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Abstract: This paper presents a mathematical analysis of several criticality metrics used for evaluating
the safety of autonomous vehicles (AVs) and also proposes novel environmentally-friendly metrics
with the scope of facilitating their selection by future researchers who want to evaluate both safety
and the environmental impact of AVs. Regarding this, first, we investigate whether the criticality
metrics which are used to quantify the severeness of critical situations in autonomous driving are
well-defined and work as intended. In some cases, the well-definedness or the intendedness of the
metrics will be apparent, but in other cases, we will present mathematical demonstrations of these
properties as well as alternative novel formulas. Additionally, we also present details regarding
optimality. Secondly, we propose several novel environmentally-friendly metrics as well as a novel
environmentally-friendly criticality metric that combines the safety and environmental impact in
a car-following scenario. Third, we discuss the possibility of applying these criticality metrics in
artificial intelligence (AI) training such as reinforcement learning (RL) where they can be used as
penalty terms such as negative reward components. Finally, we propose a way to apply some of
the metrics in a simple car-following scenario and show in our simulation that AVs powered by
petrol emitted the most carbon emissions (54.92 g of CO2), being followed closely by diesel-powered
AVs (54.67 g of CO2) and then by grid-electricity-powered AVs (31.16 g of CO2). Meanwhile, the
AVs powered by electricity from a green source, such as solar energy, had 0 g of CO2 emissions,
encouraging future researchers and the industry to develop more actively sustainable methods and
metrics for powering and evaluating the safety and environmental impact of AVs using green energy.

Keywords: autonomous vehicles; criticality metrics; safety; sustainability

1. Introduction

The research interest in the domain of AVs, especially regarding their safety, has grown
exponentially in the last few years. This is mainly due to recent advancements in the field
of AI, especially regarding deep RL algorithms, which are showing promising results
when implemented in AI components found in AVs, especially when combined with prior
knowledge [1].

Concerning traffic scenarios, the safety of all traffic participants is considered to be the
most important aspect on which the researchers should focus, this being especially reflected
by projects such as VVM - Verification and Validation Methods for Automated Vehicles
Level 4 and 5 [2], SET Level - Simulation-based Development and Testing of Automated
Driving [3], as well as KI Wissen - Automotive AI powered by Knowledge [4], all three
projects being funded by the German Federal Ministry for Economic Affairs and Climate
Action. In addition to these, many other projects of the VDA Leitinitiative autonomous
and connected driving [5] bring together various research partners from the industry and
academia to solve challenging and contemporary research problems related to the AV
domain, emphasizing the relevance of criticality and safety in traffic.
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With regards to the meaning of criticality, despite the existent ambiguity regarding
its definition in both industry and academia, for an easier understanding of its meaning
in the context of this paper, we follow the definition given by the work in [6], namely: the
combined risk of the involved actors when the traffic situation is continued.

Regarding this, to assess how critical a traffic situation is, the existent research works
found in the literature focus on the use of so-called criticality metrics for automated
driving [7,8]. However, because AVs are operating in a complex traffic environment where
a high number of actors are present, such as AVs, non-AVs, and pedestrians, to name only
a few, it is imperative to not only identify the suitable criticality metrics that can mitigate
dangerous situations as it is currently done in the literature [7,8] but also to implement and
evaluate them efficiently regarding their environmental impact as well.

This is of high importance, especially when the transportation sector is known to
be a key contributor to climate change, accounting for more than 35% of carbon dioxide
emissions in the United States alone [9]. It is therefore imperative that existent and future
researchers do not only use existent metrics that can evaluate critical situations in traffic, but
also make efforts in proposing novel environmentally friendly criticality metrics that can be
used to evaluate the AVs impact on the environment and economy as well. A recent effort
in this direction is made by a new global initiative that tries to catalyze impactful research
work at the intersection of climate change and machine learning such as the Climate Change
AI [10] organization as well as in recent works that try to encourage researchers to power
and evaluate their deep learning-based systems using green energy [11,12].

Therefore, in this paper, we present a mathematical analysis of 43 criticality metrics [7,8]
to determine if they are well-defined as well as if they are working as intended within their
scope to easily facilitate their selection for criticality assessment in the context of AV safety
evaluation. Furthermore, due to recent emergent paradigms, such as Green AI [13], which
encourage researchers to move towards more sustainable methods that are environmentally
friendly and inclusive, we also propose several green metrics that are used to create a novel
green-based criticality metric, which is suitable for evaluating a critical scenario not only
regarding safety but also regarding the environmental impact in a car-following scenario.

Furthermore, from the perspective of AI training, we assess whether existing criticality
metrics are suitable to serve as a component of the objective function, (which was already
mentioned in [7] (Section 3.1.1)), for example, of the reward function in RL. To this end,
the used criticality metrics must work as intended so that actions and, therefore, policies
themselves that represent the desired behavior are flagged as optimal.

Our main contributions are: (i) analysis of existing criticality metrics in terms of well-
definedness, intendedness, and optimality; (ii) integration of existing loss functions in RL
and of emission estimations into the criticality metrics framework; (iii) investigation of
the suitability of the criticality metrics for AI training; (iv) illustrative simulations of the
metrics applied in a car-following scenario.

The paper is organized as follows. In Section 2, we present the related work. Section 3
details the mathematical analysis of 43 criticality metrics as well as the proposed novel
formulas regarding making some of them work as intended. Section 4 presents the proposed
green-based criticality metrics. Section 5 presents our contribution regarding the usage of
criticality metrics for AI training. In Section 6 we present the application of the metrics.
Finally, in Section 7, we present the conclusions, limitations and future work of this paper.

2. Related Work

An extensive overview of criticality metrics in autonomous driving has been given by
the authors in [7,8].

The usage of criticality metrics is not restricted to the evaluation of traffic scenarios
but can be extended to the training of autonomous driving agents by integrating suitable
metrics into the reward function. This technique is called reward shaping and allows for
prior knowledge to be included in the training, as seen in [14].



Sustainability 2022, 14, 6988 3 of 33

Three of these criticality metrics, namely Headway (HW), Time Headway (THW), and
Deceleration to Safety Time (DST), were implemented and tested in an Adaptive Cruise
Control (ACC) use case, as detailed by the authors in [1]. In their work, the authors have
shown that different RL models can be evaluated for the ACC use case using these metrics,
however, the DST metric at the very least does not coincide with the supposed objective of
this function.

The ecological impact of autonomous driving has been discussed in many works such
as the ones in [15–19]. These works do not only consider fuel consumption or emissions but
also analyze the socio-ecological aspects like a higher driving demand if AVs are available
or indirect implications like reduced land use due to optimized parking. Moreover, the
work in [20] proposes a model for estimating the emissions and evaluating it in different
scenarios w.r.t., for example, the relative part of AVs in the traffic.

The cited references generally consider the fuel consumption and the emissions for
evaluation. These measures can be seen as green-based metrics, which have already been
used for AI training. For example, the authors in [21] train a deep RL model that is
encouraged to minimize emissions, and the authors in [22] propose a deep RL controller
based on a partially observed Markov Decision Problem for connected vehicles so that
eco-driving is encouraged where battery state-of-charge and safety aspects (e.g., speed
limits or safety distances) are integrated into the model. Additionally, the work in [23]
presents an extensive overview of eco-driving RL papers where the reward function is
nearly always state-of-charge or fuel consumption. The authors in [24] propose a hybrid RL
strategy where conflicting goals such as saving energy and accelerating are captured by a
long-short term reward (LSTR). To not let energy-saving jeopardize safety, the acceleration
energy is only penalized for accelerations, not for decelerations. The reward function also
consists of a green-pass reward term, which essentially encourages reaching the stopping
line of an intersection when the traffic light is green (i.e., driving forward-looking). Some
of these references do not only focus on carbon dioxide emissions but also consider, for
example, carbon monoxide, methane, or nitrogen oxides. Besides training AVs, ecological
aspects are also taken into consideration regarding traffic system controls [25].

3. Mathematical Analysis of Criticality Metrics

In the following, we present the mathematical analysis of several criticality metrics.
As for the notation in the subsequent parts, please see the Abbreviations and Nomencla-
ture sections where the most frequent abbreviations and symbols used in this paper are
presented.

The criticality metrics work presented in [7,8], serves as a collection of metrics regard-
ing vehicle conduction. In this section of the paper, we evaluate, from a mathematical
framework, two aspects of these criticality metrics.

Note that, as in the literature, we always refer to these criticality functions as criticality
“metrics”, although most of them are not metrics in the mathematical sense.

First, we determine if they are well-defined, meaning that there is no ambiguity in
the interpretation of the function for all the input values that the metric covers. A good
example of a not well-defined metric would be f (x) = 1/x for x ∈ [−1, 1], since at the
value of x = 0 (which exists on the input range), it is not clear which value the function
outputs.

Second, if the metric is well-defined, we evaluate if it works as intended. This requires
a different analysis for each metric. An example of a metric that does not work as intended
would be a metric that is supposed to give a distance between two vehicles positions p1
and p2, usually for p1, p2 ∈ R2, and is defined as follows:

DistanceBetweenVehicles(p1, p2) = p1 + p2

The metric is well defined, as any two vectors have a unique additional output, but a
distance should decrease (or at least stay constant) in magnitude as ||p1 − p2|| decreases,
but that is not the case with the function DistanceBetweenVehicles.
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Third, we discuss the requirements for the agent’s behaviors that arise from the
individual criticality metrics. The criticality metrics quantify the criticality of traffic scenes
or traffic scenarios so that it would be a desirable property that they make different concrete
scenarios comparable to determine which one (and with it, usually, which agent) behaved
best.

In some cases, the well-definedness or the intendedness of the metric will be apparent,
but in other cases, we present mathematical demonstrations of these properties. In some
cases, we present alternative formulas for the metric. It is important to mention here also
that for the criticality metrics that are not well-defined or do not work as intended, it is
infeasible to replace them with new ones, and thus their intendedness cannot be analyzed.

Following, to make all of the criticality metrics analyzed in this paper more accessible,
we organize them according to their scales such as time, distance, velocity, acceleration,
jerk, index, probability, and potential. As for the target values of the individual metrics, we
will borrow those collected in the supplementary web page [8] of the work in [7]. These
target values are not necessarily desirable but are used for scenario classification.

Note that the position predicates p(t) seen in the Nomenclature section of this paper
implicitly refer to predictions via a dynamic motion model (DMM) if applied to future
time points. As some metrics are defined by aggregating other metrics over time, it is also
possible to apply such a DMM for each time point retrospectively. In principle, predictions
can also be completed by the means of machine learning, as in quantifying the energy
absorption of a bump shock absorber in the work presented in [26].

3.1. Time-Scale Criticality Metrics
3.1.1. Encroachment Time (ET)

The ET metric was proposed in [27]. It is supposed to measure the time that an actor
A1 takes to encroach a designated conflict area CA, and is defined as the difference between
the time step texit where the vehicle leaves CA and the time step tentry where it enters it:

ET(A1, CA) = texit(A1, CA)− tentry(A1, CA) . (1)

The ET metric has no run-time capability.

Well Definedness

Since the function consists of a simple substraction, the ET metric is well-defined
as long as texit and tentry are well-defined, meaning that A1 enters CA at some time
tentry(A1, CA) and exits CA at some time texit(A1, CA), which is reasonable to expect.

Intendedness

The metric works as intended: If A1 enters CA at time tentry(A1, CA) and exits CA at
time texit(A1, CA), then the time spent in CA is texit(A1, CA)− tentry(A1, CA), as defined.

Optimality

There are no target values for ET. Generally, the ET and therefore the time in the critical
area should be as short as possible but it can be misleading if the concrete situation does
not allow for it, e.g., if the conflict area is an occluded intersection, which A1 evidently
should not pass with high speed.

3.1.2. Post Encroachment Time (PET)

The PET metric [27] intends to calculate the time gap between one actor (A1) leaving
and another actor (A2) entering a designated conflict area. This assumes A1 completely
passes CA before A2 enters it, and the metric is defined as follows:

PET(A1, A2, CA) = tentry(A2, CA)− texit(A1, CA) . (2)

The PET metric has no run-time capability.
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Well Definedness

Since this function consist of a simple substraction, the PET metric is well-defined as
long as texit and tentry are well-defined.

Intendedness

The PET metric works as intended: If A1 enters CA at time tentry(A1, CA) and exits CA
at time texit(A1, CA), and A2 enters CA at time tentry(A2, CA) and exits
CA at time texit(A2, CA), then the time gap between A1 exiting and A2 entering is
tentry(A2, CA)− texit(A1, CA), as defined.

Optimality

In the ideal situation where the conflict area is known and that A2 can observe the end
of the conflict zone and A1, A2 can modify its velocity and acceleration so that it enters the
conflict area at the appropriate time step, at least approximately by using predictions for
the future trajectories of A1 until A1 exits the conflict area.

3.1.3. Predictive Encroachment Time (PrET)

The work in [7] does not give an explanation for the metric, only the formula, so we
try to understand its purpose based on:

PrET(A1, A2, t) = min({|t̃1 − t̃2| | p1(t + t̃1) = p2(t + t̃2), t̃1, t̃2 ≥ 0} ∪ {∞}) . (3)

The PrET metric has the run-time capability.

Well Definedness

The formula for the metric is well defined since it’s defined as the minimum of a
non-empty set. It should be noted that this formula assumes knowledge of the positions of
both vehicles at all times greater than t (or having a model to predict them).

Intendedness

Based on the formula, the intention of the metric seems to be to find the minimum
time difference between both vehicles passing through the same point, for any point. If
that’s the case, the metric works as intended.

Optimality

To attain an optimal PrET, which we denote by PrET∗, the following agent has to
modify its velocity and acceleration at each time step according to the leading agent.
Although PrET is a scene level criticality metric (as seen in Figure 5 of the work presented
in [7]), PrET∗ can be at least approximately attained for the whole scenario. Note that in the
special case of a constant velocity v of the leading agent, the rear agent just has to maintain
the optimal distance corresponding to PrET∗ while driving with the same velocity v.

3.1.4. Time Headway (THW)

The THW metric intends to calculate the time until actor A1 reaches the position of a
lead vehicle A2. It is defined by the following formula:

THW(A1, A2, t) = min{∆t ≥ 0 | p1(t + ∆t) = p2(t)} . (4)

The THW metric has the run-time capability.

Well Definedness

The formula for the metrics is not well defined, since it would require knowledge
of the position of A1 at all times greater than t, or a method of predicting it that is not
mentioned.
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Intendedness

The metric would work as intended if the position of A1 was known at all times greater
than t. Since it would return the first value of the set of times when A1 reaches the position
of A2.

Proposed Solution

We will propose two new formulas for the metric, one that predicts future positions of
A1 by assuming constant velocity (4a) and one assuming constant acceleration (4b):

THW(A1, A2, t) = min{∆t ≥ 0 | p1(t) + v1(t)∆t = p2(t)} = (p2(t)− p1(t))/v1(t) . (4a)

THW(A1, A2, t) = min{∆t ≥ 0 | p1(t) + v1(t)∆t + a1∆t2/2 = p2(t)} . (4b)

where v1(t) is the speed of A1 at time t, a1 is the acceleration of A1 at time t.

Optimality

Having a prediction model for both the agent’s trajectories, the rear agent can modify
its movements so that the target value for THW is attained.

3.1.5. Time To Collision (TTC)

The TTC metric intends to return the minimal time until vehicle A1 and vehicle A2
collide using an underlying one-track prediction model for both actors where d is a distance
metric, w.l.o.g. the Euclidean distance.

TTC(A1, A2, t) = min ({∆t ≥ 0 | d(p1(t + ∆t), p2(t + ∆t)) = 0} ∪ {∞}) (5)

The TTC metric is run-time capable.

Well Definedness

The metric is well-defined since it’s defined as the minimum of a non-empty set, and
we are provided a method to predict the positions of both actors.

Intendedness

The metric works as intended:
If TTC = ∞, then {∆t ≥ 0 | d(p1(t + ∆t), p2(t + ∆t)) = 0} = ∅.
Therefore, at no point in time greater than time t will the two vehicles collide.
If TTC = t̂, then t̂ ∈ {∆t ≥ 0 | d(p1(t + ∆t), p2(t + ∆t)) = 0}.
Therefore, the vehicles collide at time t̂. If there was another time t′ such that t′ ≥ t

and t′ ≤ t̂, then the vehicles would not collide at time t′, since t̂ is the minimum of such
collision times.

Therefore, t̂ is the first time at which the two vehicles collide.

Optimality

The TTC metric is rather conflictive with other criticality metrics as it does not guide
the following agent. From the perspective of criticality metrics like THW, it would be
desirable to keep an appropriate velocity-dependent distance from the leading agent. Of
course, if the leading agent brakes, the TTC becomes finite due to the reaction time of
the following agent. Although one can compare different braking maneuvers, the TTC
values depend mostly on the braking behavior of the leading agent. From the pure TTC
perspective, however, a high TTC value would be desirable although there are different
target values for this metric. The implication to the rear agent would be to keep a sufficiently
large distance from the leading agent. In principle, if the reaction time can be estimated,
the optimal THW would be the sum of the target value of the TTC and the reaction time, at
least in the ideal situation where the agent can perform the same braking maneuver as the
leading agent, which would require the same or at least a similar vehicle type. Note that
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some of the target values of TTC exceed those of THW, which would signify that the rear
agent may not make sense as the rear agent clearly would violate the TTC requirements if
it could not brake even more efficiently than the leading agent.

3.1.6. Time Exposed TTC (TET)

The TET metric [28,29] intends to measure the amount of time for which the TTC
is below a given target value τ during a fixed time interval [t0, te], and is defined by the
following formula:

TET(A1, A2, τ) =
∫ te

t0

1TTC(A1,A2,t)≤τdt . (6)

The TET metric has a retrospective run-time capability.

Well Definedness

Even though not all indicator functions are integrable, we can assume that the sets
defined by TTC(A1, A2, t) ≤ τ are discretizable and therefore measurable, so with that
assumption, the integral is well defined.

Intendedness

A Riemann integral of an indicator function is equal to the measure of the indicator
set, so the metric works as intended.

Optimality

If a TTC of τ or less is critical, it would be optimal to have a TET of zero. Evidently,
TET shares the disadvantages of TTC.

3.1.7. Time Integrated TTC (TIT)

TIT is supposed to aggregate the difference between the TTC and a target value τ in a
given time interval [t0, te].

TIT(A1, A2, τ) =
∫ te

t0

1TTC(A1,A2,t)≤τ(τ − TTC(A1, A2, t))dt. (7)

The TIT metric has a retrospective run-time capability.

Well Definedness

The formula for the metric is well defined assuming as in TET that the sets defined by
TTC(A1, A2, t) ≤ τ are discretizable and therefore measurable, and assuming that TTC is
continuous on t since it would be an integral of the product of two integrable functions
(therefore integrable).

Intendedness

The metric works as intended since by definition the integral is an aggregation function,
and the integrand is a measure of the difference between the TTC and τ.

Optimality

TIT simply scales the TET, so our analysis for TET remains valid for TIT.

3.1.8. Potential Time To Collision (PTTC)

The PTTC metric has been proposed by [30]. However, it is important to mention that,
in this paper, we focus on analyzing the PTTC version of the metric found in [7]. If A1
travels at a constant speed v1 and the leading agent A2 decelerates at a constant rate a2
(with starting speed v2), then the PTTC metric is defined as follows:
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PTTC(A1, A2, t) =
1
a2

(
−ḋ±

√
ḋ2 + 2d

)
(8)

for d = p2(t)− p1(t) and ḋ = v2(t)− v1.
The PTTC metric is run-time capable.

Well Definedness

The metric is not well defined, since the “±” on the equation is never disambiguated.

Intendedness

The metric intends to return the value of the simple physics problem of finding the
time of collision given the initial values at time t. By doing some arithmetic steps we will
find the solution to this problem and compare it to the value of the metric.

If we name ∆t as the amount of time elapsed from time t (time of measurements), we
want to find for which value of ∆t the projected distance between vehicles at time t + ∆t
is 0:

p(t + ∆t) = 0 ⇐⇒ p2(t)− p1(t) + v2(t)∆t− v1∆t− a2

2
∆t2 = 0 (8a)

Applying the quadratic equation to the above equation, we get:

∆t =
−(v2(t)− v1)±

√
(v2(t)− v1)2 − 4(− a2

2 )(p2(T)− p1(t))

−2 a2
2

=
−ḋ±

√
ḋ2 + 2a2d
−a2

(8b)

which gives different values than the proposed formula, so even if the ± was desam-
biguated the metric would not be working as intended.

Proposed Solution

We will propose a new formula for the metric, by disambiguating the equation:

−ḋ±
√

ḋ2 + 2a2d
−a2

(8c)

In order to desambiguate this equation, we will need to impose the condition that
∆t ≥ 0, therefore:

−ḋ±
√

ḋ2 + 2a2d
−a2

≥ 0 (8d)

Since a2 > 0:

⇐⇒ −ḋ±
√

ḋ2 + 2a2d ≤ 0 (8e)

⇐⇒ ±
√

ḋ2 + 2a2d ≤ ḋ (8f)

Now we have two distinct cases to analyze: ḋ ≥ 0 and ḋ < 0. If ḋ ≥ 0, then the
equation is equal to:

±
√

1 +
2a2d

ḋ2
≤ 1 (8g)

Since
√

1 + 4a2d
ḋ2 > 1 the “±” desambiguates as “−” and the solution is:

∆t =
−ḋ−

√
ḋ2 + 2a2d
−2a2

(8h)
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Now if ḋ < 0, then the equation is equal to:

−±
√

1 +
2a2d

ḋ2
≥ 1, (8i)

and the “±” desambiguates as “−” as well. Therefore the new formula for the metric is:

PTTC(A1, A2, t) =
ḋ +

√
ḋ2 + 2a2d
a2

. (8j)

Optimality

As PTTC is just a special case of TTC, our analysis for TTC remains valid for PTTC.

3.1.9. Worst Time To Collision (WTTC)

The WTTC metric intends to extend the usual TTC by considering multiple traces of
actors as predicted by an over-approximating DMM. For the sets Tr1(t) and Tr2(t) of traces
of actor 1 resp. actor 2 at time t, is defined as follows:

WTTC(A1, A2, t) = min
p1∈Tr1(t),p2∈Tr2(t)

({∆t ≥ 0 | d(p1(t + ∆t), p2(t + ∆t)) = 0} ∪ {∞}), . (9)

The WTTC metric has the run-time capability.

Well Definedness

It is not clear how to obtain the traces of the actors.

3.1.10. Time To Maneuver (TTM)

The definition of the TTM metric in the original source found in [31] is different than
the definition presented in [7]. It is important to mention that, in this paper, we use the
definition of TTM found in [7].

The TTM metric is supposed to return the latest possible time in the interval [0, TTC]
such that an actor A1 performing the considered avoidance maneuver m would lead to
collision avoidance (or −∞ is a collision is inevitable).

TTM(A1, A2, t, m) = max ({t̃ ∈ [0, TTC(A1, A2, t)] |
d(p1,m(t + s), p2(t + s)) > 0 ∀ s ≥ t̃} ∪ {−∞})

(10)

where p1,m(t′) denotes the position of actor 1 at some time t′ > t if maneuver m has been
executed. The TTM metric has run-time capability.

Well Definedness

The metric is well-defined since it is defined as the maximum of a non-empty set,
assuming we are provided a method to predict the positions of both actors.

Intendedness

We will prove by examplethat the metric is not working as intended. Let us assume
that:

t̂ = TTM(A1, A2, t, m) < TTC(A1, A2, t)

and that t̂ 6= −∞. Then:

t̂ ∈ {t̃ ∈ [0, TTC(A1, A2, t)] | d(p1,m(t + s), p2(t + s)) > 0 ∀ s ≥ t̃}.

Then:
d(p1,m(t + s), p2(t + s)) > 0 ∀ s ≥ t̂.

If t̂ < t1 < TTC(A1, A2, t) then d(p1,m(t + s), p2(t + s)) > 0 ∀ s ≥ t1 so,
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t1 ∈ {t̃ ∈ [0, TTC(A1, A2, t)] | d(p1,m(t + s), p2(t + s)) > 0 ∀ s ≥ t̃}.

Since t1 > t̂ and also exists on the set, then t̂ is not the maximum of the set, which
is absurd. Therefore, TTM(A1, A2, t, m) = TTC(A1, A2, t) or TTM(A1, A2, t, m) = −∞,
which proves the metric is not working as intended.

Proposed Solution

TTM(A1, A2, t, m) = max ({t̃ ∈ [0, TTC(A1, A2, t)] |
d( p̂1(t̃, t + s), p2(t + s)) > 0 ∀ s ≥ t̃} ∪ {−∞}),

(10a)

where p̂1(t̃, t + s) is the predicted position of A1 at time t + s if A1 started performing the
maneuver at time t̃. The proposed solution is well-defined and works as intended.

Optimality

At the level of TTM, the agent cannot be reasonably guided as the evasion maneuver
and should be executed as quickly as possible.

3.1.11. Time To Brake (TTB)

This section on the criticality metrics paper [7] is a reference to the TTM metric.

3.1.12. Time To Kickdown (TTK)

This section on the criticality metrics paper presented in [7] is a reference to the TTM
metric.

3.1.13. Time To Steer (TTS)

This section on the criticality metrics paper [7] is a reference to the TTM metric.

3.1.14. Time To React (TTR)

The TTR metric aims to approximate the latest time until a reaction over a predefined
set of maneuvers M is required. It is defined as follows:

TTR(A1, A2, t) = max
m∈M

TTM(A1, A2, t, m) . (11)

The TTR metric has the run-time capability.

Well Definedness

The metric’s properties hinge mostly on TTM’s properties. If we assume TTM is
well-defined, then TTR is well defined, since TTR is the maximum of a finite set of values.

Intendedness

Assuming TTM works as intended, then TTR also works as intended.

Optimality

See the TTM metric.
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3.1.15. Time To Zebra (TTZ)

The TTZ metric intends to measure the time until actor A1 reaches a zebra crossing
CA, and is defined as follows:

TTZ(A1, CA, t) = min ({∆t ≥ 0 | d(p1(t + ∆t), pZebra(t + ∆t)) = 0} ∪ {∞}). (12)

There is a small detail to correct in the definition of TTZ, which is that the zebra
crossing position does not change with time, so pZebra(t + ∆t) should be pZebra, and the
formula should be:

TTZ(A1, CA, t) = min ({∆t ≥ 0 | d(p1(t + ∆t), pZebra) = 0} ∪ {∞}). (12a)

The TTZ metric has the run-time capability.

Well Definedness

The definition does not offer a way to obtain or predict p1(t + ∆t). Other than that it
is well-defined.

Intendedness

Assuming p1(t + ∆t) can be computed, the TTZ metric should work as intended.

Optimality

The TTZ metric solely measures the time needed until the zebra crossing is reached
and is therefore useless as the agent has to attain and even cross it eventually.

3.1.16. Time To Closest Encounter (TTCE)

The TTCE is supposed to measure the time ∆t > 0 for which the distance d to other
actors in a scenario becomes minimal.

TTCE(A1, A2, t) = arg min∆t≥0d(p1(t + ∆t), p2(t + ∆t)) . (13)

The TTCE metric has the run-time capability.

Well Definedness

The metric is not well-defined since there are eventually multiple times that the
distance to the other actor becomes minimal, so it is ambiguous, which is the TTCE.

Proposed Solution

DCE(A1, A2, t) = min
∆t≥0

d(p1(t + ∆t), p2(t + ∆t)) , (13a)

TTCE(A1, A2, t) = min ({∆t ≥ 0 | d(p1(t + ∆t), p2(t + ∆t)) =

DCE(A1, A2, t)})
(13b)

where DCE(A1, A2, t) is the closest distance the two actors achieve for times greater that t.
DCE is well-defined since it is a minimum of d(p1(t + ∆t), p2(t + ∆t)), which is a lower-
bounded function (the lower bound is 0). TTCE is well-defined since, by definition of DCE,
there is a time t̃ such that DCE(A1, A2, t) = d(p1(t + ∆t), p2(t + ∆t)), and therefore the set
of times {∆t ≥ 0 | d(p1(t + ∆t), p2(t + ∆t)) = DCE(A1, A2, t)} is non-empty.

Intendedness

The proposed solution works as intended.



Sustainability 2022, 14, 6988 12 of 33

Optimality

Not applicable, as the distance itself defines the criticality and not the time step unless
the DCE is already critical and there would be a concrete scenario where one can argue
why attaining the DCE at the given time step TTCE is even more critical than attaining it at
some other time step.

3.2. Distance-Scale Criticality Metrics
3.2.1. Headway (HW)

The HW metric is supposed to measure the distance to a lead vehicle, and is defined
as follows:

HW(A1, A2, t) = d(p1(t), p2(t)) . (14)

Given the simplicity of the concept and the formula, it is evident that it is well-defined,
and works as intended. Note that d is usually the Euclidean distance, so HW is indeed a
metric in the mathematical sense. The HW metric has the run-time capability.

3.2.2. Accepted Gap Size (AGS)

The AGS metric intends to quantify the gap or the actual space between actors desired
or required for others to make a positive action decision.

It is defined as follows:

AGS(A1, t) = min{s ≥ 0 | action(A1, t, s) = 1}, (15)

where action(A1, t, s) is a (complex) model predicting on a binary scale, based on the
circumstances at time t, whether A1 will come to a positive action decision for the gap size
s. The run-time capability of AGS depends on the used model and inputs.

Well Definedness

The metric does not consider the cases where the set {s ≥ 0 | action(A1, t, s) = 1} is
empty, that is, the cases where the actor will never make a positive action decision at time t.

As such, its well-definedness hinges heavily on the properties of the action model.

Optimality

It completely depends on the states and the action space, so there are no implications
for the agent.

3.2.3. Distance of Closest Encounter (DCE)

The section on the criticality metrics paper [7] is just a reference to the TTCE metric
(which we already covered in this paper).

3.2.4. Proportion of Stopping Distance (PSD)

The PSD metric is defined as the distance to a conflict area CA divided by the minimum
stopping distance (MSD):

PSD(A1, CA, t) =
d(p1(t), pCA(t))

MSD(A1, t)
, with

MSD(A1, t) =
‖v1(t)‖2

2
2|a1,long,min(t)|

.
(16)

Here, a1,long,min is the smallest acceleration (negative) available for actor A1. It should
be noted that no intention is provided for the metric, just its mathematical definition, so
it will not be possible to decide if it works as intended. The PSD metric has the run-time
capability.
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Well Definedness

The metric is not well-defined, since it is not clear what the output would be when
MSD is zero (and MSD is zero when v1 is zero, which is possible).

Optimality

Not applicable, as it is not evident if the conflict area should be avoided or if it is
inevitable.

3.3. Velocity-Scale Criticality Metrics

As for optimality, it would be optimal not to have any collision. Since the metrics
concentrate on quantifying the impact of a (potential) collision, any maneuvers which lead
to zero collision risk are optimal, therefore, one cannot expect to find a unique optimal
maneuver.

3.3.1. Conflict Severity (CS)

The CS metric intends to estimate the severity of a potential collision in a scenario.
It is defined as follows where the time to accident (TTA) is defined as TTA(A1, A2) =
TTC(A1, A2, tevasive) for the starting point tevasive of an evasive maneuver and where M1
and M2 are the masses of the vehicles of actor 1 resp. actor 2:

CS(A1, A2) = ∆v(A1, A2, tevasive)−(
TTA(A1, A2) · ‖a1(tevasive)‖2 ·

M2

M1 + M2

)
.

(17)

The CS metric has no run-time capability, as TTA can only be computed once an
evasive maneuver has been identified.

Well Definedness

The metric is not well-defined, since it is not clear how the acceleration a1(tevasive) of
actor 1 at tevasive is measured—it could be referring to the acceleration the vehicle had at
time tevasive, or the acceleration it took at that point in time as part of its evasive maneuver.

3.3.2. Delta-v (∆v)

The ∆v metric is defined as the change in speed over collision duration, and is defined
as follows for the velocity of actor 1 for the time step ta f tercol after the collision and tbe f orecol
before the collision:

∆v(A1) = ‖v1(taftercol)‖2 − ‖v1(tbeforecol)‖2 (18)

∆v(A1, A2, t) =
M2

M1 + M2
(‖v2(t)‖2 − ‖v1(t)‖2) (18a)

The ∆v metric has the run-time capability.

Well Definedness

The metric is well-defined as it is just a vector norm subtraction.

Intendedness

The metric (as exemplified in equation 18) works as intended since its intention is
imposed in its formula. The intention of the equation 18a is not given.
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3.4. Acceleration-Scale Criticality Metrics
3.4.1. Deceleration to Safety Time (DST)

For an actor A1 following another actor A2, the DST metric intends to calculate the
deceleration required by A1 in order to maintain a safety time of ts ≥ 0 seconds under
the assumption of constant velocity v2 of actor A2. Since DST requires it, it is defined as
follows:

DST(A1, A2, t, ts) =
(v1(t)− v2)

2

2(d(p1(t), p2(t))− v2 · ts)
. (19)

The DST metric has the run-time capability.

Well Definedness

The metric is not well-defined since d(p1(t), p2(t)) could be equal to v2 · ts and it
would not be clear how to divide by their difference (zero) in that case.

Intendedness

Even ignoring the edge case of d(p1(t), p2(t)) = v2 · ts, in cases where
d(p1(t), p2(t)) < v2 · ts, then:

(v1(t)− v2)
2

2(d(p1(t), p2(t))− v2 · ts)
<= 0,

even in cases where v1 >> v2 and would require A1 to decelerate urgently in order to
avoid a collision.

Optimality

As DST computes a required deceleration, it implicitly poses restrictions on the agent’s
behavior as it should ensure that the required acceleration is always comfortable for the
person in the vehicle.

3.4.2. Required Longitudinal Acceleration (along,req)

For two actors A1, A2 at time t, along,req is supposed to measure the average negative
longitudinal acceleration required by actor A1 to avoid a collision in the future. It is defined
by the following formula:

along,req(A1, A2, t) = max{a1,long ≤ 0 | ∀∆t ≥ 0 : d(p1(t + ∆t), p2(t + ∆t)) > 0} . (20)

The along,req metric has a run-time capability.

Well Definedness

The metric is well-defined as long as a method for predicting the positions of the
vehicles is provided.

Intendedness

The equation finds the minimum deceleration needed, not the average as intended.

Optimality

Similarly, as for DST, this required acceleration should be comfortable.

3.4.3. Required Lateral Acceleration (alat,req)

The metric is intended to provide the minimal absolute lateral acceleration in either
direction that is required for a steering maneuver to evade collision. It is defined as follows:

alat,req(A1, A2, t) = min{|a1,lat,left(A1, A2, t)|, |a1,lat,right(A1, A2, t)|} (21)
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where:

a1,lat,k(A1, A2, t) = a2,lat,k +
2(v2,lat(t)− v1,lat(t))

TTC(A1, A2, t)

+
2

TTC(A1, A2, t)2 ·
[

sign
(

W1 + W2

2

)
+ p2,lat(t)− p1,lat(t)

]
where Wi denotes the width of Ai and where k ∈ {left, right}. Here, p·,lat and v·,lat denote
the lateral position resp. velocity component of the respective actor. The alat,req metric has
run-time capability.

Well Definedness

The metric is not well-defined, since a2,lat,k is not defined, as it cannot use the definition
of a1,lat,k, or the definition would be circular, and thus again not well-defined.

Optimality

Similarly, as for DST, this required acceleration should be comfortable.

3.4.4. Required Acceleration (areq)

The metric is defined as follows:

areq(A1, A2, t) =
√

along,req(A1, A2, t)2 + alat,req(A1, A2, t)2 . (22)

It should be noted that no intention is given for the definition of areq, so it is not
possible to analyze its intendedness. The areq metric has a run-time capability.

Well Definedness

The metric is merely a norm, so assuming both accelerations are well-defined, it is
well-defined.

Optimality

See the required lateral and longitudinal acceleration metric.

3.5. Jerk-Scale Criticality Metrics

As for optimality, the jerks clearly should be comfortable.

3.5.1. Lateral Jerk (LatJ)

This section refers to the longitudinal jerk metric, which will be evaluated in the next
section.

3.5.2. Longitudinal Jerk (LongJ)

Jerk is the rate of change in acceleration, and is defined as follows:

LatJ(A1, t) = j1,lat(t), LongJ(A1, t) = j1,long(t) (23)

for the longitudinal resp. lateral jerk j1,long(t) resp. j1,lat(t) of actor 1 at time t. The
metrics are just extracted from the input, so they are well-defined and work as intended by
definition. The LongJ metric has a run-time capability.

3.6. Index-Scale Criticality Metrics

As for optimality, the following metrics ACI, AM, CI, and CPI depend on the ego
agent’s policy (not on concrete actions) and also on the transition model. Therefore, these
metrics can be understood on a policy level so that an optimal policy would achieve very
low values of these metrics here.
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3.6.1. Accident Metric (AM)

The AM metric intends to evaluate whether an accident happened in a scenario Sc:

AM(Sc) =

{
0 no accident happened during Sc,
1 otherwise.

(24)

The ACI metric has no run-time capability.

Well Definedness

The function is well-defined though it does not provide a method of determining if
there was an accident.

Intendedness

It is clear that by definition the metric works as intended.

Optimality

Having no accident is optimal.

3.6.2. Brake Threat Number (BTN)

For actor A1, the BTN metric is defined as the required longitudinal acceleration
imposed on actor A1 by actor A2 at time t, divided by the longitudinal acceleration that is
at most available to A1 in that scene, i.e.,

BTN(A1, A2, t) =
along,req(A1, A2, t)

a1,long,min(t)
. (25)

The BTN metric has the run-time capability.

Well Definedness

Assuming the minimum longitudinal acceleration is less than 0, which is reasonable,
the metric is well-defined. However, the metric will not be defined for cases where the
vehicle is broken down and not moving.

Intendedness

An intention is not given, just the definition of the metric, so it is not possible to
analyze its intendedness.

Optimality

If the value of the metric is at least 1, it is not possible to avoid a collision by braking,
so BTN has to be always smaller than 1.

3.6.3. Steer Threat Number (STN)

The STN metric is defined as the required lateral acceleration divided by the lateral
acceleration that is at most available to actor A1:

STN(A1, A2, t) =
alat,req(A1, A2, t)

a1,lat,min(t)
. (26)

The STN metric has the run-time capability.

Well Definedness

Assuming the minimum lateral acceleration is less than 0, which is reasonable, the
metric is well-defined. However, the metric will not be defined for cases where the vehicle
is broken and can not steer.



Sustainability 2022, 14, 6988 17 of 33

Intendedness

An intention is not given, just the definition of the metric, so it is not possible to
analyze its intendedness.

Optimality

Similarly, as for BTN, a value of at least 1 indicates that the agent cannot avoid a
collision by steering.

3.6.4. Conflict Index (CI)

The CI metric intends to enhance the PET metric with a collision probability estimation
as well as a severity factor, and is defined as follows:

CI(A1, A2, CA, α, β) =
α∆Ke

eβPET(A1,A2,CA)
(27)

Here, β is a calibration factor that depends on the scenario properties. The parameter
α ∈ [0, 1] is another calibration factor that represents the relative part of the energy that
affects the passengers while ∆Ke is the absolute change in kinetic energy acting on the
vehicle’s body before and after the predicted collision. The CI has no run-time capability,
as PET can only be determined a posteriori.

Well Definedness

The metric is not well-defined, since ∆Ke is not known, and a way to estimate it is not
provided.

Intendedness

It is not clear the specific intention of the metric, more than to give a general idea
of how likely a crash is weighted by the severity of the eventual crash, which would by
definition work as intended assuming everything is well-defined.

3.6.5. Crash Potential Index (CPI)

The CPI metric intends to calculate the average probability that a vehicle can not avoid
a collision by deceleration, and is defined as follows:

CPI(A1, A2) =
1

te − t0

∫ te

t0

P(along,req(A1, A2, t) < a1,long,min(t))dt . (28)

The CPI metric has no run-time capability.

Well Definedness

Assuming the integral is well-defined, the metric is well-defined.

Intendedness

The metric works as intended by definition.

3.6.6. Aggregated Crash Index (ACI)

The ACI metric intends to measure the collision risk for car-following scenarios and it
is defined as follows:

ACI(S) =
n

∑
j=1

CRLj(S), (29)

where, given a collision tree derived from a probabilistic causal model, the concrete out-
comes are represented by the tree’s leaf nodes Lj. Every leaf node has a value CLj which
is 0 in the case of no collision and 1 in the case of a collision. None-leaf nodes in the tree
represent conditions that may occur during the scenario. Similar to CPI, the conditions are



Sustainability 2022, 14, 6988 18 of 33

defined based on other metrics, e.g., the current stopping time of the lead vehicle being
smaller than a lognormally distributed reaction time. The collision risk CRLj(S) of a leaf
node Lj given a scene S is hence represented by CRLj(S) = P(Lj) · CLj , where P(Lj) is the
probability of satisfying all conditions necessary to reach Lj in the collision tree when given
the current conditions in the scene S. The ACI metric has no run-time capability.

Well Definedness

The well-definedness of the metric hinges completely on the well-definedness of CR.

Intendedness

Since each leaf represents an independent event, the addition of the probabilities adds
up to the total probability of a crash, so it works as intended.

3.6.7. Pedestrian Risk Index (PRI)

The PRI metric intends to estimate the conflict probability and severity for pedestrian
crossing scenarios, and is defined as follows:

PRI(A1, CA) =
∫ tcstop

tcstart

(simp(A1, CA, t)2 · (ts(A1, t)− TTZ(A1, CA, t)))dt, (30)

where:
∀ t ∈ [tcstart , tcstop ] : TTZ(P, CA, t) < TTZ(A1, CA, t) < ts(A1, t)

and ts(A1, t) is the time A1 needs to come to a full stop at time t, including its reaction time.
The PRI metric theoretically has the run-time capability, but is primarily designed for

a posteriori analysis.

Well Definedness

It is a reasonable assumption that the integrand is continuous, and therefore the
integrand and in turn, the metrics are well-defined.

Intendedness

The PRI as defined does not estimate the conflict probability nor the severity of the
conflict, but a combination of estimations for both.

Optimality

This metric makes little sense as it assumes that there exists a conflict period where
the agent and the pedestrian collide. It would make more sense to inspect the time steps
before to derive why the agent failed to avoid this situation.

3.6.8. Responsibility Sensitive Safety Dangerous Situation (RSS-DS)

The RSS-DS metric is intended for the identification of a dangerous situation S with a
set of actors A and is defined as:

RSS-DS(A1,A) =
{

1 ∃Ai ∈ A \ {A1} : dlat(A1, Ai) < dlat
min ∧ dlong(A1, Ai) < dlong

min
0 otherwise,

(31)

where the safe lateral and longitudinal distances dlat
min and dlong

min are formalized, depending
on the current road geometry. The RSS-DS metric has the run-time capability.

Well Definedness

The metric is well-defined since the proposition conditioning the function is well-
defined.
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Intendedness

The metric is not working as intended. The paper never mentions a preferred actor
A1, which is the only actor that the metric makes sure is at a safe distance from others.

3.6.9. Solution

We can fix the issue by redefining the metric as:

RSS-DS(A) =
{

1 ∀A ∈ A : PA,
0 otherwise,

(31a)

where:
PA := ∃Ai ∈ A \ {A} : dlat(A, Ai) < dlat

min ∧ dlong(A, Ai) < dlong
min

Optimality

It has to be understood here w.r.t. all actors so they have to jointly coordinate their
maneuvers to achieve the optimal value 0 of RSS-DS.

3.6.10. Space Occupancy Index (SOI)

For a given scenario in the time interval [t0, te], the CI is defined as:

SOI(A1,A) =
te

∑
t=t0

C(A1,A, t). (32)

where one defines a so-called personal space Sp(Ai, t) for each actor and each time step and
checks for a given time step t whether there is an overlap, i.e., a violation of any personal
spaces of actor 1 and any other actor. Formally, the number C(A1,A, t) of conflicts w.r.t.
actor 1 in time step t is then defined by:

C(A1,A, t) = ∑
Aj∈A\{A1}

1Sp(A1,t)∩Sp(Aj ,t) 6=∅.

The SOI metric has a retrospective run-time capability.

Well Definedness

If we understand Sp(Ai) as Sp(Ai, t) and we assume that both t0 and te are integers
where t0 < te the metric is well-defined as set intersections are well-defined and so are
finite sums.

Intendedness

The intention of the metric is not stated and not clear enough to verify if it works as
intended.

Optimality

Same as mentioned before for the RSS-DS metric.

3.6.11. Trajectory Criticality Index (TCI)

The TCI metric intends to find a minimum difficulty value, i.e., how demanding even
the easiest option for the vehicle will be under a set of physical and regulatory constraints.
It is defined as follows:

TCI(A1, S, t, tH) = min
a1,long ,a1,lat

t+tH

∑̃
t=t

wlongRlong(t̃) + wlatR2
lat(t̃) +

wlonga2
1,long(t̃) + wlata2

1,lat(t̃)

(µmaxg)2 (33)



Sustainability 2022, 14, 6988 20 of 33

for some prediction horizon tH and for the maximum coefficient of friction µmax and the
gravitational constant g. wlong and wlat are w weights and Rlong and Rlat margins for angle
corrections, formally:

Rlong(t) =
max(0, x(t)− rlong(t))

dlong(t)
, R2

lat(t) =
(y(t)− rlat(t))2v(t− ∆t)

d2
lat(t)vmax

for the longitudinal and lateral positions x(t) and y(t) is the position, some step size ∆t, the
maximum velocity vmax, the longitudinal reference distance rlong(t) = 2s · v(t), the position
rlat(t) with the highest lateral distance of all obstacles in the scene and for the maximum
longitudinal and lateral deviations dlong(t) and dlat(t) from rlong, rlat.

The TCI metric theoretically has the run-time capability but is not designed for active
trajectory control.

Well Definedness

The metric is not well-defined, since s is not defined and it is not clear how to compute
dlong(t), dlat(t) since the maximization set is not given.

Optimality

Of course, it is desirable to have low difficulty values where the concrete values
depend on the concrete situation.

3.7. Probability-Scale Criticality Metrics
3.7.1. Collision Probability via Monte Carlo (P-MC)

The P-MC metric intends to produce a collision probability estimation based on future
evolutions from a Monte Carlo path planning prediction and is defined as follows:

P-MC(A1, S, t) = P(C) =
∫

P(C | U )P(U )dU (34)

where:

P(U ) := P(u1, . . . , uk) :=
k

∏
j=1

P(uj)
αj ,

P(C | U ) is the collision probability of A1 in S under inputs from some controller input
set U .

The P-MC metric has the run-time capability.

Well Definedness

The metric is not well-defined, since αj is not defined and it is not clear how to compute
P(C | U ) or solve the integral.

3.7.2. Collision Probability via Scoring Multiple Hypotheses (P-SMH)

The P-SMH metric intends to assign probabilities to predicted trajectories and accu-
mulate them into a collision probability. It is defined as follows:

P-SMH(A1,A, t) =
N

∑
i=1

M

∑
j=1

χi
j pA1,i p(A\A1),j (35)

where χi
j equals one if and only if the i-th trajectory of A1 and the j-th trajectory of the actors

in A \ A1 lead to a collision, and pA1,i resp. p(A\A1),j are the probabilities of the trajectories
being realized.

The P-SMH metric has the run-time capability, as has been demonstrated by evaluation
in [32].
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Well Definedness

The metric is not well-defined: a way to obtain trajectories is not given, and neither is
a way of getting the probabilities of each trajectory.

3.7.3. Collision Probability via Stochastic Reachable Sets (P-SRS)

The P-SRS metric intends to estimate a collision probability using stochastic reachable
sets and originates from [33]. Assuming a discretized controller input space and state
space, let ph(tk) denote the probability vector of the states reached in time step tk for input
partition h. These probability vectors are updated by a Markov chain model. The goal is to
approximate the probability of a crash.

First, ref. [33] (Section V.B) shows how to compute the probability vectors w.r.t. time
intervals [tk, tk+1] given ph(tk) for all input partitions h. By respecting vehicle dynamics,
road information, speed limits, and interactions of the agents, they eventually compute
the probability for a path segment e being attained in some interval [tk, tk+1], denoted by
ppath

e ([tk, tk+1]). As the vehicles may not exactly follow the paths, the authors in [33] addi-
tionally model the lateral deviations from the paths, denoted by pdev

f ([tk, tk+1]), indicating
the probability that the deviation from the path lands in some interval D f where they
assume that the probability is constant for intervals D f in which the whole deviation range
is discretized. Assuming that the path and deviation probabilities are independent, the
actual position ppos

e f = ppath
e pdev

f can be computed for each time interval and agent, enabling
to compute the probability of crashes by summing up all the probabilities for cases where
the vehicle bodies “overlap”.

The P-SRS metric has the run-time capability but needs precomputations.

Well Definedness

The metric can only be computed if all of the required components, starting from the
dynamics and the Markov chain model, are given, making it hard to apply in practice.

3.8. Potential-Scale Criticality Metrics
3.8.1. Potential Functions as Superposition of Scoring Functions (PF)

Thie PF metric does not have a unique definition, being open-ended. It just sug-
gests specifying potential functions (open-ended as well) and applying a method of one’s
choosing to the combined potential function.

3.8.2. Safety Potential (SP)

The SP metric intends to measure how unsafe, with regards to collision avoidance, a
situation is; it is defined as follows:

SP(A1, A2, t) = ρ1,2 = ‖(tstop(A1)− tint, tstop(A2)− tint)‖k (36)

where k ∈ Z>0 ∪ {∞} and where tint requires a short-time prediction model of the trajecto-
ries and refers to the first time step of an intersection while tstop(Ai) denotes the time where
actor i has achieved a full stop. The SP metric has the run-time capability.

Well Definedness

The metric is not well-defined since it is not clear how to compute tstop(Ai) or tint.

4. Proposed Green-Based Criticality Metrics

Considering the importance of climate change and recent efforts in the literature
to propose methods that can reduce the amount of CO2 emissions, in this chapter, we
propose several novel metrics that are then being used to propose a novel green-based
criticality metric that combines not only the environmental impact but also the safety in a
car-following scenario.
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4.1. Average Car CO2 Emissions Per KM

According to the European Environment Agency [34], the average CO2 emissions per
km of a diesel-powered car is 127.0 g CO2

km while being 127.6 g CO2
km for a petrol-powered car.

Furthermore, according to [35], the average CO2 emissions per km of an electric car was
43% lower than the average CO2 emissions per km of a diesel-powered car, therefore, 72.4
g CO2

km .

4.1.1. Car CO2 Emissions (CCO2E)

The CCO2E metric measures the amount of grams of CO2 emitted by an average car
on a given drive. We define:

CCO2E(d) :=



0 if the vehicle is powered by green energy
d · 127 g CO2 if the vehicle is diesel-powered
d · 127.6 g CO2 if the vehicle is petrol-powered
d · 72.4 g CO2 if the vehicle is powered by electricity from

the grid

(37)

where d is the distance travelled by the vehicle in the drive in kilometers.

4.1.2. Green Energy CO2 Emissions Saved (GECO2ES)

The GECO2ES metric measures how much energy is saved in an electric vehicle by
using green energy:

GECO2ES(d)

{
d · 72.4 g CO2 if the vehicle is powered by green energy
0 otherwise.

(38)

where d is the distance travelled by the vehicle in the drive in kilometers.

4.1.3. CO2 Emissions Weighted Safety Distance (CO2EWSD)

With the previous metrics defined in this chapter, we now create a novel green-based
criticality metric called CO2EWSD.

The CO2EWSD metric combines safety and environmental impact in a car-following
scenario by measuring how safely the vehicle behind is driven (by measuring the percentage
of time being at a distance greater than the given safety distance), and weighting it by the
CO2 emissions of the drive (by the vehicle behind).

It is defined as follows:

CO2EWSD(V1, V2, sd) =
1

1 + CCO2E(
∫ te

t0
speed(V1, t)dt)

1
te − t0

∫ te

t0

1d(V1,V2,t)>sddt (39)

where V1 and V2 are the vehicles in the scenario, V1 being the agent vehicle behind V2,
sd is the given safety distance, t0 and te are the start and end times of the scenario, and
d(V1, V2, t) is the distance between the vehicles at time t. speed(V1, t) if the absolute speed
of V1 at time t and therefore

∫ te
t0

speed(V1, t)dt the total distance travelled by V1 in the drive.
Thus,

CCO2E(
∫ te

t0

speed(V1, t)dt)

is the CO2 emissions of the drive.

1

1 + CCO2E(
∫ te

t0
speed(V1, t)dt)

∈ (0, 1]
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increases when the CO2 emissions of the drive are lower and
∫ te

t0
1d(V1,V2,t)>sddt is the

amount of time the vehicle is driving at a distance greater than sd to the leading vehicle, so
1

te−t0

∫ te
t0

1d(V1,V2,t)>sddt is the ratio of time spent driving at a safe distance of the total time.

5. Usage of Criticality Metrics for AI Training

In AI training, criticality metrics can be used as penalty terms, for example, as negative
reward components in RL. The agent therefore successively learns to select appropri-
ate actions, resulting in maneuvers that are not critical or in which criticality is suffi-
ciently low, evaluating the selected metrics. As an action usually only considers accelera-
tion/deceleration and changing the heading angle, parameters that cannot be influenced
by the agent like payloads, the length of the vehicle, or generally its structure could only
implicitly be considered when computing the rewards, e.g., higher payloads can be inte-
grated into the computation of the braking distance. These parameters often correspond to
passive safety and optimizing them is part of the manufacturing process [26], but does not
correspond to the scope of this work.

Based on the analysis in the previous sections, we can conclude that many metrics are
not useful for AI training or at most in a very limited way. These include PTTC, AGS, CS,
∆v, TCI, PF, PRI, TTZ, TTCE, PSD, and WTTC (as the latter considers the worst trajectory
while an RL agent selects the best one in the rollout during training) and, as for the ones
with limited applicability, TTM/TTR and their relatives (one could quantify the difference
between the latest time step computed by the metric and the time step where the actual
maneuver/reaction happens) as well as ET (if one had information about the longest time
an agent should spend in a conflict area so that one would penalize a longer stay).

Probability-scale metrics consider the whole policies and therefore may be used for
safe RL training [36], provided that the required probability models are available. The same
holds for ACI and CI.

The most suitable criticality metrics that can be turned into a reward component are
THW and HW, which can be used in combination so that HW defines a minimum distance
that could potentially be violated when using THW in the context of very low velocities.
Note that rollouts are essentially nothing but samples of future trajectories so that it would
suffice to be able to roll the other agent’s trajectory out here, even without a prediction
model for the future trajectories of the non-ego agent. The lateral and longitudinal jerk can
be compared with comfortable values for these parameters so that maneuvers that would
lead to a too strong jerk would be penalized accordingly. TET and TIT can be adapted to
finite-horizon rollouts by replacing the integral with a sum. These metrics can be conflictive
with HW or THW, therefore, the reward shaping must be conducted carefully.

Metrics that can also be used and work more implicitly include the required (lat-
eral/longitudinal) acceleration. In dangerous traffic situations, some of the rollouts may
include collisions while other ones are collision-free. However, one could inspect the
deceleration that was necessary to prevent the collision and penalize these trajectories as
well (of course, with a way smaller magnitude than those which led to a collision) so that
the smoothest trajectories with still acceptable decelerations without collisions would be
executed. This would similarly work for BTN and STN while BTN is more intuitive as
STN would be valid only in situations where a simple deceleration would not work. AM
corresponds to a simple (constant) collision penalty.

Metrics that could, in principle, be used (but at least with caution) include TTC (due
to conflict with other metrics), PrET (conflictive with and less informative than THW as it
does not take the dynamics at the closest time difference into account), PET (for example,
if only one vehicle should be in the conflict area so that the ego vehicle must learn to
decelerate or even stop before it if another vehicle is still located there, i.e., the trajectories
that would lead to the ego vehicle entering if it is not allowed would be penalized) and
DST (if computable, check whether the required deceleration would be comfortable).

The criticality metrics RSS-DS and SOI are not applicable if one trains a single agent as
they depend on the movements of the other vehicles but can enter joint training of multiple
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agents where one would penalize dangerous situations when at least two vehicles are too
close.

Note that by the duality of reward terms and corresponding criticality metrics, one can
also interpret reward terms like the Yaw loss [37], which penalizes non-optimal headings
or the Off-road loss [38], which penalizes if the agent drives in the non-drivable area as
criticality metrics.

5.1. Off-Road Loss

The off-road loss considers a whole trajectory ((x1, y1), . . . , (xH , yH)) for a given actor
and computes the smallest Euclidean distance to the drivable area. Denoting (u(x, y), v(x, y))
as the nearest point in the drivable area, the off-road loss is given by:

1
H

H

∑
h=1
||(xh, yh)− (u(xh, yh), v(xh, yh))||2 (40)

which, provided that the nearest points can directly be identified, has run-time capability.

5.1.1. Well Definedness

Provided that the nearest points exist, which they do if there is a drivable area, the
off-road loss is well-defined.

5.1.2. Intendedness

The intention is to penalize off-road trajectories, which is accomplished by this metric.

5.1.3. Optimality

An optimal trajectory that is entirely part of the drivable area receives an off-road loss
of zero, therefore, such trajectories (which form an uncountably large set) are optimal.

5.2. Yaw Loss

The yaw loss again considers a whole trajectory ((x1, y1), . . . , (xH , yH)) for a given
actor and quantifies deviations from the angle to the angle of the nearest lane. The
angle corresponding to two consecutive waypoints (xi, yi) and (xi+1, yi+1) is given by
θi = θ(xi, xi+1, yi, yi+1) = arctan((x2 − x1)/(y2 − y1)). Denoting the angle of the nearest
lane in time step i by θ∗i , the yaw loss is the accumulated difference between θ∗i and θi.
Note that [37] (Equation (6)) implies that the difference is non-zero, which contradicts their
definition in [37] (Equation (3)). We suggest to use:

H−1

∑
h=1

(θi − θ∗i )
2 (41)

as off-road loss for the whole trajectory. Note that the work in [37] also considers the
yaw loss for intersections and for lane change where a pre-defined interval of heading
differences is allowed so that the yaw loss is zero if the heading during lane change is
contained in this interval.

Well Definedness

Provided that the nearest lane can be detected, the reference heading θ∗i can be com-
puted in run-time.

Intendedness

The intention is to penalize deviations from a pre-scribed heading, which is accom-
plished by this metric.
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Optimality

An optimal trajectory is achieved if the heading always coincides with the desired
heading resp. if the heading during a lane change and turn maneuvers is contained in a
suitable interval. Note that again uncountably many optimal trajectories exist.

Note that one can assume some kind of transitivity of the metrics in the sense that
if the behavior of the agent was good in one metric, it is very likely to also be good in
some other metric, which facilitates the training as it can be regarded as a pre-selection of
metrics and, therefore, of corresponding reward components. We can identify the following
transitivity relations:

• Avoiding collisions, i.e., achieving a good AM, implies a good CS and ∆v.
• Learning comfortable maneuvers, i.e., achieving a good LatJ and LongJ, implies that

its behavior will also be good when evaluated in metrics like STN, BTN, along,req, and
alat,req.

• Training according to AM combined with at least LatJ and LongJ, may be enhanced
with distance-keeping metrics like THW, HW, or ACC, the agent is expected to drive
forward-looking and therefore smoothly, so it should also achieve a good ACI, PSD,
and DST as well as TTM and its variants.

Concerning the relation of classical criticality metrics and green-based metrics, it
is important to note that the fuel/energy consumption and, therefore, the emissions,
are depending on the driving behavior, for example, due to air resistance increasing
quadratically with the velocity. The classical criticality metrics encourage the agent to
drive forward-looking, avoiding large and unnecessary accelerations, and therefore saving
energy. The green-based metrics are undeniably important for evaluation, but it would be
hard to integrate them into training itself for numerous reasons like, by the argumentation
above, reducing the air resistance would just correspond to an upper-velocity limit, that the
agent cannot control the fuel type for a given vehicle or because it would be very difficult
to compute the actual energy consumption, which would amount to knowing the friction
between the wheels and the road, the weight, the shape of the car, i.e., how streamlined it
is. Hence, we suggest using the green-based metrics mainly for evaluation at this point,
while achieving ecological goals with a clever selection of criticality metrics from Section 3
for training.

Of course, performing AI training with reward terms corresponding to only a sparse
selection of criticality metrics does neither exclude nor hinder an evaluation of the trained
agent in terms of all criticality metrics.

6. Application of the Metrics

In this section, we will propose a way to apply the metrics in a simple scenario. To give
the research community a chance to easily test and use the metrics considered in this section,
we also implemented them in an HTML page using the newly released PyScript [39], which
is a JavaScript module that allows the writing of Python code directly in HTML. The source
code for the implementation is available at the following link: To be completed with a link
later. The advantage of using PyScript over plain JavaScript is the ability to use existing
Python code, including its dependencies, directly in the web browser.

6.1. Scenario

The scenario we will use to apply the metrics consists of a car-following scenario in
which an agent has to follow a leading vehicle in a straight path.

The lead vehicle will accelerate until reaching a speed of 15 m/s and then try to
maintain this speed.

The agent will aim to stay at a safe distance from the leading vehicle. We will use a
simple heuristic for the agent: if the leading vehicle is faster it will accelerate, otherwise, it
will not.
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6.2. Methodology

The way we approached this was the following: first, we coded using the Python
programming language, for the scenario we described using the Carla simulator. Then, we
collected the data from the simulation. Finally, we used the data to compute the value of
the selected metrics.

6.3. Data

In the Table S1 file in the Supplement Data to this paper, we show the collected data
from the simulation: positions and velocities at each step for both vehicles. Here, a data
point was collected every 0.03 s (a step) for a total of 600 steps. The data in the table itself
was too raw to draw any conclusions, but this data can be used to debug the pipeline,
making sure the vehicles start where they should and progress accordingly.

However, in most cases, one would rather take a look at graphs of these values. In
Figures 1 and 2, we observe these graphs.

Figure 1. Positions of agent (blue color) and the leading vehicle (red color) over each step from the
simulation in meters.

Figure 2. Velocities of agent (blue color) and the leading vehicle (red color) over each step from the
simulation in m/s.

In Figure 1, we observe that the positions of the vehicles increase as they progress on
the road, with the agent following from behind the leading vehicle. In Figure 2, we observe
how at the beginning both agents accelerate, and at around step 200, the leading vehicle
starts stabilizing at its target speed, and the agent vehicle follows suit.

6.4. Metrics

In the Table S2 file found in Supplement Data to this paper, we show a few step-by-step
metrics obtained from the data, namely the HW, THW, TTC, and RSS-DS. Once again, with
this data, we verify that the vehicles never collided as RSS-DS is always false. As is often
the case, these values are more useful in the form of graphs.
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Regarding this, in Figure 3, we see the HW increases as both agents accelerate, but
then it starts decreasing, showing a possible flaw in the behavior of the agent since, if time
continued, the value of the metric will go to 0.

Figure 3. HW step by step from the simulation in meters.

In Figure 4, we can see the values of the THW metric that are less than infinity.

Figure 4. THW step by step from the simulation in seconds, assuming constant speeds. At times
when the agent is not faster than the leading vehicle, the value is infinite (and therefore not shown).

Here, we observe intermittent gaps in the graph as the vehicle with more velocity is
changing periodically in this scenario.

In Figure 5, we can observe the graph of the TTC metric.

Figure 5. TTC over each step of the simulation in seconds, assuming a fixed position from the leading
vehicle.
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In this case, we consider TTC as the time the agent would take to crash against the
leading vehicle if the agent maintained its current speed and the leading vehicle suddenly
stopped moving. Here, we can see the values decreasing slowly as both vehicles accelerate
and then decreasing slowly as the leading vehicle sustains its velocity.

In Figure 6, we show the values of the RSS-DS metric. Here, we can more easily see
that it is 0 (false) at all times, confirming that there was no crash during the scenario.

Figure 6. RSS-DS over each step of the simulation. Here, a value of 0 means that no collision was
detected, and a value of 1 means that a collision was detected at the given step.

In Table 1, we show other aggregated metrics, namely the CO2EWSD, CCO2E, and
GECO2ES.

Table 1. Aggregated metrics from the simulation.

Metric Name Value (Grams of CO2)

CO2EWSD 0.61
CCO2E (powered by grid-electricity) 31.16

CCO2E (diesel-powered) 54.67
CCO2E (petrol-powered) 54.92

GECO2ES 31.16

Here, we can observe that the vehicle would have emitted the most CO2 if it was
powered by petrol (54.92 g of CO2), being followed closely by a diesel-powered vehicle
(54.67 g of CO2) and that an electric vehicle charged by electricity from the grid would
have emitted 31.16 g of CO2. Therefore, as expected, the savings of using a green-powered
electric vehicle (GECO2ES) would be 31.16 g of CO2.

7. Conclusions and Future Work

In this paper, we present a mathematical analysis of several criticality metrics used
for evaluating the safety of AVs and also propose novel environmentally-friendly metrics
with the scope to facilitate their selection by future researchers who want to evaluate both
safety and the environmental impact of AVs. More exactly, we investigate if the existent
criticality metrics found in the literature, which are used to quantify the severeness of
critical situations in autonomous driving, are well-defined and work as intended. We
found out that in some cases, the well-definedness or the intendedness of the metrics are
apparent, but in other cases, we present mathematical demonstrations of these properties
as well as propose alternative novel formulas for them. In addition, we also present
details regarding optimality. Then, we propose several novel environmentally-friendly
metrics as well as a novel environmentally-friendly criticality metric that combines safety
and environmental impact. We also discuss the possibility of applying these criticality
metrics in AI training such as RL algorithms and where these metrics can be used as
penalty terms such as negative reward components. Here, we derived that it suffices to
use a sophisticated selection for training as optimizing some metrics also optimizes other
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ones, not requiring a redundant usage in training. Finally, regarding the application of
the metrics, we propose a way to apply some of the metrics in a simple car-following
scenario and show in a simulation that our proposed environmentally-friendly criticality
metric called GECO2ES can be successfully used to evaluate AVs from the safety and
environmental points of view. More exactly, we show that AVs powered by petrol emitted
the most carbon emissions (54.92 g of CO2), being followed closely by diesel-powered AVs
(54.67 g of CO2) and then by grid-electricity-powered AVs (31.16 g of CO2) with the AVs
powered by electricity coming from a green source such as solar energy, having no carbon
emissions at all. Concluding, our work encourages future researchers and the industry to
develop more actively sustainable methods and metrics that can be used to power AVs and
also evaluate them regarding safety and environmental impact completely by using green
energy. Regarding the limitations of this work, we are aware that safety and sustainability
are just two facets of autonomous driving and that their acceptance also depends on other
aspects such as performance-to-price value, travel time, or symbolic value, as seen in the
work presented in [40]. As this work considers the training of an autonomous agent where
safety, sustainability, and travel time can be optimized, the price or social values cannot
be affected by AI training itself, therefore, this work is restricted to the former aspects.
In future work, we plan to make use of these criticality metrics when training an AI in
selected real use cases such as an overtaking scenario. Furthermore, we plan to make use
of PyScript for AI, e.g., to share a DL model written entirely in Python through a website.
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Abbreviations
The following abbreviations are used in this manuscript:

AVs Autonomous Vehicles
AI Artificial Intelligence
RL Reinforcement Learning
ACC Adaptive Cruise Control
AV Automated Vehicle
CA Conflict Area
DMM Dynamic Motion Model
ET Encroachment Time
PET Post Encroachment Time
PrET Predictive Encroachment Time
THW Time Headway
TTC Time To Collision
TET Time Exposed TTC
TIT Time Integrated TTC
PTTC Potential Time To Collision
WTTC Worst Time To Collision
TTM Time to Maneuver
TTB Time To Brake
TTK Time To Kickdown
TTS Time To Steer
TTR Time To React
TTZ Time To Zebra
TTCE Time To Closest Encounter
HW Headway
AGS Accepted Gap Size
DCE Distance of Closest Encounter
PSD Proportion of Stopping Distance
CS Conflict Severity
∆v Delta-v
DST Deceleration to Safety Time
along,req Required Longitudinal Acceleration
alat,req Required Lateral Acceleration
areq Required Acceleration
LatJ Lateral Jerk
LongJ Longitudinal Jerk
AM Accident Metric
BTN Brake Threat Number
STN Steer Threat Number
CI Conflict Index
CPI Crash Potential Index
ACI Aggregated Crash Index
PRI Pedestrian Risk Index
RSS-DS Responsibility Sensitive Safety Dangerous Situation
SOI Space Occupancy Index
TCI Trajectory Criticality Index
P-MC Collision Probability via Monte Carlo
P-SMH Collision Probability via Scoring Multiple Hypotheses
P-SRS Collision Probability via Stochastic Reachable Sets
PF Potential Functions as Superposition of Scoring Functions
SP Safety Potential
CCO2E Car CO2 Emissions
GECO2ES Green Energy CO2 Emissions Saved
CO2EWSD CO2 Emissions Weighted Safety Distance
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Nomenclature
The following symbols are used in this manuscript:

Ai actor i
A set of all actors in a scene or scenario
t0 starting time of a scenario
te ending time of a scenario
t a point in time
tH a time horizon
pO(t) position of object O at time t
pi(t) position of actor i at time t
pi,m(t) position of actor i at time t when conducting maneuver m
d(p1(t), p2(t)) euclidean distance of p1(t) and p2(t)
ḋ(p1(t), p2(t)) derivative of euclidean distance d
vi(t) velocity of actor i at time t
ai,min(t) minimal available acceleration of actor i at time t
ai,max(t) maximal available acceleration of actor i at time t
ji(t) jerk of actor i at time t
vlong longitudinal component of a vector v
vlat lateral component of a vector v
ui(t) control inputs of actor i at time t
i(t) sideslip angle of actor i at time t
ψi(t) yaw angle of actor i at time t
ωi(t) yaw rate of actor i at time t
Fidxy tire forces of actor i with direction d for tire (x, y)
ciα f front tire cornering stiffness of actor i
ciαr rear tire cornering stiffness of actor i
li f distance from front axle to center of gravity of actor i
lir distance from rear axle to center of gravity of actor i
L distance from front to rear axle
mi mass of actor i
Iiz moment of inertia of actor i
δi f front steering angle at the tires of actor i
τ target value
‖·‖2 the Euclidean norm
speed(V1, t) absolute speed of vehicle 1 (V1) and time t
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