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Abstract: Topological analyses of multi-airport regional air transport networks are the basis for the
sustainable development of multi-airport systems. In this study, we modeled the Yangtze River
Delta (YRD) region’s airport infrastructure as a network and presented a weighted approach by
which to analyze the network structure and robustness from the perspective of complex network
theory. The analysis of the Yangtze River Delta Airport Network (YRDAN) indicates that it is a
small-world network, and its cumulative degree has a power-law distribution, suggesting that it
has scale-free properties. As its weighted clustering coefficient was found to be much smaller than
the non-weighted counterpart, this demonstrates that most of the network traffic is focused on a
hub-and-spoke pattern. Furthermore, the over-centrality of the YRDAN suggests weak accessibility
of small cities and high dependence of air transport on the hub-and-spoke pattern. The assessment
of the robustness of the YRDAN in the face of intentional attacks found that domestic networks are
more robust than foreign aviation networks. However, the isolation of a small fraction of selected
nodes can cause serious problems in the functioning of the YRDAN.

Keywords: complex network; air network; topology; robustness; multi-airport region

1. Introduction

With the rapid development of the civil aviation transport industry in China, the air
transport network (ATN) has become one of the most crucial infrastructure networks for
the development of the economy, as it strongly promotes the spatial movement of people,
goods, capital, and information. According to the International Air Transport Association
(IATA) [1], 1352 million passengers were carried by China’s air transport networks (CANs)
in 2019, which was an increase of 6.9% from 2018. As one of the most economically dynamic
and strategic regions of China, the YRD region witnessed powerful growth and had the
largest proportion of total CANs. The passengers carried by the YRDAN in 2019 amounted
to 266 million, and the growth rate was 16.9% from 2018. The total number of airports in the
YRD region is 23, and the airport density has reached 0.8 per square kilometer. IATA also
reviewed the fast-growing air transportation market in terms of air passenger volume and
reported that the demand grew faster than capacity [2]; this demonstrates the congested
network structure of the YRDAN and great heterogeneities in the capacity and strength
of connections.

With the development of complex network theory in recent years, there has been an
increased interest in the study of ATNs [3–5]. The study of complex networks began by
defining new concepts and measures, using them to describe the topology of real networks.
The result was the identification of principles and statistical properties of real networks. As
the study of complex networks has intensified, the main interest of research has gradually
focused on dynamic behavior. Topological analysis, based on complex networks, helps
further our understanding of network characteristics and the properties of their dynamic
behaviors. This may help in the study of phenomena, such as robustness, resilience, or
propagation processes. In order to analyze the topology and robustness of an ATNs, it is
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desirable to abstract and integrate its various complex and heterogeneous elements in order
to assess its uncertainty and other properties of interest without much detail. Complex
network theory provides a theoretical framework that may help the development of appro-
priate models and analyses of the topology and robustness of ATNs. Based on complex
network theory, ATNs can be modeled as a graphical (network) model, with airports as
nodes and flights as links, and the topology and robustness of ATNs can be analyzed by
proposing a theoretical model. There have been some studies analyzing ATNs at the global,
regional, and national levels [6–8], however, this is less in terms of exploration of ATNs
from a multi-airport-region perspective. Topology and robustness analyses of a multi-
airport region can provide policymakers and related managements with network route
planning recommendations from a coordinated development perspective, thereby reducing
the impact of disruptions for intentional or unintentional reasons, improving the transport
efficiency of air transport, and ensuring that multi-airport regional air transport has good
communication, i.e., maximizing the robustness of their networks at a reasonable cost.

The main contributions of this study are presented in two aspects. First, a weighted
network statistical analysis was applied to the multi-airport region to characterize the
evolving topological structure of the YRDAN over time. Second, an efficiency index
weighted by the number of available seats between airports, which has not been widely
used in air transportation networks before, was applied to the robustness study of the
multi-airport region to expand the robustness study of the related aspects of aviation
networks. To this end, the rest of the paper is organized as follows. The literature review
regarding the application of complex network theory in the study of air transport networks
is presented in the second section. Our methodology and data are discussed in the third
section. The results of the complex network and robustness analysis of the YRDAN are
discussed and analyzed in the fourth section, followed by an overview of our main findings
and the implications of this study in the fifth section.

2. Literature Review

The study of complex networks began with the definition of new concepts and mea-
sures by which to characterize the topology of real networks. The result was the identifica-
tion of the principles and statistical properties of real networks [9–11]. There have been a
number of applications of complex networks theory in transportation networks, such as
roads [12], railways [13], subways [14], and maritime transport [15]. Until recently, it has
also been widely used in the field of air transport networks [16–18].

Based on the theory of complex networks, the ATN is modeled as a network graph
consisting of airports as nodes and routes between airports as edges. It is obvious that ATNs
are neither simply random nor regular. Thus, a complex network analysis of their structures
begins with the identification of topological features and patterns. Interestingly, many
airport networks present one of two different topological properties: a scale-free property
(SF) and a small-world property (SW) [11,19]. These properties have been examined in
several studies of ATNs. However, in addition to the abovementioned cross-sectional
analysis of ATNs, some other studies have also focused on the historical evolution of ATNs.
For instance, the work in [20] discussed the evolution of the Brazilian airport network
in the period 1995–2006 and discovered network shrinkages even though the number of
passengers and cargo traffic had increased. The experimental analysis of international
ATNs conducted by [21], using data from 2002 to 2013, demonstrated that the properties of
SF and SW are stable. The work in [22] studied the evolution of Cuba’s ATN after a loss of
ties with the United States.

However, with the continued expansion of the aviation scale, a dynamic view of its
spatial structure needs to be further explored [23]. In a dynamic environment, airports
and routes can be temporarily closed for a variety of reasons, such as environmental in-
cidents, security alerts, and strikes or terrorist attacks, resulting in high costs for airlines
and countries. For example, the strike by Spanish air traffic controllers caused losses of
approximately USD 134 million in 2010 [24]. EasyJet lost up to GBP 31 million due to snow
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and strikes in the same year [25]. Flight delays and cancellations in 2012 cost China more
than CNY 43.9 billion [26]. Robustness analyses of air transport can estimate the impact
of errors (random causes) or attacks (intentional causes) on the route network and can
assess the resilience of the network and the tolerance to congestion caused by attacks and
malfunctions. Although there is no general definition of robustness in the transportation
field, robustness mainly refers to the ability of a system to maintain its performance in
the face of disruptions [27]. Therefore, studying the robustness of ATNs is particularly
important for improvements in the operational efficiency of route networks [28–30]. Based
on conventional topological analyses, several robustness studies have investigated some of
the topological metrics that are affected when a portion of the nodes are isolated, such as the
clustering coefficient, the average shortest path length, the size of the giant component, and
global efficiency [31–33]. These studies evaluate the robustness of the ATN by repeatedly
calculating the metrics in different destructive scenarios and assessing the trend of the met-
rics based on their variability. In addition to conventional topological analyses, robustness
analyses based on a multilayer/multilevel analysis have become prevalent [34,35]. These
studies decompose the nodes of the ATN and identify the existence of a set of critical nodes
in the network. By simulating attacks on the network to detect these nodes, it has been
found that the network performance deteriorates dramatically when the critical nodes of
the network are isolated [36]. In addition, for random closures and intentional attacks,
it has been found that aviation networks have more tolerance for random closures than
intentional attacks on a set of critical nodes with a high degree of centrality. Thus, tolerance
is defined as the capacity of the system to maintain its connectivity features following
random or intentional disruptions to nodes or links [8,37]. These findings highlight the
need for regional coordination to mitigate various risks.

Based on the review of the above literature, this paper is led to conclude three main
points. First, the analysis of complex network structures has been widely studied in the air
transportation field. However, these studies have primarily focused on the global, regional,
and national levels; the multi-airport region seems to be under-researched. Second, most
studies examined only the static state of the network for one year based on the perspective
of complex network theory, with less research on the historical evolutionary state of the
network. Third, studies have investigated the robustness of air transport networks facing
either closures or target attacks, and efficiency has evolved into a prominent method of
assessing network robustness. However, weighted efficiency has not been widely used
in the study of air transport networks [33], and weighted networks exhibit considerable
heterogeneity in terms of the capacity and strength of connections relative to unweighted
networks [23]. Therefore, an analysis using weighted efficiency can help reveal the true
nature of the network structure. In this context, this paper examines the evolutionary
structure of the YRDAN from 2016 to 2020 based on a weighted complex network analysis,
further exploring the robustness of the Yangtze River Delta region using weighted efficiency
indicators with a view to contributing to relevant studies on air transportation networks
and to provide useful information for network development and planning in other multi-
airport regions. In the next section, the methodology and data used in this study are
described in detail.

3. Methodology
3.1. YRDAN Representation

As one of the most economically dynamic and strategic regions of China, the Yangtze
River Delta region has a total of 16 airports, including 2 in Shanghai [38]. The airport density
of airports within the YRD region has reached 0.8 airports per square kilometer, which
means that the air traffic is highly concentrated. In 2019, the airports in the YRD region are
connected to 291 airports, allowing air passenger traffic of 266 million passengers, with the
total scale of passenger transportation accounting for about 19.67% of the total passenger
traffic of domestic airports. In general, airports in multi-airport regions are classified
based on a certain distance from the hub [39] or on a legally defined locale in which the
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airports are situated. According to [40], here we similarly define airports within a two-hour
public transport time as airports within the same MAR. Since Shanghai, Hangzhou, and
Nanjing are important hub airports in the Yangtze River Delta region, and taking Shanghai,
Hangzhou, and Nanjing as the center, the other airports belonging to the YRD region in this
study are Hangzhou International Airport (HGH), Nanjing International Airport (NKG),
Ningbo International Airport (NGB), Shuofang International Airport (WUX), Hefei Xinqiao
Airport (HFE), Nantong Xingdong Airport (NTG), Yancheng Nanyang Airport (YNZ),
Yiwu Airport (YIW), Changzhou Airport (CZX), Shanghai Pudong Airport (PVG), and
Shanghai Hongqiao Airport (SHA). It is worth noting, however, that when a city is served
by more than one airport, such as Shanghai, all airports in the same city are abstracted as
one node and traffic is combined for purposes of comparison.

For the purpose of developing the YRDAN, edges were created between each airport
pair if any passenger flight connected these two airports. This study was conducted by
modeling, using all the route data from 2016 to 2020 for the YRD multi-airport region.
The data used in the study are from the Official Airline Guide (OAG). Therefore, we built
the YRDAN model as a connected network G = (N, E), where N = {1, 2, 3, · · · n}; N is
the number of nodes where airports are abstracted; and E is the number of edges where
the flights between airport pairs

(
Ni, Nj

)
are abstracted. In complex networks, weighted

networks incorporating the continuous nature of the network can reflect the connection
strength or link weight [8,41,42], which enables a better understanding of the statistical
features of real-world systems [43]. To accommodate the traffic information in the network
in this study, the YRDAN was modeled as a weighted undirected network, where the
weights are represented by the total number of available seats from airport Ni to airport
Nj and defined by the weight matrix AW , that is, Wij represents the weight between the
airport pair, which is as follows in Equation (1):

Aw =
[
Wij

]
n×n (1)

3.2. Network Structure Measures

Each type of network shows specific topological features characterizing the con-
nectivity, interactions, and dynamic processes within the network [43]. Therefore, the
measurement of the most relevant topological features of complex networks facilitates the
identification and description of the complex statistical characteristics of the networks [44].
In this study, several metrics were used to measure the topology of the YRDAN, including
the degree distribution, average path length, clustering coefficient, and centrality metrics.

3.2.1. Node Degree and Distribution

In network theory, N is the total number of nodes that represent the airports of the
YRDAN. The number of total connections between node Ni and other nodes in the network
are defined as the node degree Ki , which is as follows in Equation (2):

Ki = ∑
j∈N

aij (2)

where aij depends on the presence of flights between airport pairs. If there is a flight
between airports, aij = 1; otherwise, aij = 0. The degree distribution, as an important
characteristic of networks, is considered a descriptive statistic of the degree of network
nodes. If a network has N nodes and NK of them have degree K, the degree distribution
P(K) is defined as a fraction of these K-degree nodes. The P(K) is shown as follows in
Equation (3):

P(K) = N(K)/N (3)
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In the weighted network, the degree of the node Ni is replaced by the strength of the
node Si, which indicates the number of flows (operations) linked with the node, as shown
as follows in Equation (4):

Si = ∑
j∈N

aijWij (4)

3.2.2. Average Shortest Path Length

The average shortest path length L is a significant indicator of the performance in the
transportation and communication of networks and is defined as the average number of
edges along the shortest paths for all possible node pairs in the network [16]. Generally,
the smaller the L, the more compact and reachable the network. The L is shown as follows
in Equation (5), where dij is the number of edges for the shortest path from the node Ni
to Nj.

L =
2

N(N − 1) ∑
j∈N,i 6=j

dij (5)

3.2.3. Clustering Coefficient

The clustering coefficient Ci is defined as the probability that two nodes are connected
to each other given that both are connected to node Ni, which represents the network’s
transitivity, written as

Ci =
2Mi

ki(ki − 1)
(6)

where Mi indicates the actual number of edges between the neighbors of node Ni. The
average clustering coefficient C is the mean value of Ci of all N nodes in the network,
shown as

C =
1
N

N

∑
i=1

Ci (7)

However, to consider the reality of the network, the weighted clustering coefficient
Cw

i was proposed to measure local cohesiveness by considering the interaction strength
that exists on the local triplet [45]; it is written as follows in Equation (8). Similarly, the
weighted clustering coefficient of the network is given by the average of all the Cw

i .

Cw
i =

1
Si(ki − 1) ∑

j,l

wij + wil

2
aijajlali (8)

3.2.4. Centrality

Centrality metrics are often used to measure the relative importance of network nodes;
they include degree centrality, closeness centrality, and betweenness centrality [4]. Degree
centrality CD(i) is the ability of node Ni in the network to directly establish connections
with other nodes, which can reflect the importance of node Ni in the network, shown as

CD(i) = ki/(N − 1) (9)

For the whole network:

CD =
∑i(CDmax − CD(i))

N − 2
(10)

Closeness centrality Cc(i) is measured by the shortest path between node Ni and other
nodes in the network, which reflects its accessibility in a given network, written as

Cc(i) = (N − 1)/ ∑n
j=1,i 6=j dij (11)
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For the whole network:

Cc =
∑i(Ccmax − Cc(i))
(N − 1)(N − 2)

(2N − 3) (12)

Betweenness centrality CB(i) is used to measure the extent to which a particular node
lies between other nodes in a network, which reflects the control role of the node in the
network over the dissemination of information to other nodes, and is shown as

CB(i) =
2 ∑j 6=i 6=l Njl(i)/Njl

(n− 1)(n− 2)
(13)

where Njl is the number of shortest paths from node l to node j, and Njl(i) is the number
of those paths that pass through node i. For the whole network:

CB =
∑i(CBmax − CB(i))

N − 1
(14)

3.3. Robustness Assessment

In recent years, the study of ATN robustness has attracted the attention of some
scholars. Obviously, the use of different topological metrics will lead to the evaluation
of network robustness in different ways. In previous studies, the metrics commonly
used to evaluate robustness include the size of the giant component [5,46], the clustering
coefficient [34,47], the average shortest path length [4,16], and efficiency [33,48]. The size
of the giant component is a representation of the proportion of nodes contained in the
largest subset of the network, which is very intuitive and easy to calculate, but it also has
the obvious disadvantage of not taking into account the distance between node pairs. The
average shortest path length is generally appropriate for applications in well-connected
networks. In order to overcome this, the authors of [49] proposed a new metric called
efficiency E, written as

E =
1

N(N − 1) ∑
i 6=j∈N

eij =
1

N(N − 1) ∑
i 6=j∈N

1
dij

(15)

However, one important feature is ignored when employing efficiency to measure
robustness: link weight. It is obvious that the weight between different airport pairs differs
with respect to the frequency of flights or the number of seats offered. Therefore, in this
paper, weighted efficiency WE is used as a metric of network performance after an attack.
By using the number of available seats between airport pairs as weights, it is also easy to
find that the weight in the YRDAN is the similarity weight, for which the higher the number
of available seats between airport pairs, the stronger the connection between airports. This
also means that the higher the weight, the more efficient the airports are to each other.
Additionally, efficiency is inversely proportional to distance, which means that for the
similarity weights, the weights are inversely proportional to distance. If node Nj and node

Ni are directly connected, then dw
ij = 1/wij ; otherwise, dw

ij =
wik+wkj
wikwkj

, where node (i, j) are
connected through node Nk. Thus, combining the weights, the efficiency is shown as

WE =
1

N(N − 1) ∑
i 6=j∈N′

eij =
1

N(N − 1) ∑
i 6=j∈N′

1

∑l∈Lij
1

wl
(16)

4. Results
4.1. Analysis of Structure

To explore and analyze the route network development in the YRD multi-airport
region from 2016 to 2020, we established a route network map in the region with airports
as nodes and flights between airports as sides using the collected data of all flights from
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the airports in the nine cities in the region during the period using networks, shown in
Figures 1 and 2. In addition, considering the authenticity of the route network, the total
number of seats in the airport pair was used as a weight.
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In terms of the domestic pattern of regional route development for several airports
in the YRD region, air passenger traffic was most closely linked to East, South, and North
China during this period. Among the YRD region, Shanghai, Nanjing, and Hangzhou were
the top cities in terms of frequency and passenger traffic; domestic routes were seen to be
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gradually forming a development pattern with Shanghai, Nanjing, and Hangzhou as the
center and radiating to other cities.

In terms of the international scale, the international cities of the YRD region are mainly
located in Asia, with a few routes connecting Europe, North America, Africa, and Oceania.
The overall trend of the international routes in the period from 2016 to 2020 shows a rise.
The number of routes between the airports within the YRD region and Europe, North
America, and Oceania fluctuates very slightly. The main cause of the network fluctuations
is the Asian routes, due to the development of small and medium-sized regional airports,
such as Changzhou, Nantong, Yancheng, and Yiwu. In addition, the international airline
city of the YRD region is mainly Shanghai, which is the only one that has opened African
routes. With the development of Hangzhou and Nanjing airports, these airports established
several US and Canadian routes one after another in 2016. Apart from Shanghai, the only
airports operating a small number of European routes are Hefei, Hangzhou, and Nanjing
airports. It is evident that although international air transport is gradually shifting to cities
such as Nanjing and Hangzhou, the development of the international network pattern in
the Yangtze River Delta region is extremely uneven.

4.2. Analysis of Topology

This paper begins with an analysis of the network structure of the YRNDAN for the
average degree and degree distribution in 2020, where the measures of the average degree
and degree distribution can provide an overall structural view for the analysis of complex
networks [6]. The degree of each airport in the YRD region declines quickly, with the
average degree of the YRDAN being 98 and its maximum being 263. The most important
Shanghai airport is connected to a majority (about 88%) of all the nodes, while the other
airports are connected to 30% of the nodes at most. As can be seen in Figure 3, the cumu-
lative degree distribution follows a power-law distribution: P(> k) ∼ k−0.97(R2 = 0.95

)
,

indicating that there are several busy airports in the YRDAN that operate a large number
of routes. Therefore, the YRDAN is consistent with the heterogeneity distribution, and it
shows scale-free properties within a moderate range of degree values.

Considering the overall picture of network complexity, another important network
structure measure is the node’s strengths s(i), which describes the total weight of its
connections. In order to capitalize on the relationship between the strength and degree of
a node, we examined the dependence of s(k) on k. It was found that the s(k) of vertices
with degree k increases as s(k) ∼ k2.05(R2 = 0.95

)
, shown in Figure 4. It can be seen that

well-connected airports can handle more traffic, as expected. The characteristic of the
YRDAN is similar to that of the Australian and Indian airport networks [6,16].
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The average shortest path length is always used to measure the accessibility of travel-
ing in a network. Figure 5 presents the average shortest path length of the YRDAN and
a comparable random network of the same size. In the case of the YRDAN, the average
shortest path length for these five years is roughly unchanged: all are between 2.1 and 2.2.
From a transportation perspective, this implies that a passenger will need one flight change
or stopover to reach any city pairs. However, the same-sized random network is much
larger than the YRDAN, indicating better air transport convenience in the YRD region.

The clustering coefficient Ci is used to represent the local cohesion to a node. A large-
value clustering coefficient indicates a more compact connection system between a node
and its neighbors. The average clustering coefficient C measures the overall density of the
interconnected nodes in the network to reflect the convenience of network transportation.
As shown in Figure 6, the clustering coefficient is continuously significantly higher than
that of a comparable random network. This suggests that the YRDAN exhibits a higher
degree of concentration than a comparable random network.

From this analysis, it can be inferred that the YRDAN has evolved into having a
small-world topology as, according to [11], if L increases almost parallel to log(n), where
n is the number of nodes, the corresponding network can be defined as a small-world
network. For the YRDAN, L = 2.13 and log(n) = 2.47 for n = 300. The average clustering
coefficient is C = 0.21. All of these network features of the YRDAN confirm that it has
similar properties to those of a small-world network during the study period.
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Figure 6. Average clustering coefficient of the YRDAN compared to those of the random network
(RN) of the same size, 2016–2020.

Since the clustering coefficient does not take into account the interaction strength
between airports in the weighted network, in order to solve this problem, we introduced
the weighted clustering coefficient Cw

i to combine the weighted information of the network.
Let the Cw

i be calculated based on the volumes of traffic operating on the local triplets,
which consider the reality of the clustered structure in the network. The average cluster
coefficient Cw of the YRDAN is 0.001, which is much smaller compared to its non-weighted
coefficient of C = 0.21 . This shows that the topological clustering is generated by links
with low weights, and C has little effect on the organization of the network because the
largest interactions of traffic frequency operate on links not belonging to the interconnected
triplets. This observation was expected to confirm that a large portion of network traffic is
focused on the hub-and-spoke model.

Table 1 compares the topological properties of the YRDAN to those of other similar
types of networks. It can be easily observed that the average shortest path of the US
network is smaller at 1.93, and the average clustering coefficient is larger at 0.78. The
average clustering coefficients of the Indian network, the Australian network, and the
Chinese network are also much larger than those of the YRDAN. This means that air
transport in the YRDAN is still in an underdeveloped stage, and there is still much room
for improving the efficiency of the connection structure of its air transport network.

Table 1. Characteristics of air transport networks of the YRDAN and other countries/regions.

Network Reference N E L C P (>k)

World [3] 3663 27,051 4.4 0.62 Power law
Southeast Asia [50] 237 602 3.12 0.21 Power law

US [50] 272 6566 1.84–1.93 0.73–0.78 Power law
Italy [17] 42 310 1.98–2.14 0.07–0.1 Pareto
India [16] 79 228 2.26 0.66 Power law

Australia [6] 131 596 2.9 0.5 Power law
China [4] 144 1018 2.23 0.69 Exponential

YRD region 300 973 2.2 0.21 Power law

Table 2 lists the top 10 cities according to degree centrality, closeness centrality, and
betweenness centrality in 2020. The ranks for degree and betweenness are generally
consistent. As expected, Shanghai is ranked first for degree, closeness, and betweenness,
and Hangzhou for degree and betweenness, followed by Shanghai. Nanjing is ranked
third for degree and betweenness, and second for closeness. This shows that the YRDAN
is extremely dependent on the Shanghai, Hangzhou, and Nanjing airports. However, the
value of betweenness in Shanghai is 0.64, which is much larger than that of Hangzhou and
Nanjing. This means that Shanghai has a great influence on transfers within the YRDAN,
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especially regarding the international network. It is noted that some cities in the YRD
region, such as Wuxi, Nantong, Changzhou, and Yiwu, appear in the top 10 cities for degree
and betweenness but not for closeness, which shows that these airports in the YRDAN are
not well-connected to other airports, and overall accessibility is poor.

Table 2. Cities rank by degree centrality, closeness centrality, and betweenness centrality.

Rank Degree centrality Closeness Centrality Betweenness Centrality

1 Shanghai Shanghai Shanghai
2 Hangzhou Nanjing Hangzhou
3 Nanjing Ningbo Nanjing
4 Ningbo Hefei Ningbo
5 Hefei Hangzhou Hefei
6 Wuxi Yancheng Wuxi
7 Nantong Guangzhou Nantong
8 Yancheng Changchun Yancheng
9 Changzhou Chongqing Changzhou
10 Yiwu Chengdu Yiwu

From [51], the overall centrality of a star-shaped network is 100%. This means that
the closer the overall centrality is to 1, the more concentrated the network tends to be. For
the YRDAN, the overall degree of centrality CD = 0.86; the overall closeness centrality
Cc = 0.77; and the overall betweenness centrality CB = 0.64. It can be easily observed
that the values of both degree centrality and closeness centrality are close to 1, indicating
that the YRDAN has a high level of centralization and is at high risk of congestion and
attack [52]. Therefore, the balance of the YRDAN needs to be further enhanced to promote
its sustainable development.

Figure 7 presents the centrality of the YRDAN and a comparable random network of
the same size. In the case of the YRDAN, the centrality values of the nodes fluctuate largely.
Conversely, the centrality values of the nodes fluctuate essentially on a horizontal line in
random networks. The comparison shows that centrality distribution in the YRDAN is
consistent with the SF network characteristics.
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4.3. Analysis of Robustness

The air transportation process may be subject to varying degrees of disruption, such
as inclement weather, traffic control, and mechanical failure [53]. It is assumed here that all
airports have the same probability of closure [34]. Therefore, to estimate the robustness of
random closure, we selected one node at a time as a failed node in the network and its edges
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were removed in order to calculate the weighted efficiency of the remaining network. Such
a random selection is not related to the topological characteristics or any other attributes of
a node.

On the other hand, before the robustness evaluation of an intentional attack on the
YRDAN, we identified critical airports in a weighted YRDAN based on the value of degree
and closeness. Then, the most important nodes in the network were eliminated, which also
led to the failure of the connected edges. Next, the most important nodes in the remaining
network were attacked, and the process was repeated until the network was down [33].

Therefore, YRDAN robustness against random closures and attacks can be evaluated
by the change in efficiency WE when airports are removed. The robustness of a weighted
YRDAN is defined as

Rp =
WEGp

WEG
(17)

where WEGp is the weighted efficiency of the remaining YRDAN when airport p and all
the links connected to it are removed from the original network G. The robustness of the
YRDAN against random closures and attacks was assessed and is shown in Figure 8.
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It can be clearly seen that the robustness values of the YRDAN against random closures
and attacks are completely different. Robustness against random closures typically declines
in a linear fashion with the proportion of closed airports, while robustness against attacks
decreases dramatically when a small proportion of critical airports are attacked. This
behavior can be explained by the characteristics of the YRDAN. The topology analysis
showed that the YRDAN is an SF network. This is preceded by the means that only a few of
these airports have a large number of connections to other airports, while most of them have
only a few connections. Hence, the YRDAN has high robustness to random shutdowns
and low robustness to attacks, since attacks always target airports with a large number
of connections. This shows that the isolation of a small fraction of the selected nodes can
cause serious problems to the functioning of the YRDAN, and the overall operation of the
YRDAN is extremely dependent on a few core airports.

Furthermore, Figure 8 also shows that the impact of an attack on an international
network can be much more significant than the impact of a domestic attack. In the YRDAN,
the weighted efficiency values of domestic and international network airports are 0.73
and 0.89, respectively, while simultaneous attacks on domestic and international network
airports would result in a decrease in the weighted efficiency values of the network to
80.33% and 53.34%, respectively. Additionally, after three attacks, the weighted efficiency
of the domestic network was shown to be 39.41%, and for the international network, it
was 22.02%. Therefore, the overall robustness of the YRDAN is poor, while the domestic
robustness is higher than that of the international network. It can be seen that the YRDAN
is a hub-and-spoke network, and its operations rely on the core airports of Shanghai,
Hangzhou, and Nanjing. Compared to the domestic network, Shanghai has an absolute



Sustainability 2022, 14, 6832 13 of 15

control role in the international network. Thus, the overall operation of the YRDAN was
disrupted when the key node Shanghai was attacked, which means that most of the airports
connected to it in the international network were also isolated.

5. Conclusions and Implications
5.1. Conclusions

In this paper, the evolving YRDAN was examined, and both topology and robustness
were analyzed from the perspective of complex network theory. The YRDAN was con-
structed by associating one node with each airport and linking the different airports using
real air traffic data from 2016 to 2020. Additionally, weighted metrics that are quantified by
the number of seats offered between airports have also been proposed in this paper. The
observations of the topology and robustness of the YRDAN, which may be of practical
relevance for policymakers and air service providers, are summarized below.

The topological properties of the YRDAN have exhibited relative stability over the
past five years and proved that it has SW characteristics. Moreover, the YRDAN follows a
power-law degree distribution, which suggests that it has SF properties.

Compared with random networks, the YRDAN was found to have a larger clustering
coefficient and a shorter average shortest path length. However, the YRDAN is at a
disadvantage to other similar types of networks, which implies that it remains at a less-
developed stage. In addition, the weighted clustering coefficient was found to be much
smaller than its non-weighted coefficient, confirming that a large portion of the network
traffic is focused on the hub-and-spoke model [6].

The centrality analysis revealed Shanghai’s prominent role as a hub airport and the
over-centrality of the YRDAN. Additionally, some airports in the YRDAN are not well-
connected to other airports, which indicates that partial accessibility is poor. While smaller
airports are being integrated into the YRD regional network, connections between these
smaller airports and international cities remain virtually non-existent, which again indicates
that smaller cities still rely heavily on hub-and-spoke configurations to access the network.

The assessment of the robustness in the YRDAN found that the robustness of the
YRDAN to random closures is high, while that attack is low. The isolation of a small fraction
of selected nodes can cause serious problems to the functioning of the YRDAN, which can
be explained by the SF characteristics. In addition, the overall robustness of the YRDAN is
poor and domestic robustness is higher than the international robustness. It can be seen
that the development and operation of the YRD multi-airport region are uncoordinated
and extremely dependent on a few core airports, especially for international traffic.

5.2. Implications

In the context of the coordinated development of multi-airport regions in China, it
is particularly important to analyze and plan complex air transport networks in multi-
airport regions. Combining the above findings, the following suggestions are made for the
planning of the network of the YRD region in order to promote the sustainable development
of the YRD region. First, different airports in the region should be positioned differently;
the network should be continuously optimized on the basis of strengthening regional
coordination in order to reduce the homogeneity of the route network structure between
neighboring multi-airport regional airports. Second, to strengthen the robustness and
accessibility of the route network within the multi-airport region, more attention should be
paid to airports that have strong connections, such as Shanghai airport, Hangzhou airport,
and Nanjing airport, while continuously improving the connectivity of the regional route
network with important domestic and international hub nodes to ease the operational
pressure of these large airports in the region.

There are several potential directions for future research. First, more detailed data
can be extended to 20 years. The evolution characteristics of the route network structure
in the YRD multi-airport region can be analyzed in a more comprehensive and detailed
manner to provide suggestions for the development and planning of route networks in
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other multi-airport regions in China. Second, based on the study of the changes in the
robustness of the YRD multi-airport region, further studies can be conducted to consider
the issue of traffic redistribution, that is, how its passenger flows are transferred to other
complementary airports in the region when the airport is closed. Third, in the context
of the COVID-19 pandemic, it is worth further study on how to build a relatively robust
regional aviation network in the face of the re-emergence of the epidemic, which may cause
disruptions to local air passenger networks in several important hub airports within the
YRD multi-airport region.
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