,65], natural
anti-microbials from plants [66], herbal therapy or remedies [67], herbal cosmeticology [68],
phytopharmaceuticals [69,70], phyto-pharmacology [71] using the herbal bioactivities in
drug delivery systems like the ocular [72], pulmonary [73], transdermal [74], and vaginal
and rectal drug delivery systems [75]. Therefore, it is very important to know exactly what
we eat to stay healthy for a long time as conveyed by the term “nutraceuticals” [76]. This
term was coined by Stephen De-Felice, who referred to pharmaceuticals and nutrients.
There are many different kinds of nutraceuticals, such as dietary supplements, functional
foods, dietary fibers, medical foods, prebiotics, and probiotics. Nutraceuticals can improve
human health through enhancing the absorption of nutrients, supporting the micro-flora of
the gastrointestinal system, and increasing detoxification. Nutraceuticals may have some
limitations, including their slow mode of action and lack of strict control over the quality
and concentration of ingredients [76].

Chinese herbal medicines are very common and widely used for treating several
diseases in Chinese people as a source of bioactive ingredients, which have been extracted
from herbs for therapeutic properties. The most well-known example of this medicine is
the use of artemisinin to inhibit malaria by Nobel laureate Youyou Tu in 2015 [77]. Many
medicinal plants can produce essential oil, which is considered a rich product of bioactives
such as royal jasmine (Jasminum grandiflorum L.) and orange trees (Citrus aurantium L.)
(Figure 3). Several bioactive ingredients have already been extracted from many natural
medicinal plants such as ailanthone, artesunate, berberine, baicalin, curcumin, corylin, ori-
donin, triptolide/triptonide, shikonin, paeoniflorin, paeoniflorin, and soybean isoflavones
(Figure 4). Bioactive compounds and pharmacological activities in some medicinal plants
differ from plant to plant as presented in Table 2. More common medicinal plants are
presented in Figure 5, including the basil plant (Ocimum basilicum L), scotch marigold
(Calendula officinalis L.), rose geranium (Pelargonium graveolens L.), damask rose (Rosa dam-
ascena Mill.), black cumin (Nigella sativa L.), moringa (Moringa oleifera Lam.), mangrove
(Avicennia marina (Forssk.) Vierh.), and jojoba (Simmondsia chinensis (Link) C. K.).
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Figure 3. Medicinal plants are an important source for human health. Photos from left to right in
group (1) represent the oil extraction from royal jasmine (Jasminum grandiflorum L.) flowering plants,
whereas the second and third photos represent harvested flowers and jasmine oil. Photos in group (2)
from left to right: oil extraction from bitter orange trees (Citrus aurantium L.) as flowering plants in
the first photo, whereas the harvested flowers and Neroli oil can be noticed in the second and third
photos, respectively. All photos by El-Mahrouk.
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Figure 4. Medicinal plants have many bioactive compounds such as phenols, carotenoids, etc. These
phyto-bioactives have many applications for human health. Due to bioactive ingredients in herbs,
the phytomedicine is well known, especially in Chinese medicine which is famous all over the world,
very common, and in general a lot of technologies in drugs or pharmaceuticals could be developed
every day particularly using the nanotechnological approaches. “Chinese herbal medicines were the
main treatment method used in ancient times by the Chinese to combat disease. As early as the Qin
and Han Dynasty (around 221 BCE to 220 CE), Sheng Nong’s Herbal Classic recorded 365 medicines.
By the time of the Ming Dynasty (1368–1644), the number of CHMs listed in the book of Compendium
of Materia Medica had increased to 1892” as reported by Dong et al. [77].
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Table 2. List of bioactive compounds and pharmacological activities in some medicinal plants.

Plant Species (Family) Bioactive Phytochemicals Pharmacological Activities Refs.

Ginger: Zingiber officinale
(Zingiberaceae)

Phenolic compounds (gingerols,
paradols, and shogaols),

flavonoids, carbohydrates,
proteins, and terpenes

Antiemetic, anti-inflammatory,
antidiabetic, anticancer,
cardio-protective, and

neuroprotective

[78]

Chewing stick or miswak:
Salvadora persica Linn.

(Salvadoraceae)

Underground parts or roots are
used as toothbrushes, due to

tannins (tannic acid), alkaloids
(salvadorine), essential volatile oils,

Vitamin C

Antimicrobial, antidiuretic,
tick-repellent, anticancer,

anti-inflammatory, hypolipidemic,
and analgesic activities

[6]

Black seed: Nigella sativa
(Ranunculaceae)

Seeds contain fixed oil
(arachidonic, linoleic), protein,
alkaloids, volatile oil (anethole,

cymene), and saponin

Hepatoprotective, anti-cancer,
anti-nephrotoxic, anti-diabetic,

anti-parasitic, anti-malarial,
anti-inflammatory and analgesic, etc.

[79]

Saffron: Crocus sativus L.
(Iridaceae)

Flavonoids (flavone, flavonone),
di-, mono-, tri-, tetra-terpenes
(lycopene, crocetin) phenolics,
carboxylic acids, phytosterols,

vitamins (riboflavin)

Antiparasitic, antibacterial,
hypotensive, antidepressant,

anxiolytic, anticonvulsant,
anti-Alzheimer, antitumor,

anti-nociceptive, cytotoxic activity

[80]

Chicory: Cichorium intybus,
(Asteraceae)

Vitamins (ascorbic acid, thiamine,
riboflavin, retinol), carotenoids,
inulin, niacin, sesquiterpenes,
esculin, esculetin, cichorin A,

lactucin, and lactucopicrin

Anti-inflammatory, antidiabetic,
antimicrobial, gastroprotective,

antioxidant, antimalarial,
anthelmintic, analgesic and

hepatoprotective activity

[81]

Basil plant: Ocimum basilicum L.
(Lamiaceae)

Phenolic acids, isoprenoids, and
flavonoids

Antioxidant, antibacterial, antifungal
and anti-inflammatory activity [82,83]

Scotch marigold: Calendula
officinalis L. (Asteraceae)

Triterpenoid, carotenoids, lutein
auroxanthin, zeaxanthin, saponins,
beta-carotene, flavonol glycosides

Anti- genotoxic, anti-viral, and
anti-inflammatory properties [84]

Damask rose: Rosa damascena
Mill. (Rosaceae)

Essential oil has β-citronellol,
citronellol, docosane, geraniol,
heneicosane, and nonadecane,

Rose oil is antiviral, anti-cancer,
antioxidant, laxative, antiseptic and

anti-inflammatory
[85]

Moringa: Moringa oleifera Lam.
(Moringaceae)

Flavonoids, alkaloids, phenolics,
tannins, saponins, glucosinolates
vitamin A, vitamin C, Ca, and K

Anti-cancerous, cardiovascular,
anti-asthmatic, antidiabetic,

anti-microbial and
anti-inflammatory

[86,87]

Mangrove: Avicennia marina
(Forssk.) Vierh. (Acanthaceae)

Polyphenols, tannins, eicosanoic
acid, cis9-hexadecenal, oleic acid,

and di-Ndecylsulfone

Anti- antiviral, antibacterial,
antifungal and antioxidant activities [88,89]

Jojoba: Simmondsia chinensis
(Link) C. K. (Simmondsiaceae)

Phenolic compounds like gallic
acid, flavonoid, stigmast-5-en-3-ol,

cis-9-octadecen-1-ol,
9-octadecen-1-ol, (Z),

ergost-5-en-3-ol, (3-β)-ol,
(Z)-14-tricosenyl formate,

Antidiabetic, anti-inflammatory,
anthelminthic, antirheumatic,

antiepileptic, antipsoriatic,
antigonorrheal, analgesic, and

pesticidal activities

[90,91]

Hibiscus: Hibiscus asper
(Malvaceae)

Alkaloids, flavonoids, glycosides,
phenols, saponins, steroid, tannin,

terpenoids, 9, 12, 15-
Octadecatrien-1-ol (Z, Z, Z)

Antiapoptotic Neuroprotective
Antibacterial, anti-inflammatory,

anti-ulcer, and
anti-oxidative properties

[87,92]
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Figure 5. Medicinal plants are important source for human health as shown in this group of photos. 
Photos in group (1) include from up left to right (A) basil plant (Ocimum basilicum L), (B) scotch 
marigold (Calendula officinalis L.), and down left to the right (C) rose geranium (Pelargonium graveo-
lens L.), and (D) damask rose (Rosa damascena Mill.). Photos in group (2) represent some medicinal 
plants including (A) black cumin (Nigella sativa L.), (B) moringa (Moringa oleifera Lam.), (C) man-
grove (Avicennia marina (Forssk.) Vierh.), and (D) jojoba (Simmondsia chinensis (Link) C. K.). All pho-
tos by El-Mahrouk. 

Figure 5. Medicinal plants are important source for human health as shown in this group of photos.
Photos in group (1) include from up left to right (A) basil plant (Ocimum basilicum L), (B) scotch marigold
(Calendula officinalis L.), and down left to the right (C) rose geranium (Pelargonium graveolens L.), and
(D) damask rose (Rosa damascena Mill.). Photos in group (2) represent some medicinal plants including
(A) black cumin (Nigella sativa L.), (B) moringa (Moringa oleifera Lam.), (C) mangrove (Avicennia marina
(Forssk.) Vierh.), and (D) jojoba (Simmondsia chinensis (Link) C. K.). All photos by El-Mahrouk.
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Many challenges face the regulation of herbal bioactive-based formulations, including
challenges of safety, pharmacovigilance, quality, standardization, and clinical trials, as well
as a lack of knowledge about herbal medicines [93]. In Table 2, the most common bioactive
compounds in some medicinal plants and their pharmacological activities could be noticed.
These bioactives may include main groups (i.e., phenolic compounds, flavonoids, carbohy-
drates, proteins, and terpenes), which have distinguished pharmacological activities such as
antimicrobial, antidiuretic, anticancer, anti-inflammatory, analgesic and hypolipidemic activi-
ties. The main differences among these medicinal plants may be represented in the common
kind of bioactives, such as phenolic compounds (i.e., gingerols, paradols, and shogaols) in
ginger, tannic acid and alkaloids (e.g., salvadorine) in miswak, and others (Table 2).

It is well known that plants have been consumed by humans for thousands of years
as a source of daily necessities and food supply. Plants also have been applied in several
fields, including infrastructure, papermaking, production of perfumes and spices as well
as applications for the treatment and prophylaxis of various diseases [94]. Therefore,
traditional herbal medicine can be expressed as the use of plants or herbs as remedies
in medicine in the following forms of herbal materials, herbs, herbal preparations, and
finished herbal products containing active ingredients derived from plants/plant materials,
according to the definition of the WHO [94]. Nano-formulated herbal bioactive could be
applied for treating many human diseases such as neurodegenerative diseases, which can
be nano-formulated using curcumin, quercetin, resveratrol, rutin, piperine, gallic acid,
ferulic acid, and selenium [95]. There are many systems for delivering herbal bioactive-
based nano-drugs, such as liposomes, nanoemulsions, niosomes, phytosome, polymeric
micelles, nanoparticles, nanogels/hydrogel, and other novel drug delivery systems herbal
formulations [87].

5. Higher Plants and Mushrooms: A General Comparison

Higher plants have many similarities and differences to macro-fungi (mushrooms)
as presented in Figure 6A,B. Both higher plants and mushrooms are living organisms
belonging to one domain (Eukarya) and are considered, in general, vegetarian as well
as both of them possessing distinguishing attributes for human health. High plants are
located in the Kingdom of Plantae, but mushrooms are in the Kingdom of Fungi. They can
also be used as edible sources for medicinal activities.

There are also many differences between them, especially the nutrition mode, which
depends on their content of pigments or chlorophyll, as well as the reproduction method,
and the main structure of each one. From this point, mushrooms are fungi organisms that
have no chlorophyll; thus, they cannot form their own food, but they are saprophytes (can
release some enzymes to biodegrade organic matters and convert them into simple com-
pounds to obtain their necessary foods). The main method for reproduction of mushrooms
is by spores, and not all mushrooms can be cultivated like plants [26,96,97]. Some species
of both higher plants and mushrooms have nutritional and medicinal attributes, and are
called medicinal plants or mushrooms. There are several kinds of mushrooms, which can
in general be categorized into edible, medicinal and poisonous mushrooms, as reported
by El-Ramady et al. [36]. More dimensions for the sustainable applications of mushrooms
could be found in Elsakhawy et al. [98] and El-Ramady et al. [99] whereas the sustainable
production of medicinal plants is a great challenge, especially under the adverse conditions
reported in detail by Aftab [100].
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Figure 6. (A) This is the first part of a comparison between higher plants and mushrooms from 
different points of view, such as taxonomy (using Jerusalem artichoke as an example of a higher 
plant and champignon as a mushroom), structure, nutrition, reproduction and growth. (B) This is 
the second part of a comparison between higher plants and mushrooms including more different 
points of view such as the pigments, cultivation and their nutritional/medicinal attributes. 
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as higher and lower plants based on the existence of flowers or vascular system; common 
and unconventional edible plants; traditional and modern wild edible plants [101]; culti-
vated and wild edible plants [37], and conventional and unconventional food plants [102]. 
The common attributes that can be existed in edible mushrooms and edible plants are 
being consumable foods and having a nutritional value, such as desirable content of pro-
teins, carbohydrates, or vitamins. Many studies on unconventional foods derived from 
plants or mushrooms have been published in different locations all over the world for 
plants [102–104] or mushrooms [105,106]. Increasing attention has been noticed to this 
group of underutilized plants, which have many different terms such as unconventional 
vegetables or traditional vegetables, alternative food plants, famine foods, wild edible 
plants, and plants for the future [103,107]. Therefore, there is an urgent need for uncon-
ventional medicinal/food plants with consideration of their potential under the initiative 
of “from flask to patient” and “from field to fork” [108]. 

Figure 6. (A) This is the first part of a comparison between higher plants and mushrooms from
different points of view, such as taxonomy (using Jerusalem artichoke as an example of a higher
plant and champignon as a mushroom), structure, nutrition, reproduction and growth. (B) This is the
second part of a comparison between higher plants and mushrooms including more different points
of view such as the pigments, cultivation and their nutritional/medicinal attributes.

6. Unconventional Foods of Plants and Mushrooms

There are several classifications of plants, which depend on a specific categories such
as higher and lower plants based on the existence of flowers or vascular system; common
and unconventional edible plants; traditional and modern wild edible plants [101]; culti-
vated and wild edible plants [37], and conventional and unconventional food plants [102].
The common attributes that can be existed in edible mushrooms and edible plants are
being consumable foods and having a nutritional value, such as desirable content of pro-
teins, carbohydrates, or vitamins. Many studies on unconventional foods derived from
plants or mushrooms have been published in different locations all over the world for
plants [102–104] or mushrooms [105,106]. Increasing attention has been noticed to this
group of underutilized plants, which have many different terms such as unconventional
vegetables or traditional vegetables, alternative food plants, famine foods, wild edible
plants, and plants for the future [103,107]. Therefore, there is an urgent need for unconven-
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tional medicinal/food plants with consideration of their potential under the initiative of
“from flask to patient” and “from field to fork” [108].

There are many innovative technologies in food production acting as food frontiers,
which can achieve eco-sustainability and the security of global food, seeking for more
sustainable future. These food frontiers may include controlled-environment agricul-
ture [109], climate-driven northern agricultural expansion [110], cellular agriculture [111],
entomophagy [112] and seaweed aquaculture [3,113,114]. Based on the single-cell pro-
tein in macro-fungi/mushrooms, many possibilities exist to use agricultural residues and
wastes because of their fast growth, high cell densities, long history of use, and simple
reactor design. However, they have many challenges, including a need for non-food carbon
substrates and a possibility for existing mycotoxins [111]. The main target that attracts
several scientists all over the world is how to find “plant protein-based meat and dairy
analogues” especially under climate change [115–117], and single-cell proteins derived
from mushrooms as reported by Stephan et al. [118] in Table 3. Mushrooms contain many
bioactive compounds (e.g., phenolics, polysaccharides, polyketides, steroids, triterpenoids,
etc.), are considered nutraceuticals, a vegan protein source (up to 45%), and food flavor
agents for the food industry [119]. The protein content in mushrooms depends mainly
on the mushroom species and the edible part of the mushroom (i.e., fruiting body and
mycelium), where the most common mushrooms Pleurotus ostreatus, Agaricus biosporus, and
Lentinus edodes (Berg) have protein (%) in fruiting body and mycelium as follows (36 and
25.70), (45.9 and 47.1), and (23.5 and 17%), respectively in fruiting body and mycelium [119].

Table 3. Some examples of plant protein-based meat and dairy analogues and their sources.

Source of Proteins (the Country, if Any) Sources of Plant Proteins Refs.

Dairy-based protein alternatives (general study) Quinoa and lentil are considered high-digestibility proteins [61]

Meat analogues including steak, burgers, meatballs,
and cutlets (Italy) Plant steaks, burgers, meatballs, and cutlets [120]

Fibrous meat analogues (Poland) Pea protein isolate and oat fiber concentrate [121]

Innovative approaches for meat production Strategy of adding quinoa or chia to meat products [122]

Dairy cheese analogs (the USA) Plant-based cheese analogs [123]

Fermented meat sausages (Span and Italy) Plant-based alternatives includes flavor of plant protein isolates [124]

Applied binders in meat product (sausages) processing Quinoa flour could be applied as binder in beef sausage production [125]

Producing beef burgers formed from flour of quinoa and buckwheat Flour of both quinoa and buckwheat along with soy protein in
beef burgers [126]

Meat co-products as a meat replacer (general study) Crops or seaweeds can be replaced by 20% in meat protein [127]

Boiled meat sausages (Germany) Pleurotus sapidus as protein in a vegan boiled sausage analog [118]

On the other hand, many plants are considered plant-based foods that are rich in their
content of proteins such as legumes, grains (mainly quinoa), nuts, and certain fruits like
apricots, avocados, guavas, peaches, and raspberries [116]. Quinoa, as a pseudo-cereal crop,
is considered important protein crop because of its amino acidic profile, gluten-free, high
antioxidant content, bioactive properties, high nutrient content (i.e., Ca, P, B, Fe, K, Mg) and
vitamins like B1, B2, B3, B6, and E [116]. Quinoa can also be used as an alternative for vegan
diets, including in quinoa-based gels [128,129], quinoa protein isolates [130,131], to produce
high-quality protein and low-cost enriched pasta [132], and quinoa protein fortification [133].

7. Soil Restoration by Plants and Mushrooms

It is well known that soil is one of the essential components of all life, and our
life mainly depends upon it. Soil, as a non-renewable resource, can sustain our life on
the Earth by supporting about 95% of global food production [134]. Soils have some
essential ecosystem services, such as filtration of pollutants, purification of water, biomass
production, and transfer of energy and mass between spheres [134]. In his wonderful
book “The Soil–Human Health Nexus”, Lal [135] stated that human health is indivisible, and
has a very strong link to the health of the soil, plants, animals, and the entire ecosystem,



Sustainability 2022, 14, 7104 14 of 33

based on the initiative of “One Health”. He added this ancient proverb “When food is
right, medicine is of no need; when food is wrong, medicine is of no use”. Therefore, there is a
strong need and a global consensus to implement a “soil protection policy”, enact the “Soil
quality act” and respect the “Rights of soil” [135]. Due to misuse of soil resources and soil
mismanagement, soil degradation has become a global issue, which impacts the entire
environment or ecosystems and human health as well. Thus, the soil–human health nexus
is considered a very important global issue that can never be over-emphasized.

Soil is usually formed under different soil forming factors (i.e., time, topography,
organisms, climate and parent material), and forming processes. Based on the kind of parent
material, the type of formed soil is determined to form sandy, loamy, clayey, calcareous soil,
etc. (Figure 7). Several soils suffer from deterioration, which leads to degraded soil and
results from many human activities such as urbanization, industrialization and civilization
(Figure 8). Degraded soils are generally common under different conditions, which are
represented in the decline of soil organic matter, soil acidification and its compaction,
the toxicity of pollutants such as heavy metals, intensive use of chemical fertilizers and
pesticides, low vegetation, and nutrient deficiency (Figure 9). These conditions may change
the dynamics of plant–soil interactions and their outcomes.

According to FAO [136], the term land degradation is preferable compared to soil
degradation and soil erosion, because it has a wider scope, covers all negative changes in
the ecosystem capacity, and provides different services and goods from biological, social
and economic aspects. In this section, soil degradation and its restoration by plants and
mushrooms (Figure 10) are discussed. There are many human activities that lead to soil
degradation all over the world; for example, in the European Mediterranean region [134],
chemical degradation resulting from heavy metals in China [137], waterlogging and soil
salinity in India [138], or pesticides [139], physical degradation resulting from soil com-
paction [140], or environmental degradation due to invasive alien plants [141]. Several
studies have been reported about different strategies for remediation of pollutants or other
causes of soil degradation, which differ using plants or mushrooms. In the case of plants,
remediation strategies depend on the type of pollutants (organic or inorganic) and the
concentration. These strategies include bio-electrokinetic remediation [142], physicochem-
ical remediation methods (such as chelate-assisted phytoextraction), phytohormones or
plant growth regulators (e.g., auxins, abscisic acid, brassinosteroids, cytokinins, ethylene,
gibberellins, jasmonic acid, polyamines, and nitric oxide), microbe-assisted remediation,
plant growth-promoting rhizobacteria, inorganic/organic amendments such as biochar,
compost, manure for immobilization pollutants in soils, as well as genetic strategies [143].

It is well known that environmental pollution was resulted from many anthropogenic
activities such as speedy urbanization, agricultural practices, and rapid industrializa-
tion [144]. Several pollutants are involved in these activities, including metalloids, heavy
metals, agrochemicals, radionuclides, fly ash, and organic compounds [145,146]. Phytore-
mediation is considered an environmentally and economically favorable technique using
green plants to detoxify pollutants from contaminated water and soil. Phytoremediation
has several mechanisms to remove, degrade, or immobilize the pollutants, such as ac-
cumulation (by phytoextraction or rhizofiltration), degradation (by rhizo-degradation or
phytodegradation), dissipation (phytovolatilization), and immobilization by hydraulic
control and phytostabilization [144]. This mechanism depends upon the type of pollutant,
and plant species, which may utilize one or more of these mechanisms [147]. Phytore-
mediation of metals in polluted soil could be enhanced by using soil earthworm and
arbuscular mycorrhizae [148]. The main mechanisms that plants can be used in remedia-
tion process may include bioremediation, phytoremediation, as reported by many studies
such as Elallem et al. [149] Bhat et al. [150], Oladoye et al. [151], Gavrilescu [152], and
Wang et al. [148].
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Figure 7. Soils that result from different geological forms definitely differ in their fertility and char-
acterization, where sandy rocks form sandy soil (as a low-fertility soil, it needs much more treat-
ment), whereas clay or loamy soil possesses better soil fertility. These photos show different geolog-
ical forms from different places in Egypt (the first 3 photos from upper left from Matrouh; middle 
right photo from Shalateen; lower photos from Marsa Alam). All photos by El-Ramady. 

Figure 7. Soils that result from different geological forms definitely differ in their fertility and
characterization, where sandy rocks form sandy soil (as a low-fertility soil, it needs much more
treatment), whereas clay or loamy soil possesses better soil fertility. These photos show different
geological forms from different places in Egypt (the first 3 photos from upper left from Matrouh;
middle right photo from Shalateen; lower photos from Marsa Alam). All photos by El-Ramady.
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Figure 8. This drawn figure is about soil degradation and its categories. It also includes a compari-
son between the role of higher plants and mushrooms in dealing with soil degradation through the 
process of soil restoration. Different mechanisms of the restoration process for both are highlighted. 
Sources: Bandyopadhyay [153], FAO [136], Ferreira et al. [134], Zhu et al. [154], and El-Ramady et 
al. [99]. 

Figure 8. This drawn figure is about soil degradation and its categories. It also includes a compar-
ison between the role of higher plants and mushrooms in dealing with soil degradation through
the process of soil restoration. Different mechanisms of the restoration process for both are high-
lighted. Sources: Bandyopadhyay [153], FAO [136], Ferreira et al. [134], Zhu et al. [154], and
El-Ramady et al. [99].

Myco-remediation of polluted soils by mushrooms is an eco-efficient process of mush-
rooms to bio-degrade different pollutants through mechanisms such as bioaccumulation,
biosorption, bioconversion, and biodegradation [99]. The main difference between reme-
diation by plants and mushrooms is represented in the mechanism of this process, which
mainly needs enzymes to be achieved in case of mushrooms, but in the case of plants,
needs different approaches (Figure 10). The commonality between myco-remediation and
phyto-remediation is that both are considered eco-friendly and capable of sustainable
remediation of polluted soils as well as having many eco-benefits. The most important
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benefits of myco-remediation are the possibility to produce biodiesel or bioenergy, enzymes
and biofertilizers after the biodegradation process [36].
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mushrooms to bio-degrade different pollutants through mechanisms such as bioaccumu-
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remediation by plants and mushrooms is represented in the mechanism of this process, 
which mainly needs enzymes to be achieved in case of mushrooms, but in the case of 
plants, needs different approaches (Figure 10). The commonality between myco-remedi-
ation and phyto-remediation is that both are considered eco-friendly and capable of sus-
tainable remediation of polluted soils as well as having many eco-benefits. The most im-
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Figure 9. Soil/water pollution is considered an important global issue. These photos show the
litterfall in the autumn season (upper left photo), which can enrich the soil with essential nutrients
for plant growth and this reflects the biological activity in soil or soil fauna diversity in fertile soil
(upper right photo). The middle photos represent soil salinity stress, which is considered a form of
chemical soil degradation. The lower photos represent two reasons for soil degradation, including
soil pollution and waterlogging (lower left photo) and soil pollution from dead animals in irrigation
canals (lower right photo). The 2 upper photos are from Debrecen (Hungary), whereas the rest from
Kafr El-Sheikh (Egypt). All photos by El-Ramady.
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serious dimension if we need to answer this question: what is the main purpose of global 
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crops? This is a very difficult balance, which requires us to find and explore new lands, 
as-yet uncultivated, to cultivate and produce more food for the expected larger population 
in the future [157]. These lands are mainly problematic soils, which suffer from restrictions 
or obstacles preventing their productivity through the restoration processes such as pol-
luted soils, marginal, waterlogged, submerged, degraded and salt-affected soils. The com-
parative items that are needed to identify the positive and negative points of each option 
may include a large variety of economic, environmental, social, and sustainability aspects. 
Many suggestions could be applied as strategies and/or alternative choices for green en-
ergy supply, sustainability, and enough nutrition for the global growing population [157]. 

It is well known that the global population may reach 10 billion by 2050, which will 
lead to an increase in the global need for food, water, and energy (Figure 11). Along with 
energy, there is an urgent need to save sufficient quantities of clean water for different 

Figure 10. The integrated production of food and energy crops is illustrated in this drawn figure. The
main differences between energy and food crops are listed, along with their limitations as well as
different generations of biofuels with some examples. Sources: Saha et al. [155], and Goria et al. [156].

7.1. Integrated Production of Food and Energy

A great challenge faces the world to produce enough food for feeding the increasing
population, especially under the limitations of global arable lands. This problem has a
serious dimension if we need to answer this question: what is the main purpose of global
land cultivation: biofuel production from energy crops or food production from food crops?
This is a very difficult balance, which requires us to find and explore new lands, as-yet
uncultivated, to cultivate and produce more food for the expected larger population in the
future [157]. These lands are mainly problematic soils, which suffer from restrictions or
obstacles preventing their productivity through the restoration processes such as polluted
soils, marginal, waterlogged, submerged, degraded and salt-affected soils. The comparative
items that are needed to identify the positive and negative points of each option may
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include a large variety of economic, environmental, social, and sustainability aspects. Many
suggestions could be applied as strategies and/or alternative choices for green energy
supply, sustainability, and enough nutrition for the global growing population [157].

It is well known that the global population may reach 10 billion by 2050, which will
lead to an increase in the global need for food, water, and energy (Figure 11). Along with
energy, there is an urgent need to save sufficient quantities of clean water for different
natural ecosystems and human societies [158]. Why is the integrated production of food
and energy needed? Due to both food and energy being essential for human life and the
limitation of land and water resources, the production of both should be integrated, where
there is no life without all of them. It is logical to search for non-exploited lands for energy
production while saving the arable lands for food production, especially under the amazing
technologies in vertical expansion for both production systems to avoid the conflict of
“food vs. fuel”. Thus, many dimensions of the food–energy nexus have been explained
in Table 4, which includes different factors that impact this nexus from different points
of view. The importance of this nexus is increased when associated with water to be the
food–energy–water nexus.

Table 4. Different forms of food–energy nexus and their impacts.

Food-Energy Nexus The Dimension of the Study Refs.

Energy–food–water nexus

The performance of the energy–food–water nexus
using solar energy under integrated production of
fresh water from seawater desalination, biomass

gasification and food systems in Qatar

[159]

Food–energy–water nexus
Reducing the losses in energy and water from
consumer avoidable food wastes to increase

sustainability in the food system in China
[160]

Food–energy nexus related to eco-pollution

Problems resulted from the production of energy
and chemical fertilizers, as sources of

environmental pollution due to the depletion of
groundwater resources in Iran

[161]

Food–energy–water nexus

Identification of the change drivers in urban
regions in China by a study of consumption of
urban households, fixed capital formation and

exports under food–energy–water system

[162]

Food–energy–land–water nexus There is a need to produce a sustainable source of
food, clean energy (biofuels), and water in Nigeria [163]

Energy–food nexus

Collaborative management and conservation for
scarcity of food and energy resources under
climate policy were higher for low-income

compared to high-income economies

[21]

Food–energy–water nexus
Mitigation of climate change and water circularity

role in food–energy–water nexus for transition
from a linear economy to a circular economy

[158]

Water–energy–nutrient–food nexus

Under urban agriculture system, water and
nutrient needs at greenhouse farm and a container

farm could be supplied by resources present in
urban waters of wastewater and rainwater

[164]

Nutrient–food–energy–water nexus
Reusing urban wastewaters in urban farming can
reduce energy needs for nutrient, water, irrigation,

food transport, and wastewater pumping
[165]
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Table 4. Cont.

Food-Energy Nexus The Dimension of the Study Refs.

Food–water–energy nexus

Integrated management in agricultural watershed
and under drought can increase food production

by 6% and reduce energy consumption by 3%
compared to water-saving irrigation

[166]

Food–water–energy nexus
This nexus can contribute to sustainable and

efficient management of different agricultural
resources (i.e., energy, land, and water)

[167]

Food–energy–water nexus

This nexus governance depends on 9 principles:
innovation, sharing, connectivity, participation,

equitability, coordination, legitimacy,
empowerment, and strategy

[168]

Energy–water–food nexus

Optimizing resilience can calculate to minimize
emissions of CO2 based on total profits, while

considering natural disaster events
as interruptions

[169]

Food–energy–water nexus
Recycling of food wastes as a source of energy and

water can perform using a mechanical
presser/anaerobic digester to produce biogas

[170]

Food–water–energy nexus

This nexus could examine the sustainability
implications in China, which needs some strategies
through developing socio-economic balance and

saving resources from the
consumption perspectives

[171]
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right is Arundo donax (as non-edible energy crops). All photos from the experimental farm, Debrecen
University by El-Ramady.
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Edible or food crops (e.g., potato, maize, sunflower, sugar cane, sugar beet, etc.) were
the main candidates for the first generation of biofuels, whereas the residues of crops or
forests or industrial wastes were presented the second generation seeking for clean energy
and reduction of the dependence on fossil fuels [172]. Lignocellulosic biomass, as the
most abundant bio-renewable materials in the world, can be produced from water and
atmospheric CO2 through photosynthesis using sunlight energy [173]. This biomass may
represent forest residues, crop residues, industrial wastes, wood crops, municipal solid
wastes, and food wastes [172]. The main herbaceous energy crops, which are considered
the major sources of lignocellulosic biomass, include canary grass (Phalaris canariensis),
switchgrass (Panicum virgatum), Miscanthus (Miscanthus giganteus), giant reed (Arundo
donax), alfalfa (Medicago sativa), and Napier grass (Pennisetum purpureum) (Table 5). There is
no subject discussed and reports on energy as published during 2022 (till 11 May 2022) by
ScienceDirect about “Crop and Energy” 13,833 published materials, and a similar number
(13,957) by SpringerLink. The future of renewable fuel resources and biofuel crops is
the main target of climate change for several nations, such as China [174]. As is well
known, each energy crop has certain growth conditions starting from the growing seeds or
tubers till flowering and getting the harvested plant to produce the bioenergy as shown
in Figure 12. The growing stage definitely differs from the processing stage for energy
production, which depends on the plant species.

Table 5. An overview of some common energy crops and mushroom species.

Energy Crop The Common Meaning or Species in the Category

I. Energy crops

Lignocellulosic biomass (LCB) categories

1. Annual and perennial energy grasses Canary grass, switchgrass, Miscanthus, giant reed, alfalfa, and Napier grass

2. Woody biomass Natural forest residues, forestry wastes (wood chips, and branches from
dead trees), tree bark, wood shavings, and sawdust

3. Non-woody biomass
Agricultural wastes in the field (crop stubble, grasses, paddy husks, straw)
and agricultural processing wastes (animal paunch waste, sugarcane bagasse,
palm oil waste, cotton gin trash, etc.).

Lignocellulosic biomass from crop residues

Biorefinery of crop residues applications Converting biomass into bio-based products (biofuels, bioenergy,
pharmaceuticals, biopolymers, surfactants) under circular bioeconomy
Lignocellulose-degrading enzymes from microorganisms and their
biotechnological applications

Biofuels Bioethanol, biodiesel, biohydrogen, and biobutanol
Bioenergy Biochar, biogas, syngas, methane, etc.

Recent fractionation process of lignocellulosic biomass

Pyrolysis, microwave assisted deep eutectic solvents, aldehydes, organo-Cat,
hydrothermal and delignification

Mechanism of biofuel production by plants

Novel biofuels have been produced from LCB, such as bio-hydrogen,
biobutanol, dimethylfuran by enzymes of cellulases, hemicellulases, lytic
polysaccharide monooxygenase, ligninase, and cellobiose dehydrogenases

Main food crops and their generated residues

Apple (apple pomace), cotton (cotton sheets, cotton stalks), rice (rice straw,
rice hulls), coffee (coffee husks, coffee pulp, wastewater), sugarcane
(sugarcane bagasse, cane straw), barley (barley straw), beans (peel beans),
sorghum (sorghum straw), orange (orange peel, orange bagasse), maize
(corncobs, corn straw), soybean (soybean hull), wheat (wheat straw), grapes
(grape pomace)
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Table 5. Cont.

Energy Crop The Common Meaning or Species in the Category

Main biorefinery applications of some major crop residues

Coffee residues Production of levulinic acid, gibberellic acid, biogas, bioethanol, biodiesel,
α-amylase, pectinase, endoglucanase, and cultivation of mushrooms

Maize residues Production of methane, prebiotic xylo-oligosaccharides, biosorbent, biogas
Soybean residues Production of protease, β-amylase, α-amylase, biodiesel, biogas, bioethanol

Sugarcane residues Production of glycosyl hydrolases, xylanases, endoglucanase, biobutanol,
bioethanol, lignin, and levulinic acid

Rice residues Production of cellulase, lignin degrading enzymes, biochar, nano-silica,
nanocrystals, biobutanol, lignin, and cellulose

Wheat residues Production of bioethanol, biogas, levulinic acid, bacterial cellulose, and
mushroom cultivation

II. Mushrooms

Most important mushroom species produce bioethanol

Pleurotus florida, P. ostreatus, Ganoderma lucidum, Lentinula edodes

Mechanism of biofuel production by mushroom

Production of biofuels and energy from LCB is based on biochemical
processes, which LCB needs C:N ratio < 30 and humidity >30% through
degrading enzymes (laccase, mannanase, cellulase, xylanase, etc.)

Spent mushroom substrates (SMS) and its use for bioethanol production

I. SMS of both mushrooms (Agaricus bisporus and Pleurotus forida) used for
lignocellulolytic enzymes (hydrolytic and oxidative enzymes)
II. SMS of Lentinula edodes was used for enzymatic saccharification, which
resulted in high glucan digestibility (80–90%) in the SMS beside phenolics
III. Using Hot-air (75–100 ◦C) pasteurization instead of autoclaving for SMS
of Lentinula edodes by enzymatic digestibility of glucan in SMS
IV. SMS of Ganoderma lucidum used by 0.2% (v/v) for fermentation using
baker’s yeast (Saccharomyces cerevisiae) and incubated for 5 days at 30 ◦C

Fermentation using mushroom for bioethanol production

I. Fermentation using Pleurotus florida on cotton spinning wastes and the
optimum ethanol yield (1.18 g L−1) was obtained by 64% at 60 h
II. Mushroom of Dictyopanus genera can its enzyme (laccase activity
267 U L−1) from oil palm delignification process for
bioethanol derived-cellulose

Sources: [99,172,173,175–182].

7.2. Integrating Food Crops and Mushrooms

Integration in agricultural sectors is very important as a general target for sustainable
agriculture, in particular the production of food and energy. Mushrooms represent an
important source of non-traditional food for human nutrition. So, the marketing of mush-
rooms includes cultivated edible (54%), medicinal mushrooms (38%), and wild mushrooms
(8%) [183]. Mushrooms are also being considered as second-generation biofuels, and this
does not compete with the production of foods; the cultivation of mushrooms and their
waste recycling should be exploited for a circular bioeconomy [184]. Agro-wastes could
be also bio-converted and composted with wastes of dairy foods during the cultivation
of mushrooms [185]. Cultivation of edible and/or medicinal mushrooms is a sustainable
food–energy production system because they can mainly cultivate agro-wastes and/or
agro-industrial residues as well as the wastes of their cultivation (spent mushroom sub-
strate or SMS) themselves, which can be used in bioenergy production. Therefore, this
combination of food–energy production by mushrooms is considered an integrated form
of production as reported in the case of production of mushrooms and tomatoes under
the circular bioeconomy approach [186]. The co-cultivation of plants (e.g. vegetables) and
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mushrooms has been reported in many studies, which leads to higher yields and higher
biomass production, due to the impacts of mushroom hyphae in increasing the availability
of water and minerals around plant roots [186,187].
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Figure 12. Jerusalem artichoke as an example of energy crop and as a biorefinery crop with focus on
different growth stages. These photos start from the upper left, which presents the storing of some
tubers in the soil from the previous crop until March, and then the tubers were collected from soil and
put in containers in refrigerator until the cultivation in April, where the right photo after cultivation
shows the tubers in June. The middle photos represent the plants during October and November. The
lower photos: left is the tubers in the mature stage during December and the right photo for plants
during January in winter. All photos were taken from the experimental farm, Debrecen University
by El-Ramady.

The integrated relationship between mushrooms and higher plants does not only
include co-cultivation at the same time, but also include many benefits in different applica-
tions, such as:

(1) Improving mushroom (Pleurotus ostreatus) production cultivated on staple crop residues
including banana, cassava, common bean, and maize [188],

(2) Utilizing fruit waste substrates (peels of avocado, orange, and pineapple) in mush-
room (Pleurotus eryngii and P. ostreatus) production [189],

(3) Using hulls of faba bean as substrate for mushroom (Pleurotus ostreatus) cultivation
and for animal feed production [190],

(4) Producing spawns from banana leaf-midribs for cultivation of oyster (Pleurotus ostrea-
tus) mushrooms [191],

(5) Integrating mushroom cultivation and production in a circular agro-system into food
chains [192], and

(6) Using spent mushroom compost of mushroom (Agaricus subrufescens and A. bisporus)
for cultivation of lettuce, tomato, and/or cucumber in a sustainable system in the
same container under greenhouse conditions [193].

There are many species of mushrooms that have the ability to produce bioethanol,
such as Pleurotus florida, P. ostreatus, Ganoderma lucidum, Lentinula edodes, etc., as reported by
Xiong et al. [178], Rueda et al. [182], Sudhakar et al. [179], Devi et al. [177],
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Periyasamy et al. [181], and Ranjithkumar et al. [180] (Table 5; Figure 13). The suggested
mechanism of producing biofuels and energy from lignocellulosic biomass (LCB) is based on
biochemical processes, which need certain conditions, especially C:N ratio < 30 and humidity
>30% through biodegrading enzymes (e.g., laccase, mannanase, cellulase, and xylanase).
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8. General Discussion

A variety of applications of mushrooms in the agricultural, medicinal, and pharma-
ceutical fields are well known. Although this review focuses on the comparison between
mushrooms and higher plants, the findings will have a bearing on the co-cultivation of
mushrooms and cultivated plants as an agro-sustainable approach. Returning to the main
questions posed at the beginning of this study, it is now possible to state that the answer to
the previous questions could be mentioned in brief as follows:

What is the preferable for soil restoration food crops or energy crops, or mushrooms?
In general, energy crops (especially non-edible crops) are preferable plants for problematic
soils, since they have the ability to reclaim these soils, are tolerant to stressful conditions in
these soils, and could save arable soils for food production. Mushrooms have many benefits
in the respiration of degraded soils through many biochemical processes resulting from the
enzymatic activities of mushrooms, such as decomposition, biodegradation, bio-weathering,
bioconversion, and biosorption. Mushrooms also have the ability to increase soil aggregates,
promote biodegradation of pollutants, and enhance the nutrient bioavailability in soil [194].

What is the possibility for sustainable production of both food crops and mushrooms?
The sustainable agriculture for both mushrooms and cultivated plants could be achieved
under the co-cultivation of mushrooms and vegetables as an integrated system for foods and
mushrooms production. This approach will prove useful in expanding our understanding
of how the cultivated mushrooms can support the growth and productivity of co-cultivated
vegetables at the same time. Co-cultivation of mushrooms and lettuce can reduce the
accumulated CO2 emission into the air by 80.6%, due to the ability of mushrooms to
support cultivated lettuce by CO2 resulting from the respiration of mushrooms. This
continuous cultivation system of both mushrooms and lettuce can reduce CO2 emissions
into the air and achieve sustainable agriculture [195]. The circular bioeconomy approach
could be realized for the integrated production of foods and mushrooms. Different agro-
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industrial residues could be managed in a sustainable approach through motivating the use
of these residues for the production of both vegetables and mushrooms or fungi culture.

9. Conclusions and Future Perspectives

This is the first study to report a photographic comparison between mushrooms and
plants. This comparison that we have identified therefore assists in our understanding of
the role of both mushrooms and cultivated plants especially towards the circular biore-
finery approach. The findings from this study make several contributions to the current
literature. First, several similar and differences are be noticed between mushrooms and
plants. Second, the most important difference lies in the fact that plants have the ability
to make their own food (autotrophic), due to the existence of chlorophyll, whereas mush-
rooms are saprophytic organisms. Third, the co-cultivation of mushrooms and vegetables
is an integrated and sustainable production system. Fourth, mushrooms are considered a
sustainable solution for bioenergy and biorefinery. Although the study has successfully
demonstrated that mushrooms and plants could be integrated in many different agricul-
tural, medicinal, and pharmaceutical practices, it has certain limitations in terms of the
harmony between mushrooms and cultivated crops. It is suggested that the association of
these factors is investigated in future studies to make precise criteria for this co-cultivation
of mushrooms and plants. It is suggested that before the generalization is introduced, many
co-attributes between mushroom and plants should be carried out on the phytomedicinal
and ecotoxicological attributes. This review also focused on the phytomedicine and its
potential for human health, the unconventional foods derived from plants and mushrooms,
soil degradation and its restoration by plants and mushrooms, the integrated production
of food and energy, and finally the agro-integration between food crops and mushrooms.
This review may open new windows concerning the urgent strategy for producing food
and energy at the same time.
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