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Abstract: Lakes are major surface water resource in semi-arid regions, providing water for agriculture
and domestic use. Prediction of future water availability in lakes of semi-arid regions is important as
they are highly sensitive to climate variability. This study is to examine the water level fluctuations
in Pakhal Lake, Telangana, India using a combination of a process-based hydrological model and
machine learning technique under climate change scenarios. Pakhal is an artificial lake built to meet
the irrigation requirements of the region. Predictions of lake level can help with effective planning
and management of water resources. In this study, an integrated approach is adopted to predict
future water level fluctuations in Pakhal Lake in response to potential climate change. This study
makes use of the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset
which contains 21 Global Climate Models (GCMs) at a resolution of 0.25 × 0.25◦ is used for the
study. The Reliability Ensemble Averaging (REA) method is applied to the 21 models to create an
ensemble model. The hydrological model outputs from Soil and Water Assessment Tool (SWAT) are
used to develop the machine-learning based Support Vector Regression (ν-SVR) model for predicting
future water levels in Pakhal Lake. The scores of the three metrics, correlation coefficient (R2), RMSE
and MEA are 0.79, 0.018 m, and 0.13 m, respectively for the training period. The values for the
validation periods are 0.72, 0.6, and 0.25 m, indicating that the model captures the observed lake
water level trends satisfactorily. The SWAT simulation results showed a decrease in surface runoff
in the Representative Concentration Pathways (RCP) 4.5 scenario and an increase in the RCP 8.5
scenario. Further, the results from ν-SVR model for the future time period indicate a decrease in future
lake levels during crop growth seasons. This study aids in planning of necessary water management
options for Pakhal Lake under climate change scenarios. With limited observed datasets, this study
can be easily extended to the other lake systems.

Keywords: climate change; lakes; NEX-GDDP; support vector regression; SWAT model

1. Introduction

Water is a natural resource that sustains life [1]. Water is used extensively by humans
for a variety of purposes, including irrigation, residential, and industrial use. Climate
change is a major determinant of water resource availability in a region [2,3]. It has a
significant impact on the distribution of water resources both spatially and temporally. Sig-
nificant changes in key hydro-climatological variables such as precipitation, temperature,
evaporation, streamflow, and water level have been observed as a result of temperature
excursions and climate change [4,5]. Climate change effects have become a major con-
cern for water resource engineers and policymakers, particularly in arid and semi-arid
regions [6–10]. Extreme precipitation events with significant spatiotemporal variability
are common in arid and semi-arid regions [11,12]. Furthermore, rising temperatures in
semi-arid regions are putting a strain on surface and groundwater availability [13–15].
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Lakes are a critical source of water in semi-arid regions because they provide water for
various purposes. The agricultural sector in these regions is highly dependent on the
irrigation water supply from the lakes, as they play an important role in balancing the
regional hydrological system [16,17]. The availability of lake water is directly attributed to
the variation in climatic factors such as temperature, precipitation, and evaporation [18,19].
As a result, understanding the influence of climate change on lake water availability is
critical for regional water resource planning and management.

Typically, the regional climate change impact analysis is carried out using hydrolog-
ical modelling to obtain catchment water balance components using observational data
and projecting them into the future using GCMs and RCMs [8,13,20–25]. SWAT-based
hydrological modelling has enabled a large number of regional climate studies at the river
basin and water-shed scale [23,26–37]. The SWAT model has the advantage of requiring
little direct calibration to obtain good hydrologic predictions [36,37]. Recently, Saade et.al
(2021) used the SWAT model for studying the impact of climate change on surface water
availability in El Kalb River, Lebanon, which is a semi-arid basin [38]. Kwarteng et.al
(2021) coupled the SWAT model with bathymetric data to simulate and estimate the water
balance components of the Brimsu Reservoir [1]. SWAT model was used to understand the
streamflow alterations in single and cascade lake systems located in the semi-arid region of
India. These lake systems are ungauged and lack proper management options [8,13]. These
studies provide insight into the present and future climate challenges on the lake water
resource systems.

Apart from studying the impact of climate change on the lake water balance compo-
nents, estimating lake level fluctuations under future climate scenarios is important for
developing sustainable water management policies [39]. The natural water exchange be-
tween the lake and its catchment affects lake water level fluctuations, which reflect regional
climatic variations [40]. Recently, machine learning-based Support Vector Machine (SVM)
has been used effectively for predicting changes in water levels [41,42]. Khan and Coulibaly
(2006) [43] investigated the utility of SVM in predicting lake water levels in Lake Erie over
the long term. They observed that SVM outperformed multilayer perceptron (MLP). Cimen
and Kisi (2009) [44] found that Support Vector Regression (SVR) outperformed Artificial
Neural Networks (ANN) techniques in modeling the monthly lake levels. Hipni et al. (2013)
found that the ν-SVR model outperformed the other SVM techniques in forecasting daily
water levels in Klang reservoir, Malaysia, and concluded that the SVR model was the best
regression type for lake water predictions [45]. Kisi et al. (2015) forecasted daily lake water
levels in Lake Urmia using the SVM technique combined with the firefly algorithm [40].
Bucak et al. (2017) combined SWAT model outputs with the SVR model to forecast future
water availability in Lake Beyşehir and concluded that climate change will cause the lake
to dry up by the end of the century [39].

Previous studies primarily focused on assessing the effects of climate change on water
balance components such as runoff, streamflow, and evapotranspiration in lake catchments.
The majority of studies on the applicability of SVM techniques for lake level predictions
were conducted using past lake levels, without taking into account the water balance
components that influence water availability. Few studies have looked at how catchment
hydrology and lake water level changes interact. The main objective of this study is to
quantify the effects of climate change on water availability in Pakhal Lake, Telangana, India,
and to evaluate the feasibility of the SVR approach for predicting lake water levels under
current and future climate change scenarios. The Pakhal lake, located in a semi-arid region,
is an important source of water for agriculture. This region’s poor and marginal farmers rely
heavily on the lake for agricultural water. It is critical to investigate the impact of climate
change on this lake system for future water resource planning and management in order
to provide farmers with a sustainable livelihood. As a result, this study examines water
availability and lake water fluctuations for current and future climate change scenarios for
Phakal lake.
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2. Materials and Methods
2.1. Study Area Description

The Pakhal lake is situated in Warangal district, Telangana, India, with its command
area in Mahbubabad district. Figure 1 depicts the location map of Phakal lake, its catchment
area, and command area. It is an artificial lake constructed by Kakatiya rulers on the
Munneruvagu tributary of the Krishna River to provide irrigation water to the surrounding
semiarid regions. The average rainfall in the study area is about 1000 mm. The minimum
and maximum temperatures varies from 15 ◦C to 45 ◦C, respectively. The Pakhal lake is
spread over an area of 30 km2 and drawing water from a catchment area of 271.95 km2,
with a storage capacity of 95.86 Mm3. The lake is the main source of agricultural water
for the surrounding villages. The Pakhal Lake was designed to irrigate 30,000 acres, but
according to modern official figures, it only irrigates 18,193 acres. According to annual crop
area statistics from Irrigation & CAD Department of Telangana, India [46], over 70% of this
command area is cultivated in the Kharif season and just 30% in the rabi season (Figure 2).
This is due to a shortage of lake water availability during the rabi season. As a result, the
Telangana State Irrigation department planned to stabilise Pakhal Lake’s command area
by linking it with Ramappa Lake. The linking project started its operation in April 2021,
under which Pakhal Lake receives water from the Godavari River during the rabi season.
Before planning the lake water augmentation by different methods, it is important to study
current and future lake water availability under various climate change scenarios.
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2.2. Methodology

The lack of observational data in the study area makes it difficult to set up a hydrolog-
ical model for the catchment (ungauged) and predict future water availability in the lake,
which is a major challenge for these studies. The hydrological modeling for the Pakhal
catchment area was addressed using regionalization approach in Jayanthi and Keesara [13].
Because the Pakhal watershed lacks a gauge station, the SWAT model was put up for the
Konduru watershed, which is located downstream of the present study area. The proximity
method is used to transfer parameters from the source watershed to the Pakhal water-
shed [47–49]. This method can be applied if the source watershed has physical similarity
and proximity to the ungauged watershed. The details of SWAT model calibration and
validation for the Pakhal lake watershed can be found in Jayanthi and Keesara [13].

The current study focuses on predicting future water availability in the lake under
climate change scenarios using the SVR technique. Future climate projections are based on
an ensemble model generated from the NASA Earth Exchange Global Daily Downscaled
Projections (NEX-GDDP) dataset. The SWAT model outputs are combined with the SVR
model to estimate lake water levels. Furthermore, the impact of climate change on lake
water availability during the rabi and kharif seasons is assessed.

2.3. Data Used

The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset
is used for the climate change analysis. The dataset is obtained from the Centre for
Climate Change Indian Institute of Tropical Meteorology, Pune, India (http://cccr.tropmet.
res.in/, accessed on 29 November 2021). The NEX-GDDP dataset contains downscaled
climate change scenarios derived from the Coupled Model Intercomparison Project Phase 5
GCM simulations (CMIP5). The NEX-GDDP dataset is based on RCP4.5 and RCP8.5,
two of the four Representative Concentration Pathways for greenhouse gas emissions.
The spatial granularity of the dataset is 0.25◦. These datasets provide bias-corrected and
spatially disaggregated high-resolution gridded global climate projections [50]. Climate
change projections can be used to assess climate change impacts on smaller scales [51–54].
Each climatic projection includes daily maximum and minimum temperatures, as well as
daily precipitation, from 1950 to 2005 (retrospective run) and from 2006 to 2099 (future
run). Table 1 describes the 21 GCM models that were downscaled to obtain NEX-GDDP
data. The gridded data set from the Indian Meteorological Department (IMD) in Pune,
India, was used in this investigation, and it has a resolution of 0.25◦ for precipitation
and 1◦ for temperature [55,56]. A regridding technique is employed at each grid point in
order to match the IMD and NEX-GDDP grids. The nearest neighbourhood technique is
used for precipitation data and bilinear interpolation is used for temperature data. The
grids points considered for the study are shown in Supplementary Material (Figure S1 in
Supplementary Materials).

Table 1. List of the 21 Coupled Model Intercomparison Project 5 (CMIP5) General Circulation Models
(GCMs) used in the study.

Model Country and Institution

ACCESS Commonwealth Scientific and Industrial Research Organization and
Bureau of Meteorology, Australia

BCC-CSM1 Beijing Climate Center, China Institute of global change and Earth System
Sciences, Beijing Normal University, China

BNU-ESM Institute of global change and Earth System Sciences, Beijing Normal
University, China

CCSM4 National Center for Atmospheric Research, America

http://cccr.tropmet.res.in/
http://cccr.tropmet.res.in/
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Table 1. Cont.

Model Country and Institution

MIROC5 Atmosphere and Ocean Research Institute, Japan Atmosphere

MIROCESM Atmosphere and Ocean Research Institute, Japan Atmosphere

MIROCHEM Atmosphere and Ocean Research Institute, Japan Atmosphere

CanEsm Canadian Centre for Climate Modelling and Analysis, Canada

CESM1-BGC National Center for Atmospheric Research, America Centre National de
Recherches Meteorologiques, Centre.

CNRM-CM5 Centre Europeen de Recherche et Formation Avancees en Calcul
Scientifique, France Commonwealth Scientific and Industrial Research

CSIRO-MK3 Organization/Queensland Climate Change Centre of Excellence, Australia

GFDL-CM3 Geophysical Fluid Dynamics Laboratory, America

GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, America

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, America

INMCM4 Institute of Numerical Calculation, Russia

IPSL-CM5A-LR Institut Pierre-Simon Laplace, France

IPSL-CM5A-MR Institut Pierre-Simon Laplace, France

MPI-ESM-LR Max Planck Institute for Meteorology, Germany

MPI-ESM-MR Max Planck Institute for Meteorology, Germany

MPRI-CGCM3 Max Planck Institute for Meteorology, Germany

NORESM1-M Norway Consumer Council, Norway

Several studies were carried out using the high resolution NEX-GDDP data for regional
scale climate change analysis. Previous research has found that the NEX-GDDP data set
is only consistent with observed data for Southeast Asia on a monthly time frame [57].
Furthermore, it was suggested that using multi-model ensemble techniques paired with
bias correction methods was more effective than using a single model both for short-term
and long-term studies [24,57,58]. In the present study, the precipitation and temperature
parameters from the 21 GCM’s were used for the future climate change analysis. The
uncertainty associated with the use of multiple climate models is quantified by developing
an ensemble model for each of the RCP scenario using the Reliability Ensemble Averaging
(REA) method paired with the non-parametric quantile mapping (QM) method for bias
correction. This method will be referred to as the REA_QM method further in the paper.

2.4. REA_QM Method

In the present study, the uncertainty due to the usage of multiple GCMs is treated
using the Reliability Ensemble Averaging (REA) method. The REA technique was initially
developed by Giorgi and Mearns [59]. REA method is a quantitative method that assigns
weights to GCMs based on their ability to represent observed data and convergence of the
simulated changes across GCMs [60]. Unlike the simple ensemble averaging (SEA) method,
which gives equal weight to all models, the REA method gives more weight to more re-
liable models [61]. This method enables to minimize the higher uncertainty associated
with the less reliable models during multi-model analysis. The REA approach devel-
oped by Chandra et al. [62] for climate variables (precipitation, minimum and maximum
temperature) is used in this work.
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REA includes two reliability criteria namely “model performance” (MP) and “model
convergence” (Mc). The former criteria is the capability of the model to capture the
observed time series and the latter is the convergence of the model simulation for a given
RCP scenario [63]. MP is estimated based on errors obtained from the difference between
GCM simulated in cumulative distribution functions (CDFs)and observed time series CDFs;
subsequently, Mc is calculated using the weighted mean CDF obtained in future simulations
from multiple GCM. Furthermore, the Mc assesses the correlation of future projections
from one model with the projections from the remaining models. In REA, initial weights
(Equation (2)) are calculated based on the GCMs’ capacity to simulate historical climate in
terms of root mean square error (RMSE) (Equation (1)), which represents Mp.

RMSE =
1
N

N

∑
i=1

(Observedi − GCMi)
1/2 (1)

wini =

(
1

RMSEi

)
(

∑N
i=1

1
RMSEi

) (2)

where, wini refers to the initial weight of ith GCM. The Mc calculation is done based on
weighted mean CDF. It is estimated by multiplying wini with the future CDF values for
the corresponding GCM. Then, the deviation of the CDF from the weighted mean CDF
is then measured individually in terms of RMSE. This process is iterated until the final
weights for each of the GCMs are identical to the weights from the previous iteration. The
finals weights are applied to the original data at each daily time step, and then the mean is
calculated to get the ensemble model. This REA ensemble model is bias corrected model
using the non-parametric quantile mapping (QM) method. QM is a distribution-based
bias correction method that which tries to match the CDF of observed and simulated data
series [64–67].

2.5. Support Vector Regression (ν-SVR)

The Support Vector Machine (SVM) is a popular machine learning technique for
classifying and predicting data [68]. Support Vector Regression (SVR) is characterized
by the use of kernels, sparse solutions, and control of the margin and the number of
support vectors. SVR is considered as a nonparametric technique because it relies on
kernel functions. SVR has been proven to be a reliable method for estimating real-value
functions. The main advantage of SVR is that it incorporates the principle of structural risk
minimization [43,45]. It also has excellent generalization capabilities and high prediction
accuracy [42]. Recently, SVR has been used in a variety of water resources research areas,
which include the prediction of water level changes. There are two types of SVM regression
with a general formula which is given in Equation (3)

y = f(x) + Z (3)

where, y is dependent variable, f(x) is a function independent variable(s) and Z is the
additive noise. The first type of SVM regression is known as Epsilon (ξ). This type of error
function is given by the formula shown as follows:

1
2

wTw + C
N

∑
i=1
ξi + C

N

∑
i=1
ξ∗i (4)

where, w is the vector of coefficients, C denotes the capacity constant, ξi and ξ∗i are the
distances of the training data sets points from the zone where the errors less than ε are
ignored. The index i labels the N training cases. The subject is then minimized to obtain
the following:

wT∅(xi) + b− yi ≤ ε + ξ∗i (5)
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yi − wT∅(xi)− b ≤ ε + ξi (6)

ξiξ
∗
i ≥ 0, i = 1, . . . ., N

where b is a constant, y ∈ ±1 is the class labels and xi is the independent variable(s). The
kernel function Ø assists in transforming the input (independent) data to the feature space.
As the C value increase, higher errors are penalized. Thus, to avoid over fitting, C should be
chosen with caution. The second type of regression is Nu(ν) regression. The error function
for Nu(ν) regression is given by Equation (7).

1
2

wTw− C

(
vε +

1
N

N

∑
i=1

(ξi + ξ
∗
i )

)
(7)

Similarly, the subject is minimized to obtain the following:(
wT∅(xi) + b

)
− yi ≤ ε + ξ∗i (8)

yi −
(
wT∅(xi)− b

)
≤ ε + ξi

ξiξ
∗
i ≥ 0, i = 1, . . . ., N

(9)

In this study, Nu(ν) SVR with the radial basis function (RBF) kernel was used:

K
(
X, X′

)
= exp(−γ

∣∣∣∣X− X′
∣∣∣∣2) (10)

where, γ denotes the width of the RBF kernel [43,45,46].

2.6. Linking SWAT with ν-SVR

Because observational data (precipitation and inflows) from Pakhal Lake is scarce and
water abstraction is non-systematic in the current study area, predicting future water levels
by calculating the lake’s water balancing components is difficult. In order to address the
challenge of predicting future lake water levels, the SWAT model outputs are linked with
SVR [39]. Precipitation, monthly outflow volume, and potential evapotranspiration (PET)
and inflows from SWAT outputs, were used as inputs for the ν-SVR model. The ν-SVR
model was trained from 2003 to 2015, and data from 2016 to 2018 were used for testing the
model’s water level (validation). While applying the ν-SVR model, e1701 package from R
(Version 3.6.2) programming software is used for obtaining the optimised values of error
term (ε), configuration factor (C), and gamma parameter (γ). The performance of ν-SVR
model is evaluated by using the root mean square error (RMSE), the mean absolute error
(MAE) and the coefficient of determination (R2). The calibrated and validated ν-SVR model
was run for 2021–2050 time period to estimate the water level of the lake in response to
future scenarios of climate changes namely RCP 4.5 and 8.5.

3. Results
3.1. Climate Variables from REA_QM

The hydrologic components of the Pakhal Watershed were simulated using the cali-
brated and validated SWAT model for historic (1988–2018) and future (2021–2050) periods
using an REA ensemble of 21 NEX-GDDP models. For the analysis of climate change, the
simulated hydrologic conditions are compared to the observed data at each grid point level.
The precipitation and temperature from 21 NEX-GDDP models are compared with the
IMD data to determine the correlation. It was observed that the R2 values for the climate
variables were found to be less than 0.5, indicating that none of the models have a good
correlation with the observed data. In order to account for model uncertainty, the REA_QM
method is performed to obtain an ensemble model for both historic and future time periods.
Table 2 shows the REA ensemble initial (historic) and final weights (future) for the climate
models corresponding to each climate variable. The weights for each grid point are shown
in Table 2. The same procedure is applied for all of the grid points in the study area. The
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obtained weights are applied to the climate data and REA mean is calculated for each
climate variable and then used for SWAT model simulation after performing bias correction
using QM. The bias correction results obtained using the QM method are given in the
Supplementary Material (Figure S2).

Table 2. REA weights for the three climate variables for two climate scenarios at grid 18.785, 78.375.

Precipitation Maximum Temperature Minimum Temperature

Model Historic RCP 4.5 RCP 8.5 Historic RCP 4.5 RCP 8.5 Historic RCP 4.5 RCP 8.5

ACCESS1-0 0.0848 0.0379 0.0091 0.0531 0.0470 0.0454 0.0356 0.0480 0.0480

BCC-CSM1-1 0.0229 0.0527 0.0575 0.0437 0.0482 0.0475 0.0438 0.0469 0.0469

BNU-ESM 0.0272 0.0560 0.0612 0.0492 0.0481 0.0483 0.0398 0.0484 0.0484

CanESM2 0.0166 0.0640 0.0424 0.0392 0.0479 0.0472 0.0332 0.0472 0.0472

CCSM4 0.0309 0.0355 0.0480 0.0542 0.0472 0.0475 0.0576 0.0483 0.0483

CESM1-BGC 0.1612 0.0543 0.0255 0.0409 0.0466 0.0454 0.0427 0.0449 0.0449

CNRM-CM5 0.0403 0.0390 0.0427 0.0508 0.0480 0.0486 0.0439 0.0483 0.0482

CSIRO-Mk3-6-0 0.0322 0.0360 0.0353 0.0541 0.0484 0.0487 0.0799 0.0486 0.0485

GFDL-CM3 0.0311 0.0424 0.0420 0.0445 0.0473 0.0483 0.0592 0.0468 0.0468

GFDL-ESM2G 0.0362 0.0439 0.0555 0.0525 0.0494 0.0486 0.0420 0.0498 0.0498

GFDL-ESM2M 0.1678 0.0361 0.0450 0.0413 0.0477 0.0483 0.0408 0.0479 0.0479

INMCM4 0.0613 0.0467 0.0330 0.0518 0.0485 0.0479 0.0703 0.0490 0.0491

IPSL-CM5A-LR 0.0281 0.0535 0.0613 0.0426 0.0478 0.0476 0.0498 0.0493 0.0493

IPSL-CM5A-MR 0.0400 0.0392 0.0493 0.0462 0.0474 0.0484 0.0365 0.0482 0.0481

MIROC5 0.0285 0.0441 0.0657 0.0473 0.0478 0.0485 0.0719 0.0475 0.0475

MIROCESM 0.0222 0.0740 0.0786 0.0452 0.0473 0.0474 0.0363 0.0470 0.0471

MIROCHEM 0.0285 0.0572 0.0720 0.0459 0.0473 0.0473 0.0297 0.0467 0.0467

MPI-ESM-LR 0.0328 0.0454 0.0312 0.0502 0.0469 0.0473 0.0415 0.0464 0.0464

MPI-ESM-MR 0.0220 0.0499 0.0412 0.0535 0.0472 0.0464 0.0348 0.0462 0.0462

MRI-CGCM3 0.0637 0.0411 0.0456 0.0478 0.0471 0.0477 0.0612 0.0469 0.0469

NorESM1-M 0.0219 0.0511 0.0578 0.0460 0.0468 0.0477 0.0497 0.0478 0.0478

The scatter plot for REA and IMD monthly precipitation is shown in Figure 3. It is
seen that the REA model has a good match with the observed data, with a correlation
coefficient (R2) of 0.74. The average monthly precipitation from REA and IMD is shown
in Figure 4. The R2 value for REA temperature and observed temperature are 0.94 and
0.96 for maximum and minimum temperature, respectively. The scatter plot for monthly
streamflow (tank inflow) with REA and IMD as input are shown in Figure 5. It seen that
the REA model has a good fit to the observed data with a value of R2 as 0.67. The average
monthly precipitation from REA and IMD is shown in Figure 6. The REA model monthly
streamflow is comparable to IMD data.
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3.2. Historic and Future NEX-GDDP Climate Data Analysis

Table 3 depicts the changes in NEX-GDDP hydroclimatic variables with respect to
observed data under historic and future time periods. It is observed that precipitation is
under predicted by 2% in the past. While the streamflow is over predicted by 12% during
the historic period. The streamflow over prediction can be attributed to the changes in
minimum and maximum temperatures. When compared to observation data under RCP 4.5,
both precipitation and streamflow are reduced in the future (2021–2050). Precipitation
and streamflow, on the other hand, show an increasing trend under the RCP 8.5 scenario.
They are similar to observed data during the historical period. In future period, under the
RCP 4.5 scenario both the maximum and minimum temperatures increased by 1.21 ◦C and
1.22 ◦C, respectively. Under RCP 8.5, the changes are 1.42 ◦C and 1.48 ◦C for minimum
and maximum temperatures, respectively. The changes in evapotranspiration showed a
decreasing trend in both future RCP scenarios.

Table 3. Change in NEX-GDDP simulated climate variables compared to observed data.

Period P
(mm) ∆P (%) SF ∆SF (%) Tmax

(◦C) ∆Tmax Tmin
(◦C) ∆Tmin ET

(mm)
∆ET
(%)

IMD
1143.04 56.76 33.42 22.07 595.661988–2018

Historic
1120.81 −1.95 63.63 12.10 33.35 −0.07 22.10 0.03 510.55 −14.291988–2018

Future RCP4.5
1020.25 −10.74 54.99 -3.12 34.63 1.21 23.29 1.22 511.62 −14.112021–2050

Future RCP8.5
1178.94 3.14 68.53 20.73 34.84 1.42 23.55 1.48 517.63 −13.102021–2051

3.3. Performance of the ν-SVR Model

The parameter combination of C = 34, v = 0.5, γ = 0.91 with the radial basis kernel
function produced the best match between the predicted and observed water level change
(Figure 7). The R2 value was 0.79, MAE was 0.018 m, and RMSE was 0.13 m for the training
period. The scatter plot between the observed and SVR model generated tank water levels
during the training period is shown in Figure 8. In the validation period, the R2, MAE and
RMSE values changed slightly to 0.72, 0.6 m and 0.25 m, respectively. The scores of the
three metrics (R, MAE and RMSE) during the training and validation periods suggest that
the model performance is satisfactory in capturing the observed lake water level trends.
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The time series plot of observed and SVR model monthly lake water level changes suggests
that the model performance is good (Figure 9).
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3.4. Effect of Climate Change on Water Availability

The calibrated and validated SVR model is used to make monthly tank water level
predictions under RCP 4.5 and RCP 8.5 scenarios for the period 2021–2050. The changes
in predicted monthly lake water level is shown in Figure 10. The lake water level ranges
during the observation period (2003–2018) are 0.05–9.3 m. The future lake water level ranges
under RCP 4.5 and RCP 8.5 are 0.0–9.2 m, 0.35–9.8 m, respectively. The average water level
observed during the SVR modeling period (2003–2018) is 5.2 m. Whereas, the average
water level range during future scenarios was between 5.6 m and 5.8 m under both RCPs.
The average lake water levels for the future scenarios are similar to the historic trends.
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Figure 10. Changes in predicted monthly lake water level during 2021–2050 under climate
changes scenarios.

Seasonal analysis is performed in order to assess the changes in water levels during
rabi and kharif seasons. Three crop growth seasons are considered for the analysis are
rabi (July–October), kharif (October–April) and summer (May–June). The average changes
in water levels during each season are shown in Figure 11. The results under RCP 4.5
signify an increase water levels in rabi and kharif season, while a decrease in water levels
in summer season. Under RCP 8.5, the water levels showed an increase in water elevels
in Kharif while a significant decrease in levels can be in the rabi season. High increase in
water levels can be observed in Summer under RCP 8.5. These changes can be attributed to
changes in the climate variables.
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Figure 11. Changes in water levels during each season compared to observed levels under RCP
climate change scenarios.

4. Discussion

In the current study, the NEX-GDDP climate data is preprocessed first, and then an
ensemble model is generated using the REA QM method. The REA method utilizes all
21 of the models in the dataset. The approach uses weights for both historical and future
time periods. The weights obtained for the historical time period are known as initial
weights, and they determine the model’s reliability in representing the observed data.
The initial weights for precipitation range from 0.016 to 0.167, indicating that none of
the models is reliable in capturing the observed precipitation profiles. The REA method
effectively accounts for model uncertainty on future projections by providing different sets
of weights for each RCP scenario. Although the NEX-GDDP dataset is a bias-corrected
product, significant biases were discovered when the climate parameters from the ensemble
model were compared to the observed data for the study area (IMD data). The quantile
mapping bias correction method is used to account for the biases in the ensemble model.
The results of the QM method, as shown in Figure S1, indicate that the QM method is
effective in eliminating biases.

The climate variables from the ensemble model are used in the SWAT model to predict
the future water balancing components in the Phakal lake catchment. The results show
that the RCP 4.5 is vulnerable to climate change due to a decrease in precipitation and
streamflow. In comparison, the RCP 8.5 scenario results show an increase in precipitation
and streamflow. Temperature and evapotranspiration changes are comparable in both RCP
scenarios. The results are consistent with previous literature [52]. The linking of SWAT
outputs with the SVR model proved effective in predicting lake water levels because the
performance metrics are satisfactory. When compared to observed levels, predicted lake
water levels show a similar pattern under both climate scenarios. The findings indicate that
lake level fluctuations are highly dependent on evapotranspiration in the lake catchment.
More research is needed to correlate the catchment water balance components and lake
levels on a monthly and seasonal scale. The monthly water level results in both RCP 4.5
and 8.5 show nearly zero values in some cases (Figure 9). As a result, research into extreme
event analysis is required in order to identify events in which the lake dries up completely.
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5. Conclusions

In the present study, an integrated approach of linking SWAT model outputs with
support vector regression (v-SVR) has been developed for the prediction of future lake
water levels of a tank located in a semi-arid region. Realiability Ensemble Averaging paired
with Quantile mapping (REA_QM) method is used for 21 NEX-GDDP climate model
data, in order to obtain a single reliable ensemble future climate model data under both
RCP 4.5 and 8.5 scenarios. These climate datasets are used as input in future water level
prediction of Pakhal Lake. The key findings of the study are as follows: (1) The climate
variables obtained from REA_QM method have a high correlation with observed data,
(2) the outcomes of both future climate scenarios are different. A decrease in streamflow
is obeserved in RCP 4.5 which can be attributed to decreased precipitation and enhanced
potential evapotranspiration (PET). An increased streamflow is predicted in RCP 8.5, and
(3) precipitation, outflow volume, PET and inflows from SWAT can be used as input
variables in SVR to estimate lake water level when direct estimation of surface evaporation
from the lake is not possible. This method can be an effective way for estimating water
levels, since the changes in future lake area information is unavailable, (4) The predicted
lake water levels indicate a similar pattern under both the climate scenarios when compared
to observed levels. Seasonal analysis suggests a decrease in water availability in the rabi
season under RCP 8.5 scenario. Significant extreme events are observed in the RCP 4.5
scenario. As majority of the lake waters are used for agricultural purpose, adaptation
strategies are required for sustainable management of water resources. This study aids
in planning necessary water management options of Pakhal Lake in the face of changing
climate. The seasonal analysis aids in developing policies for water augmentation from
the lake linking project in order to sustain agriculture during periods of water scarcity.
The methodology developed in the present study can be extended to other semi-arid lake
systems with limited observed data.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14126974/s1, Figure S1: Map showing the NEX-GDDP and
IMD grid points considered in the study; Figure S2: Quantile plots showing the results before and
after bias correction for precipitation (a) Before bias correction. (b) After bias correction.
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Water Availability in the Largest Freshwater Mediterranean Lake Is at Great Risk as Evidenced from Simulations with the SWAT
Model. Sci. Total Environ. 2017, 581–582, 413–425. [CrossRef]

40. Kisi, O.; Shiri, J.; Karimi, S.; Shamshirband, S.; Motamedi, S.; Petković, D.; Hashim, R. A Survey of Water Level Fluctuation
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