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Abstract: Pavement performance prediction is necessary for road maintenance and repair (M&R)
management and plans. The accuracy of performance prediction affects the allocation of maintenance
funds. The international roughness index (IRI) is essential for evaluating pavement performance. In
this study, using the road pavement data of LTPP (Long-Term Pavement Performance), we screened
the feature parameters used for IRI prediction using the mean decrease impurity (MDI) based on
random forest (RF). The effectiveness of this feature selection method was proven suitable. The
prediction accuracies of four promising prediction models were compared, including Gradient
Boosting Decision Tree (GBDT), eXtreme Gradient Boosting (XGBoost), support vector machine
(SVM), and multiple linear regression (MLR). The two integrated learning algorithms, GBDT and
XGBoost, performed well in prediction. GBDT performs best with the lowest root mean square
error (RMSE) of 0.096 and the lowest mean absolute error (MAE) of 6.2% and the coefficient of
determination (R2) reaching 0.974. However, the prediction accuracy varies in numerical intervals,
with some deviations. The stacking fusion model with a powerful generalization capability is
proposed to build a new prediction model using GBDT and XGBoost as the base learners and bagging
as the meta-learners. The R2, RMSE, and MAE of the stacking fusion model are 0.996, 0.040, and 1.3%,
which further improves the prediction accuracy and verifies the superiority of this fusion model in
pavement performance prediction. Besides, the prediction accuracy is generally consistent across
different numerical intervals.

Keywords: pavement performance prediction; international roughness index (IRI); GBDT; XGBoost;
stacking

1. Introduction

Pavement performance prediction is a prerequisite for maintenance and repair (M&R)
planning. Its prediction accuracy has a non-negligible impact on allocating funds [1–4].
In the whole life cycle of M&R planning, accurate predictions of pavement performance
indicators are required to optimize funds and define the M&R projects. M&R timing is
usually determined based on predictions, and a delayed or early M&R action may result in
wasted money, energy consumption, and traffic disruptions. However, the survey task may
not cover all road sections. For the road sections that are not covered, prediction can help
manage agents to keep track of the pavement condition in time to prevent losses due to
untimely awareness of indicators exceeding the specified thresholds.

The international roughness index (IRI) is an essential indicator calculated based
on the longitudinal profile of the wheel track. The pavement condition index (PCI) is
a statistical indicator based on the pavement distresses. Due to the heavy survey work,
scholars and road management agencies have tried to establish correlations of different
evaluation indicators. A sigmoid function is found to best express the relationship between
PCI and IRI with a coefficient of determination (R2) of 0.995; the model validation using
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a different dataset also yielded highly accurate predictions (R2 = 0.99) [5]. Although the
prognosis of PCI by IRI reduces the detection and analysis work, it ignores the more critical
pavement distress information, which has been mentioned by Kırbas [6]. This neglect may
lead to a significant bias when applying this prognosis to the forecasting domain.

Time-series-based model prediction methods often group data based on external
factors such as time, environment, and traffic and carry out performance prediction with
road age as the independent variable. Abaza found that the transfer probability estimated
by the Markov-based pavement performance prediction model became very unstable as the
section length became more prominent and the sample size became smaller [7]. The global
prediction precision values for the five performance indicators (PIs), namely cracking,
skid resistance, bearing capacity, longitudinal roughness, and transverse roughness, by
a practical application of a Markov model are 77, 71, 94, 83, and 80%, respectively [8].
Mohammadi et al. [9] pointed out that environmental conditions have overshadowed
traffic loading by faster PCI and IRI degradation for local segments with less traffic load
than arterial ones based on a review of deterministic models.

Analyzing critical features affecting performance indices can aid design and M&R man-
agement. No.-200-passing, hydraulic conductivity, and equivalent single-axle loads in thou-
sands (KESAL) are essential factors predicting IRI [3]. A sensitivity analysis showed that
the machine learning models are susceptible to previous IRI values, and variations in the
remaining variables showed little effect on the machine learning models [10]. Ali et al. [11]
found that almost all the distresses, including rutting, block cracking, fatigue, transverse
cracking, and potholes, negatively affected the IRI value except delamination, patching, and
longitudinal cracking by an IRI pavement distress model with the p-value of 0.05. Onayer
and Swei [12] emphasized to the reader the fact that parameter estimates are sensitive to
the selected time range of consecutive IRI measurements. There is some conflict in the
findings of these studies. Correlation analysis may not accurately reflect the contribution of
the distress to IRI.

Accurate predictions of performance indicators can be used for M&R planning and
compensate for inadequate survey data coverage. Attempts have been made to use machine
learning and deep learning algorithms to improve the accuracy of predicting the IRI. The
Random Forest Regression (RFR) addressed the overfitting issue significantly better than
the linear regression model [13]. Marcelino et al. [14] also found that the RFR achieved
excellent predictive performance in training and testing sets. Based on conducting a meta-
analysis based on inverse variance heterogeneity for 20 studies conducted between 2001
and 2020, RF was found to be the most accurate technique, with an overall performance
value of 0.995; however, the machine learning algorithm captured an average of 15.6% more
variability than traditional techniques [15]. Gene expression programming (GEP) achieved
the highest accuracy in predicting the remaining service life compared with support vector
regression (SVR) and support vector regression optimized by the fruit fly optimization
algorithm (SVR-FOA) [16]. Li et al. [1] found that the optimized support vector machine
(SVM) has better rutting prediction performance and perfect generalization, which was
higher than those of the unoptimized support vector machine model, and the model using
particle swarm optimization has a fast convergence speed. Abdelaziz et al. [17] predicted
IRI based on 506 road sections with 2439 observations, and the R2 value of the ANN
(Artificial Neural Network) model was 0.75. Riding index, cracking index, and rutting
index for the three pavement types ACC, PCC, and COM were predicted, and compared
to the multiple linear regression (MLR) model, the ANN model based on weather factors
(i.e., temperature, precipitation, and freeze-thaw cycles), traffic load, pavement age, SN,
layer thickness, and subgrade stiffness for the Iowa highway, future pavement conditions
are more accurately predicted [18]. Hossain et al. [19] demonstrated that the ANN-based
IRI prediction model is reasonable for short-term and long-term pavement observation
IRI data, and the root mean square error (RMSE) value of the test results was as low as
0.027. A more accurate prediction was fine-tuned by a coupled use of RFR and ANN [20].
Choi and Myungsik Do [2] predicted the deterioration of pavement performance with a
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recurrent neural network algorithm with a high coefficient of determination of 0.71–0.87 by
using monitoring data from the Korean National Highway Pavement Management System.
Marcelino et al. [14] used a transfer learning approach based on a boosting algorithm to
develop pavement performance regression models with limited data contexts achieving
a prediction accuracy improvement of approximately 6%. Basher et al. [15] pointed out
that ANN was considered an effective technique based on its accurate predictions of small
and large samples. The gradient boosting machine (GBM) models were better than other
machine learning methods [21,22].

Some typical IRI prediction models and their accuracies are summarized, as shown in
Table 1.

Table 1. Summary of Predictive Models.

No. Models

Whether
Pavement
Distress or

Rutting
Indicators
Are Used

Other Parameters R2

(Testing) RMSE MAE
(%) Segments Observations

1 [18]
MLR

N

Pavement age, previous IRI value (initial IRI),
pavement thickness, subgrade stiffness,
average rainfall, average temperature

0.57 0.205 /
464 6222

ANN 0.92 0.133 /

2 [23] ANN N
Age, vehicle per direction

heavy vehicle per direction, ESAL
per direction

0.86 0.369 9.8 204 /

3 [2] RNN N AADT, ESAL, climate, equipment 0.87 0.14 / 1880 /

4 [3]
XGBoost

N
Age (years), four specific climate and
weather indicators, two specific traffic

indicators, modified thickness

0.7 / 12.6
1390 12,637RF 0.66 / 13.51

SVM 0.44 / 17.64

5 [17] ANN Y Initial IRI, age 0.75 / / 506 2439

6 [13] RF Y Structure, total pavement thickness,
initial IRI 0.974 0.078 / / 19,900

7 [24] AdaBoost Y
Pavement total thickness,

initial IRI, AADT, ESAL, freeze
precipitation

0.9751 0.094 / / 4265

8 [22]

GBM

Y

Structural number, KESAL, unbound
granular base thickness, asphalt concrete

thickness, temperature, precipitation, initial
IRI, age

0.86572 0.176003 12.6345

211 /

DL (deep learning) 0.829877 0.198105 12.9814
DRF (distributed
random forest) 0.795589 0.217154 14.5215

GLM (Generalized
linear model) 0.824244 0.201358 15.1275

9 [21]
LightGBM

Y
Total thickness, AC ratio, temperature,

precipitation, KESAL, freeze index, wind
speed, initial IRI time

0.9 0.19 11
1781 100,000ANN 0.84 0.25 15

RFR 0.88 0.21 12

As shown in Table 1, the inclusion of other pavement performance feature parameters
can improve R2 and reduce the error. However, the role of rich and detailed parameters of
structural and environmental features still cannot be ignored. The overall performances
of ANN and RF are similar. When the dataset is the same one, RF usually performs better
than ANN, XGBoost [3], GBM [22], and LightGBM [21], and all perform better than RF.
In addition, the performance of SVM and MLR models based on the same dataset has
achieved about 50% lower R2 values than ANN.

RF, SVM, MLR, and ANN are widely used for pavement performance prediction.
Boosting algorithms can significantly improve the prediction accuracy of machine learning
models with lower RMSE and MAE. Hence, we chose two boosting algorithms, MLR and
SVM, to make the prediction.

Project-level M&R planning is often done in segments. Since the segments have the
same environmental conditions, similar traffic conditions, and almost the same structure
and material types, feature-based prediction methods are not supported by sufficient data,
and time-series-based predictions suffer from low accuracy. Given that a 10% deviation
from the forecast results in a 16% increase in costs and a 2% decrease in benefits over the
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whole life cycle (20 years) [19], project-level application requirements for MAE should
not exceed 10%. Therefore, we need a machine learning prediction model that does not
depend on net-level features and time-series data, so its main features should be survey
data of the base year. The detailed distress, pavement age, and traffic data were chosen for
contribution rates analysis to select feature parameters. To enhance MAE, we constructed a
stacking fusion model based on two relatively good prediction models to see if they still
can be improved.

2. Data Preparation

The raw data are from the LTPP data across 62 cities, including: traffic volume
size (76,989 data), crack length (12,964 data), traffic opening date (1817 data), rut depth
(18,128 data), IRI size (97,535 data), and texture information (18,735 data) in six tables,
totaling 226,128 data. After removing the abnormal data, such as null values, we obtained
74,773 data with 41 feature parameters (Table 2). Although these features are correlated,
excluding the directly calculated correlation indicators, this study does not perform any
prior knowledge-based processing.

Table 2. Description of the feature variables.

No FIELD_NAME FIELD_ALIAS

1 GATOR_CRACK_A_L Low-Severity Alligator Cracking Area
2 GATOR_CRACK_A_M Medium-Severity Alligator Cracking Area
3 GATOR_CRACK_A_H High-Severity Alligator Cracking Area
4 BLK_CRACK_A_L Low-Severity Block Cracking Area
5 BLK_CRACK_A_M Medium-Severity Block Cracking Area
6 BLK_CRACK_A_H High-Severity Block Cracking Area
7 EDGE_CRACK_L_L Low-Severity Edge Crack Length
8 EDGE_CRACK_L_M Medium-Severity Edge Crack Length
9 EDGE_CRACK_L_H High-Severity Edge Crack Length
10 LONG_CRACK_WP_L_L Low-Severity Wheel Path Longitudinal Crack Length
11 LONG_CRACK_WP_L_M Medium-Severity Wheel Path Longitudinal Crack Length
12 LONG_CRACK_WP_L_H High-Severity Wheel Path Longitudinal Crack Length
13 LONG_CRACK_WP_SEAL_L_L Low-Severity Well-Sealed Wheel Path Longitudinal Crack Length
14 LONG_CRACK_WP_SEAL_L_M Medium-Severity Well-Sealed Wheel Path Longitudinal Crack Length
15 LONG_CRACK_WP_SEAL_L_H High-Severity Well-Sealed Wheel Path Longitudinal Crack Length
16 LONG_CRACK_NWP_L_L Low-Severity Non-Wheel Path Longitudinal Crack Length
17 LONG_CRACK_NWP_L_M Medium-Severity Non-Wheel Path Longitudinal Crack Length
18 LONG_CRACK_NWP_L_H High-Severity Non-Wheel Path Longitudinal Crack Length
19 LONG_CRACK_NWP_SEAL_L_L Low-Severity Non-Wheel Path Well-Sealed Longitudinal Crack Length
20 LONG_CRACK_NWP_SEAL_L_M Medium-Severity Non-Wheel Path Well-Sealed Longitudinal Crack Length
21 LONG_CRACK_NWP_SEAL_L_H High-Severity Non-Wheel Path Well-Sealed Longitudinal Crack Length
22 TRANS_CRACK_NO_L Low-Severity Transverse Cracks Number
23 TRANS_CRACK_NO_M Medium-Severity Transverse Cracks Number
24 TRANS_CRACK_NO_H High-Severity Transverse Cracks Number
25 TRANS_CRACK_L_L Low-Severity Transverse Crack Length
26 TRANS_CRACK_L_M Medium-Severity Transverse Crack Length
27 TRANS_CRACK_L_H High-Severity Transverse Crack Length
28 TRANS_CRACK_SEAL_L_L Low-Severity Well-Sealed Transverse Crack Length
29 TRANS_CRACK_SEAL_L_M Medium-Severity Well-Sealed Transverse Crack Length
30 TRANS_CRACK_SEAL_L_H High-Severity Well-Sealed Transverse Crack Length
31 PATCH_NO_L Low-Severity Patches Number
32 PATCH_NO_M Medium-Severity Patches Number
33 PATCH_NO_H High-Severity Patches Number
34 MRI Mean Roughness Index
35 LLH_DEPTH_1_8_MEAN Average Left Lane Half Depth From 1.8m Straight Edge
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Table 2. Cont.

No FIELD_NAME FIELD_ALIAS

36 RLH_DEPTH_1_8_MEAN Average Right Lane Half Depth From 1.8m Straight Edge
37 MAX_MEAN_DEPTH_1_8 Maximum Average Depth From 1.8m Straight Edge
38 RLH_DEPTH_WIRE_REF_MEAN Average Right Lane Half Depth From Wire Reference
39 MAX_MEAN_DEPTH_WIRE_REF Maximum Average Depth From Wire Reference
40 AADTT_ALL_TRUCKS_TREND Trend LTPP Lane Annual Average Daily Truck Traffic
41 ANNUAL_TRUCK_VOLUME_TREND LTPP Lane Annual Truck Trend Estimate

3. Methodology
3.1. Feature Selection Based on RF Algorithm

Feature selection serves the machine learning model, and good feature metric parame-
ters help to improve the model fitting accuracy. Therefore, to ensure the accuracy of the
pavement prediction model, the features with high relevance need to be selected as the
training set for training the model. The two popular feature selection methods are the
Pearson coefficient and Spearman coefficient methods. Pearson’s correlation, also known
as product-difference correlation, is a method the British statistician Pearson proposed
in the 20th century to calculate the linear correlation. It is one of the most commonly
used correlation coefficients. It is denoted as ρ and reflects the degree of linear correlation
between two variables, X and Y. Suppose there are two variables, X and Y. The Pearson
correlation coefficient between the two variables can be calculated by Equation (1).

ρ(X, Y) =
E[(X − µx])(Y − µY)]

σXσY
(1)

where E[(X − µx])(Y − µY)] is the covariance between X and Y, σX is the standard devia-
tion of X, and σY is the standard deviation of Y.

The Spearman coefficient (rs) is a non-parametric measure of the relationship between
two variables, which can be calculated by Equation (2).

rs = 1 − 6 ∑ di
2

n(n2 − 1)
(2)

where n denotes the number of data, and di denotes the difference between the two variables.
A shortcoming is that they are highly dependent on linear relationships, but complex

linearity and nonlinearity exist between actual pavement survey data and predictive
indicator data.

Usually, the importance of features can be reflected by the segmentation of node data
based on RF. However, the double-random method in selecting training samples and node
classification features may cause features with high discrimination to be chosen as seg-
mentation attributes infrequently and features with low bias to be chosen as segmentation
attributes more frequently. Therefore, simply using the frequency of features used as seg-
mentation attributes to measure the importance does not accurately reflect the contribution
of different features.

Breiman [25] proposed the mean decrease impurity (MDI) to identify the variable
importance for predicting based on Random Forest by adding weighted impurity decreases
for all nodes where the feature is used, averaged over all the trees in the forest. The RF-
based variable selection determines a smaller number of relevant predictors and allows the
construction of a more parsimonious model but with predictive performance [26].

The MDIs are calculated by Equation (3).

MDI =
Nt

N
∗
(

IMP −
Nt

R
Nt ∗ IMPR −

Nt
L

Nt ∗ IMPL

)
(3)
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where IMP, IMPR, and IMPL are the impurity value, the impurity value in the right child,
and the impurity value in the left child, respectively. Nt is the number of samples at the
current node, Nt

R is the number of samples in the right child, Nt
L is the number of samples

in the left child, and N is the sample size.

3.2. Accuracy Evaluation of MLR, GBDT, XGBoost, and SVM Models

We chose MLR, GBDT, XGBoost, and SVM models for a comparative study, which are
all commonly used for pavement performance prediction.

GBDT is a machine learning algorithm proposed by Friedman [27] and is widely used
in classification, regression, and recommendation systems for ranking tasks. The core idea
of GBDT is to reduce the residuals, and each iteration of GBDT is to minimize the residuals
generated by the previous iteration.

XGBoost [28] is an iterative, tree-like algorithm that combines multiple weak classifiers
into one robust classifier, implementing a gradient-boosted decision tree (GBDT). XGBoost
is a powerful sequential integration technique with a modular structure for parallel learn-
ing to achieve fast computation, preventing overfitting by regularization and generating
weighted quantile sketches for processing weighted data. In the case of nonlinear regres-
sion tasks, kernel functions are used in SVM operations. By using nonlinear vector kernel
functions, the original data can be mapped to a high-dimensional feature space, converting
the nonlinear regression problem into a linear problem to be solved.

The IRI prediction models constructed based on the above four algorithms, namely
GBDT, XGBoost, SVM, and MLR, were implemented on the Python 3.9.2 platform in the
environment of Jupyter. The dataset is 74,773 data after data preprocessing in the previous
paper, containing 41 features and 1 prediction value. The training and testing sets were
divided in a 7:3 manner, and RMSE, MAE, and R2 were used to evaluate the machine
learning models’ performance

RMSE and MAE are used to measure the closeness of the predicted value to the actual
value, and a smaller value indicates a higher prediction accuracy; R2 is the expressiveness
of the expected value to the actual value, and the larger R2 means the higher prediction
accuracy (not more than 1). The three evaluation indicators were calculated according to
Equations (4)–(6).

RMSE =

√√√√ 1
n

n

∑
i=1

(
Yi − Ŷi

)2

(4)

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (5)

R2 = 1 −

n
∑

i=1

(
Yi − Ŷi

)2

n
∑

i=1

(
Yi − Yi

)2 (6)

where n is the number of the sample set Yi; Yi is the measured value of IRI; Ŷi is the
predicted value of IRI, and Yi is the mean of the measured value of IRI.

3.3. The Stacking Fusion Method

The stacking model fusion method first divides the original feature dataset into several
sub-datasets, fed into each base learner of the layer one prediction model. Each base learner
outputs its prediction results. The stacking model fusion method can improve the overall
prediction accuracy by generalizing the output results of multiple models.

The original dataset is sliced and divided into the training and test sets according to
a specific ratio in the first stage. Suitable base learners are selected to train the training
set by cross-validation. After completing the training, each base learner is predicted on
the validation and test sets. We should first figure out the machine learning models with
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relatively good prediction performance, ensuring the diversity between models. In the
second stage, the prediction results of the base learners are used as the feature data for
training and prediction of the meta-learner, respectively. The meta-learner combines the
features obtained in the previous stage and the labels of the original training set for the
sample data to build the model and output the final stacking model prediction results.

Two sets of predictions are obtained using two different integrated model algorithms
with high prediction accuracy as base learners, and then, the three sets of predictions are
applied to the second layer using a meta-learner, which is chosen to train the bagging
model to obtain the final prediction results.

4. Results and Discussion
4.1. Feature Selection Results

The input port is used to receive the dataset passed down from the predecessor node,
and the output port is used to output the dataset with the added discrete fields, where the
top 20 results are shown in Figure 1.
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Figure 1. Correlation analysis of feature parameters and IRI based on RF algorithm.

We can see from Figure 1 that road age (AGE) is the most crucial factor affecting pave-
ment levelness, which is consistent with the concept of prediction based on deterministic
models and time series and is also compatible with the findings of correlation analysis.
Except for traffic volume, the rest of the characteristic critical indicators belong to pavement
distresses. AADTT and AGE are all related to cumulative loads, and the road age also
includes the cumulative effect from the environment.

Among the various types of distresses, the effect of transverse cracks is at the top.
At the same time, the impact of rut depth, which also represents the roughness character-
istics of the pavement, was not significant. The results imply that the correlation model
that only considers the macroscopic damage state of the pavement without considering the
specific damage types is not scientific. The roughness is not only related to the pavement’s
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surface state but is also related to the overall structural condition of the road, which is the
result of the combined effect of the environment and traffic load. This is why the age of the
road has a more significant impact.

The feature data selected in this study, excluding road age, are easily achieved survey
data that do not require establishing an extensive road asset database and provide greater
convenience for road management work.

4.2. Accuracy Evaluation Results of MLR, GBDT, XGBoost, and SVM Models

Scatter plots of the comparison between predicted and actual values of the four
prediction models are in Figures 2–5. The lines represent the exact agreement between
the predicted and actual values, and the data points above the lines represent predicted
values that are large relative to the actual values. In contrast, the data points below the
lines represent lower predicted values than the actual ones. It is not difficult to find that
GBDT and XGBoost have significantly fewer outliers away from the regression line than
SVM and multiple linear regression, which indicates that the prediction effects of GBDT
and XGBoost are much better than the latter two. At the same time, SVM and XGBoost
are not far from reaching the fit, so the prediction effects of these two algorithms are more
general under this data set.

Figure 2 shows that the GBDT model performs well and has achieved a good fit.
However, when IRI is above 2, the predicted value seems lower. Figure 3 implies that
XGBoost shows a similar trend with more deviations. As seen in Figure 4, the SVM
model may have an insufficient fitting ability when the sample distribution is not uniform,
especially in the interval with a small sample size. The deviation of MLR tends to increase
with increasing IRI, but the positive and negative deviations are more uniform (Figure 5).
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The values of RMSE, MAE, and R2 for the different prediction models are in Table 3.
SVM and MLR perform even worse than the known datasets in the literature (Table 1), prob-
ably because the initial IRI data did not incorporate parameters. However, the prediction
accuracy of GBDT and XGBOOST is significantly higher.

Table 3. Evaluation results of MLR, GBDT, XGBoost, and SVM models.

Algorithms RMSE MAE R2

GBDT 0.096 0.062 0.974
XGBoost 0.162 0.084 0.925

SVM 0.541 0.350 0.161
MLR 0.504 0.344 0.271

The stacking fusion model 0.040 0.013 0.996

From the prediction results of the four prediction models, the models can be divided
into two groups: one group is GBDT and XGBoost, representing integrated learning, and
the other group is SVM and MLR, representing weak learners. SVM and MLR can better
characterize the mapping relationship under small samples than GBDT and XGBoost.
Still, they are weak learners, while GBDT and XGBoost belong to integrated algorithms
assembled by a series of weak learners (decision trees). While GBDT and XGBoost are
the weight-boosting algorithms, the prediction accuracy is inevitably stronger than that
of a single weak learner in the case of complex pavement data structure because of the
correction feature of the boosting algorithm.

The values of R2 for GBDT and XGBoost are 0.974 and 0.925, and the R2 values of SVM
and MLR are almost 70% lower. We can indicate that the predicted values of GBDT and
XGBoost are closer to the actual values in the prediction process of the IRI of pavement. Both
the accuracies of GBDT and XGBoost can meet the requirements of net-level forecasting.
However, MAE values (6.2% and 8.4%) for GBDT and XGBoost are close to 10%, and data
on specific value intervals have relatively high absolute errors.
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4.3. Evaluation of the Stacking Fusion Model

We then fused the two algorithms in a stacking way to improve their prediction
accuracies in different threshold ranges. To verify the superiority of the stacking fusion
model in IRI prediction, the training and test sets with the previous four prediction models
were maintained and compared. The values of the three evaluation indicators (MSE, MAE,
and R2) for the stacking fusion model are in Table 3. It is found that the stacking fusion
model yields an improvement in each evaluation indicator.

The RMSE value of the stacking fusion model is 58% lower than GBDT and 75% lower
than XGBoost; its MAE is 79% lower than GBDT and 85% lower than XGBoost, while R2 is
2% higher than GBDT and 8% higher than XGBoost. The accuracy of the stacking fusion
model is further improved compared with the GBDT and XGBoost models.

Figure 6 shows the scatter plot of the actual and predicted IRI values of the stacking
fusion model, the meanings of points and lines are the same as Figures 2–5. The stacking
fusion model, based on the original GBDT and XGBoost, further approximates the regres-
sion line in the scatter plot, indicating that the overall predicted values of the fusion model
are closer to the actual values in the prediction process. The fusion model obtained more
minor errors and performed better, especially for larger values of IRI, and may be usable
for project-level forecasting.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 14 
 

 

The values of R2 for GBDT and XGBoost are 0.974 and 0.925, and the R2 values of 
SVM and MLR are almost 70% lower. We can indicate that the predicted values of GBDT 
and XGBoost are closer to the actual values in the prediction process of the IRI of 
pavement. Both the accuracies of GBDT and XGBoost can meet the requirements of net-
level forecasting. However, MAE values (6.2% and 8.4%) for GBDT and XGBoost are close 
to 10%, and data on specific value intervals have relatively high absolute errors. 

4.3. Evaluation of the Stacking Fusion Model 
We then fused the two algorithms in a stacking way to improve their prediction 

accuracies in different threshold ranges. To verify the superiority of the stacking fusion 
model in IRI prediction, the training and test sets with the previous four prediction models 
were maintained and compared. The values of the three evaluation indicators (MSE, MAE, 
and R2) for the stacking fusion model are in Table 3. It is found that the stacking fusion 
model yields an improvement in each evaluation indicator. 

The RMSE value of the stacking fusion model is 58% lower than GBDT and 75% lower 
than XGBoost; its MAE is 79% lower than GBDT and 85% lower than XGBoost, while R2 
is 2% higher than GBDT and 8% higher than XGBoost. The accuracy of the stacking fusion 
model is further improved compared with the GBDT and XGBoost models. 

Figure 6 shows the scatter plot of the actual and predicted IRI values of the stacking 
fusion model, the meanings of points and lines are the same as Figures 2–5. The stacking 
fusion model, based on the original GBDT and XGBoost, further approximates the 
regression line in the scatter plot, indicating that the overall predicted values of the fusion 
model are closer to the actual values in the prediction process. The fusion model obtained 
more minor errors and performed better, especially for larger values of IRI, and may be 
usable for project-level forecasting. 

 
Figure 6. Stacking fusion-based prediction results. 

5. Conclusions 
Based on LTPP data across 62 cities, this study seeks prediction methods with better 

generalization ability and higher accuracy with the research objective of predicting the IRI 
of pavements. Traditional feature parameters such as structural and environment 
indicators that can only be obtained based on file collection or database building and used 
for network-level pavement performance prediction are discarded. We mainly focus on 
those survey data that can be observed easily. 

Figure 6. Stacking fusion-based prediction results.

5. Conclusions

Based on LTPP data across 62 cities, this study seeks prediction methods with better
generalization ability and higher accuracy with the research objective of predicting the
IRI of pavements. Traditional feature parameters such as structural and environment
indicators that can only be obtained based on file collection or database building and used
for network-level pavement performance prediction are discarded. We mainly focus on
those survey data that can be observed easily.

(1) By selecting feature parameters based on the random forest prediction model,
20 indicators with certain influences that can be used to build the prediction model were
identified. The accuracies of the prediction results imply the feather selection method
is suitable.

(2) Excluding road age, the feature parameters selected in this study are all easily
achieved detection data. It can be concluded that accuracy prediction does not require
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establishing an extensive road asset database and provides greater convenience for the
management work.

(3) GBDT and XGBoost have achieved high R2 (0.974 and 0.925), which can meet the
requirements of net-level forecasting. However, MAE values (6.2% and 8.4%) are close to
10%, and data on some specific value intervals have relatively high absolute errors.

(4) The accuracy of the stacking fusion model is further improved based on the
original GBDT and XGBoost; the R2 is as high as 0.996, and the RMSE and MAE are only
0.04 and 13%.

(5) This study confirms the effectiveness of MDI for selecting feature parameters and
performing predictions. The method can be used to research various types of performance
prediction and has certain generality. The improvement of the stacking fusion algorithm
for prediction accuracy proves its effectiveness and provides more paths for subsequent
prediction studies.

This study did not validate the accuracy of the engineering data for specific forecast
years, and this needs to be further developed. As the LTPP data are unique, project-level
forecasts for a particular highway project should be further investigated and validated.
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