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Abstract: Modelling land use dynamics is a critical scientific issue. Despite a diversity of models
coming from the fields of remote sensing, geography, and economics, including multicriteria decision
analysis and machine-learning models, taking into account the external driving factors of urbanization
is still a main challenge. This study aims at simulating various land use development scenarios with
global and local parameters. Thus, the developed approach is able to estimate and simulate the
dynamic evolution of land use classes, the evolution of urban attractivity, both of which depend on
several driving factors. The proposed scenarios incorporate anticipated global changes, such as an
increase in oil prices and a decrease in wealth, and local spatial changes such as the provision of
new rail lines and the development of new activity zones. The results of simulations, for the study
area covering a great part of the Île-de-France region, show for the year 2050 an 18% increase in
urban areas and a 25% decrease in bare soils, compared to the year 2018. Moreover, the increase of
global prices and the reduction of income levels would increase the attractivity of public transport
modes and drive urbanization around stations, reduce the accessible distances to public transport
systems by 8.5%, reduce the dependency on private vehicles, and increase the concentrated saturation
of urban development. These scenarios will serve as a basis for the deployment of nature-based
solutions and renewable energy production.

Keywords: land use dynamics; urban development; urban change scenarios; urban driving factors;
land use transitions

1. Introduction

Within the last 30 years, the models for the prediction of land use dynamics have
become a critical scientific issue with questions about their accuracy, structure, ability for
improvement by combining them with other models [1,2], and their ability to cover a wide
array of land use scenarios depending on several factors [1]. The complex interactions
of urban growth with its surrounding with respect to socio-economic and environmental
contexts represent an emerging issue to be evaluated and examined continuously. For
instance, deforestation and the loss of green lands in addition to the pollution problems and
non-controllable population growth is a dynamic problem whose study requires simulating
urban growth and anticipating the evolution of the corresponding human activities [3,4].
The importance of predicting land use changes could be perceived as the need to have
a vision for future land changes, mainly as a result of social and economic activities, in
order to plan accurately the provisions of urban and infrastructural services, to control the
extensive urbanization in a sustainable form, and to mitigate the negative risks resulting
from these changes [5].
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1.1. Review of Existing Models

Moreover, simulating the impacts of policies on spatial evolution can be helpful for
local decision-makers. For this purpose, different models were developed to represent
the future changes by employing the simulations of equation models [6]. Indeed, land
use evolution is mainly a spatial problem, requiring techniques able to cope with this
dimension, but depends also on non-spatial factors such as the evolution of technologies.
Some of the models focus mainly on the spatial dimension of the simulation (generally
with the formalism of Cellular Automata (CA)); others draw more attention to estimate
the transitions between land use classes, whatever their locations (generally with Markov
Chain Models (MCM). Most models couple these two approaches. For instance, operational
models such as “Slope, Land cover, Excluded regions, Urban land cover, Transportation,
and Hill shade model (SLEUTH)”, “Conversion of Land Use and its Effects (CLUE)”,
and the Cellular Automata Markov Chain Models (CA-MCM) prediction model, mostly
conducted in TerrSet software, couple and extend the CA and MCM paradigms. These
models were employed in different studies for China [7–9], Lebanon [10,11], Libya [12],
India [13], and Portugal [14]. It is worth noting that these models are only spatial and are
unable to include the socio-economic factors within the simulations process.

However, investigating and taking into account the projection of population growth
as well as the possible socio-economic, environmental, infrastructural, planning and strate-
gic scenarios, is considered a key factor for predicting the future land use and urban
dynamics [1,2,15]. These authors also indicated that the physical and soil aspects of the
study area in addition to the previous land use/land cover (LULC) distribution could also
affect the future dynamics. These limitations of the dynamics models were overpassed
in some studies by combining Multi-Criteria Analysis (MCA) techniques for additional
socio-economic, physical and infrastructural factors (generating suitability maps), with the
simulation processes. Examples of these studies, that combine the CA-based models as
SLEUTH with the multi-criteria decision techniques as the Analytical Hierarchy Process
(AHP), can be found in [16–20].

Moreover, some studies [21,22] employed the bottom-up technique of the Agent-Based
Models (ABM) in combination with the MCA methods and the CAMCM models to predict
future urban development. The ABM designed for the indicated studies take into consider-
ation the maximization of utility for three classes of agents: real estate developers, residents,
and the government. For each of these agents, the maximization of the profitability/utility
is specific. For instance, real estate developers seek to increase their investments’ profits
by looking for locations increasing the housing prices and decreasing costs in addition to
land price. The profitability is calculated with the help of rasterized data of land price,
construction costs, and housing prices at the pixel/cell level. Similarly, residents follow a
preference-driven agenda and look for balancing the housing prices with the sought-after
accessibilities to socio-economic activities, infrastructure, and other services in order to
maximize their utility of residence’s location. In contrast, the government and local au-
thority try to achieve sustainable development and preserve natural areas by restraining
constructions in different zones through policies. However, this type of model is mainly
based on the involvement of land use knowledge and experience [23] which could, to some
extent, be considered biased by personal subjectivity.

Similarly, other statistical models such as frequency ratio, logistic regression, and
weights of evidence models were also combined with the dynamics model to integrate
the aforementioned driving factors as in recent studies [20,24–27]. However, the Machine
Learning (ML) models combined with dynamic ones are generally preferred and found to
be more accurate than statistical methods [2].

In a further elaborated way, ML models can be used to guide, by calibration, the
transition rules and generate probability maps in the course of the simulations based on
socio-economic and environmental factors, strategic data, infrastructures, accessibility,
and topography [15]. The commonly used ML models are Artificial Neural Networks
(often Multi-Layer Perceptron), the K-nearest-neighbor, and the Decision Trees. Spa-
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tial growth models incorporating ML techniques were used in studies during the last
10 years [15,28–40]. Nonetheless, the ability to understand and interpret how and how
much these aforementioned factors could affect and induce the urban dynamics is weak
with these ML approaches. The literature pointed out the difficulty in understanding how
ML models work in systems in addition to understanding and changing their transition
rules [2] because of the limited human involvement. Similarly, the authors indicated that
some ML models may become unstable, over-fitted, and could generate biased results
because of variations in input data or because of correlated data.

1.2. Framework of the Study

Understanding the effects, as types and sizes, of the driving factors of land use
change represents an essential part in the case of examining scenarios. These scenarios
could be defined with respect to anticipated events or policies, and also with respect
to the evolution of socio-economic and environmental conditions. This research was
conducted in the framework of a research project [41] studying the possible benefits of
implementing solutions from the water–soil–energy nexus, i.e., the relationships between
the usage and management of water, energy production and consumption, and the soils,
both from the technical side and from the managerial one. Thus, the considered scenarios
must be sensitive to the significant changes in factors steering the land use dynamics.
Hence, the scenario-based simulations for urban dynamics necessitate understanding these
interactions because the changes in these factors would define the anticipated scenarios.

Apropos of the proposed scenarios, three hypotheses were incorporated in this study:
(1) the anticipation of global changes as an increase in oil prices and a wealth reduction;
(2) local spatial changes as the provision of new rail lines and the development of new urban
zone; and (3) assuming that new urban development will take place in proximity to existing
urban development (contiguity effect). The objective of this study is to develop a methodol-
ogy for the prediction of future urban dynamics, which could integrate driving factors, as
well as several anticipated scenarios, in a flexible and understandable manner. The key re-
quirements are the ability to define flexible scenarios and to examine the variations resulting
from the changes of specifications of these scenarios. This need is clearly depicted during
the phase of assessing the efficiency of socio-economic/infrastructural/environmental
strategies and their impacts on land use. The developed approach in this study aims mainly
to support the decision makers in the form of a guiding tool that deals, and in a separate
form, with: (i) the dynamic evolution/interaction between land use classes, (ii) the spatial
urban attractivity, and (iii) the mechanisms originating from spatial economics, along with
additional data on urban dynamics.

The study area covers the denser area of the Île-de-France region. It was selected as
the study area since it has witnessed significant internal and international migration move-
ments’ destination as it represents a major center for high-ranking educational institutions
and economic and employment opportunities, and because it provides better accessibility
to opportunities, urban infrastructure, and services [42]. The results of the simulations
under different scenarios are employed to assess the impacts of global prices and incomes
changes in addition to local infrastructural changes on the spatial accessibility and the
quality of the environment. The paper is organized as follows: the second section presents
the developed methodology and the materials used as data collection and techniques. The
third section highlights the obtained results which are discussed in more details in section
four. Section five summarizes the paper as novelty and methodology and proposes some
future research subjects related, as extension, to this research.

2. Materials and Methods

The study area covers a large surface of 9261 km2 of the Île-de-France region. As
the prospective work presented in this paper is the preliminary step of assessing several
water–soil–energy solutions, such as the development of green roofs and facades, fatal
heat recovery, or local management of rainwaters, the study area covers a large part of the
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Île-de-France region, for which open data are mostly available. The southeast part of the
region for which data is not available is outside the main agglomeration of Paris. The study
area is large enough to be considered a partly autonomous system for which variables can
be isolated. In more detail, the study area is used to evaluate and perceive the effects of
possible scenario changes at the global and local levels on the future land use dynamics.
The predictions will be made for the year 2050. Figure 1 presents the study area. The city of
Paris as well as the first ring appears to be quite dense, while there are many agricultural
and green areas in the remaining of the territory.
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Figure 1. The selected study area (satellite image from ESRI).

The developed methodology (illustrated in Figure 2) has to generate projected land
use maps under different scenarios as the final objective. These steps to reach this objective
could be divided into two parts: (i) the formalized approach to introduce scenarios, and
(ii) combining the spatial and quantitative projections. The key concepts of the method-
ology are represented by (a) the suitability maps that rank, spatially, the attractivity for
urban development, (b) the amount of future urban development as well as the transition
matrices between land classes, and lastly (c) the external factors that impact the spatial
distribution of urban development. In this framework, the spatial part was presented
by generating suitability maps for the potential future urban development. In the same
context, the quantitative form is depicted by the interactive changes of areas between land
use classes which are commonly known as the land use transition matrices.

Starting with the first process of producing suitability maps, several driving factors
were identified for significant effects of urban development by using correlation analysis.
The frequency ratios of urban development within the classes (natural break classes) of the
identified significant factors were calculated to show the interactive distribution of urban
areas relative to the changes in the values of these driving factors (as shown in Appendix A).
These distributions are assumed to be the same for future projections. Additionally, and
in order to integrate different socio-economic and spatial scenarios, the effect sizes on
the urban development were calculated according to the statistical variance analysis of
a multilinear regression model. On the other hand, the potential transitional interaction
between land use classes was calculated based on estimating the growth of areas for these
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classes and then calibrating, by iterations, the mean matrix of the previous transition
matrices. More details of these processes are indicated in the following subsections.
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2.1. Spatial Form of Potential Urban Change (2018–2050): Generating Suitability Maps

This section presents the two processes used to generate the suitability map for fu-
ture urban development until the horizon of the year 2050. The first process consists of
identifying the significant factors that could affect the dynamics of urban evolution and
presents how the corresponding data were collected. The second process presents a new
methodological approach for introducing different scenarios of urban dynamics.

2.1.1. Identification of Factors with Significant Effects on Urban Development

Different variables that could affect the evolution of urban dynamics, were identified
in previous literature studies [1,20] as geo-topographic, socioeconomic, infrastructural, and
environmental factors. With the availability of data, some of these factors were selected
for the study; however, additional factors were added. The selected factors were grouped
similarly to previous studies.

The geo-topographic factors encompass land elevations and the slopes:

• The terrain characteristics were computed with the help of the digital elevation model
(DEM) from the BDAlti database by IGN (2021) [43] by using the ArcMap 10.8 software.

The socioeconomic class includes population density, employment density, built-estate
values, and revenues/income levels:

• The population and employment densities for the year 2017 were collected from the
database of the population of the INSEE (2021) website [44].

• The average built estate values over the period 2016–2020 were calculated based on
the data obtained from the website cadredeville (2021) [45]. It should be noted here
that the non-available data of built estate values for the “Charmont” locality were
interpolated, based on the available data, by applying the inverse distance weighting
method in ArcMap 10.8.

• The income levels for the year 2018 were obtained from the website INSEE-FILOSOFI (2021) [46].

The infrastructural class includes the Euclidean distances from roads, highways, rails
network, and high-voltage electricity lines:
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• The vector data of road, highways, and rail networks, as well as the water streams and
rivers, and high-voltage lines were collected from OpenStreetMap [47].

The environmental class includes the distance from water streams and from green
non-urban areas including agriculture areas, forests, and wetlands:

• These indicators were computed from the land use data provided by UrbanAtlas (2021) [48].

The primary data collected and used for the land use dynamics were the land use
classification maps generated and provided by UrbanAtlas (2021) [48].

The available three land use maps for the years 2006, 2012, and 2018 were raster-
ized to raster datasets of 25-m pixel resolution, after unifying the land use class into six
general classes: (1) urban built-up areas, (2) green urban areas including public gardens,
parks, etc., (3) green non-urban areas which encompass cultivation zones, forests and
wetlands, (4) areas dedicated for land transport systems like roads, highways and rails
network, (5) bare soil lands, and (6) water streams, rivers, and lakes. The pixel resolution
of 25-m was selected in order to unify the pixel size for all the rasterized datasets since it
represents the minimum resolution among the available data and corresponds to that of
the DEM. The rasterized datasets are published and publicly available in the Mendeley
Data repository: https://data.mendeley.com/datasets/2mvpr7vdb3/2.

Figure 3 shows the maps’ presentation of these data. Some data are network-based,
and thus the structure of the maps is clearly polarized by either the roads, the train lines,
the electricity network, or the streams. Others show gradients from center to periphery.
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Figure 3. The used rasterized datasets: (a) Topographic slope; (b) elevations; (c) population density
(2017); (d) employment density (2017); (e) built-estate values; (f) revenues/income levels; (g) distance
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to high-voltage electricity lines; and (l) distance to green non-urban areas.

The incomes exhibit a different configuration, with higher prices in the west of the
region. In order to identify the significant driving factors for the urban development in
the study area, a correlation analysis of the evolution of urban areas with respect to each
factor was conducted. Therefore, different maps for these factors were produced and then
clustered by dividing these data into 10 classes by using the Jenks’ Break classification in
ArcMap 10.8 software. The share ratios of the urban (built-up) area in each of these classes,
relative to the total urban areas, were compared to those of non-urban areas. Appendix B,
Figures A1–A3 show approximately some perfect correlations for land slopes and distance
from water streams; consequently, these factors were not taken into account. The aforemen-
tioned comparative analysis shows the possible significant factors; nonetheless, additional
analysis is required to assess the effect sizes of these variables. Accordingly, the variance
statistical analysis (ANOVA) for a multilinear regression model of the primary significant
factors, was conducted in R software using 1,477,075 observations after aggregating the
pixels in patches of 10 by10. The results obtained from this test show (Table 1): (i) major
effect sizes of population density and distance to roads with 53% and 20%, respectively;
(ii) a size-effect of 6% for the employment density and distance to highways as well as
for the distance to rail lines; (iii) an effect size of 3% for land elevations, built-estate val-
ues and likewise for the distance to high-voltage electricity lines; and (iv) very negligible
effects for the income levels and for the distance to green non-urban areas. In conse-
quence, the latter factors were not taken into account in generating the suitability maps for
urban development.

The suitability maps were generated in ArcMap 10.8 software by summing the
weighted normalized frequency ratio rasters. In more details, the Jenks’ classes for each of
the final selected driving factors were converted by reclassification module to the corre-
sponding frequency ratios of urban development.

This process leads to the production of frequency ratio rasters for the driving factors.
After normalization, the final rasters were weighted according to the ANOVA size effects
prior to the sum of all pixel values. The summation map was also normalized and converted
to percentages. Suitability maps are presented and analyzed in the Results section (Figure 4).
They show the urban suitability map as percentages of potential urban attractivity.
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Table 1. Effects sizes of driving factors.

Factor Sum Square % Initial Effects Sizes
(%)(Based on ANOVA Test)

Distance to Green non-urban areas 140,094 0

Population Density 40,334,070 53

Employment Density 4,790,721 6

Median Revenues 214,723 0

Distance to high voltage
Electricity Lines 1,805,170 3

Distance to Highways 4,054,164 6

Distance to Rail lines 4,063,927 6

Distance to Roads 14,966,116 20

Built-estate Values 1,919,125 3

Elevations 2,269,003 3
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2.1.2. Scenarios for Urban Suitability

Three scenarios for future land use development, mainly the urban development, are
considered for the process of projecting the evolution.

The first scenario, which was presented previously in sub-Section 2.1.1, is the “business
as usual” one.
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It is parameterized by (i) the frequency ratios of urban development in different classes
of the significant driving factors and (ii) the size effects of these factors obtained from the
aforementioned variance analysis.

The second scenario simulates the effect of global changes. It takes into account an
elevation in the oil price, which is assumed to be concomitant to a decrease in global
wealth. In this context, the effect sizes for employment density, income levels, distance to
highways, and distance to rail lines are likely to increase and will be updated accordingly
in the parametrization.

Thus, the future urban development will likely be more concentrated around economic
activity zones that have higher accessibility, and also more concentrated around public
transport services, such as buses in highways and rail transport modes.

The objective of this procedure is not at the moment to quantify the exact rate of
changes in an ultimate manner, but rather to develop a method to introduce the scenarios.

Within the framework of this, 25% of the total effects will be assumed to be distributed
additionally for the increasing factors; consequently, in total the increasing factors, having
18% effect value in scenario 1, will have a size effect of 43% for the scenario 2.

It is assumed specifically that revenues will have a 6% for scenario 2 instead of 0 (for
scenario 1). The remaining additional percentage will be distributed proportionally to
other factors. Table 2 shows a comparison of initial (scenario 1) and modified effects size
(scenario 2).

Table 2. Effects sizes for scenarios 1 and 2.

Factor % Initial Effects Sizes (%)
(Based on ANOVA Test)

Modified Effects Sizes (%)
for Scenario 2

Population Density 53 37

Employment Density 6 13

Median Revenues 0 6

Distance to high voltage
Electricity Lines 3 2

Distance to Highways 6 12

Distance to Rail lines 6 12

Distance to Roads 20 14

Built-estate Values 3 2

Elevations 3 2

The process of producing the suitability maps for scenario 2 is similar to that of
scenario 1 but by using the modified effect values.

Additionally, the third scenario differs from the second one by considering some
changes at the local level, specifically the changes in the infrastructure and the planned
future urban areas.

In this scenario, the expansion of the Rails network after the year 2018 [49] and the de-
velopment of the EuropaCity project [50] were taken into consideration. The development
of the Grand Paris Express network is planned, but not fully financed yet.

This scenario supposes that the entire network is implemented. EuropaCity is a large
activity district that might bring new economic opportunities, but whose ecological impacts
are questioned. It is supposed to be implemented as initially planned. Thus, scenario 3
differs from scenario 2 by two kinds of local interventions: a new network, and a new
activity zone.

These scenarios are introduced in the prediction processes for generating new suitabil-
ity maps.
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2.2. Quantitative Urban Change (2018–2050)
2.2.1. Urban Growth

The rates of urban growth for the periods 2006–2012 and 2012–2018 were used and
compared to estimate, by projections, the possible urban growth rate between the years
2018 and 2050.

By examining the urban growth rates for the periods 2006–2012 and 2012–2018,
an increase/acceleration in urban growth rate by 0.06% was observed between these
two periods.

Based on this, an assumption of a possible increase by 0.06% every 6 years was consid-
ered. Similarly, a possible decrease of 0.013% and 0.012% every 6 years was considered by
assumption for bare soil and green non-urban areas, respectively. In a different way, the
actual annual growth rates of 0.025% and 0.14% for the period 2006–2018 were considered
for green urban areas and lands of road and rail transport infrastructure.

These latter two values were selected because the annual rate of growth for (i) the green
urban areas show positive and negative values for the periods 2006–2012 and 2012–2018,
and (ii) lands dedicated for roads and rail would lead to a projected growth rate value of
0% for the period 2024–2030 in case of using the same deceleration rate for 6 years period.

Based on these growth values, the projections for the year 2050 show (i) an increase in
the urban areas and the green urban areas as well as the areas of roads and rail lands by
18%, 1%, and 5% respectively; and (ii) a decrease in the areas of green non-urban and bare
soil lands by 4% and 25%, respectively, compared to the year 2018.

The water zones, as streams and rivers, were considered not altered (neither increase
nor decrease). These estimations are not the main subject of this study’s problem, which is
defined as the possibility of developing a new methodology for introducing factors-based
scenarios of land use projections.

These estimated values will be used for a matching distribution over the potential
transition matrix for the period extending between the years 2018 and 2050 as indicated in
the following section.

2.2.2. Land Use Transitions

The land use transition matrices for the periods 2006–2012, 2012–2018, and 2006–2018
were obtained from the land use maps [48] by using the Molusce extension of QGIS 2.18
software. An average matrix consisting of average values for the aforementioned matrices
was calculated to represent the actual land use transition matrix over these periods.

This matrix was used, in addition to the growth rates of all land use classes as afore-
mentioned in the previous section, to estimate the future 2018–2050 transition matrix.

The estimation of the new matrix was based on calibrating, by many iterations, the val-
ues for the actual matrix to reach matching compatibility with the future increase/decrease
rasters for all land use classes. Tables 3 and 4 depict the actual and estimated matrices.

Table 3. Actual LU transition matrix.

Urban
Areas Urban Green Areas Agriculture, Forests

and Wetlands
Roads and Rails
Dedicated Areas Bare Soil Water

Urban Areas 0.9923 0.001 0.0053 0.0006 0.0007 0.0001

Urban Green Areas 0.0121 0.9874 0 0.0002 0.0003 0

Agriculture, Forests
and Wetlands 0.0078 0.0001 0.9915 0.0003 0.0002 0.0001

Roads and Rails
dedicated areas 0.0037 0.0001 0.0002 0.9959 0.0001 0

Bare Soil 0.2854 0.016 0.0026 0.0048 0.6912 0

Water 0.0028 0 0 0 0 0.9972
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Table 4. Calibrated LU transition matrix.

Urban Areas Urban Green Areas Agriculture, Forests
and Wetlands

Roads and Rails
Dedicated Areas Bare Soil Water

Urban Areas 0.9921 0.0016 0.0041 0.0021 0.0001 0

Urban Green Areas 0.0121 0.9874 0 0.0002 0.0003 0

Agriculture, Forests
and Wetlands 0.0597 0.0001 0.9397 0.0004 0.0001 0

Roads and Rails
dedicated areas 0.0037 0.0001 0.0002 0.9959 0.0001 0

Bare Soil 0.2854 0.0160 0.0026 0.0048 0.6912 0

Water 0 0 0 0 0 1

2.3. Spatial Distribution of Urban Changes

The projected land use maps are generated by allocating the new urban areas, accord-
ing to the rate of urban changes, with respect to the spatial distribution of suitability maps.
In other words, the number of pixels corresponding to the new urban areas will be allocated
by converting land use classes, different than urban areas, into urban areas by allocating
the pixels with the highest suitability scores. Note that some of these pixels have the same
suitability score, and within these limits, an additional contiguity criterion was added.

The suitability maps, depending on identified driving factors, reflect the global/international,
and local trends in some of the driving factors as the changes in oil prices, the wealth, and
the infrastructural services. The approach could also be extended to design more sophisti-
cated scenarios, for instance with new technological advances or emerging employment
patterns. The contiguity effect is assured by the effects’ sizes of the driving factors where
the urban expansion could, for instance, take place in a gradient shape as distances from
the locations of attracting activities/infrastructure.

Further elaborated, the contiguity effect was taken into consideration in the form of
the shortest distance to urban areas. This concept of the shortest distance was divided into
two parts: (i) the actual Euclidean distance to the nearest urban areas, and (ii) the location
in a zone with more urban areas. The latter part could be depicted by the aggregation of
pixels in order to make a comparison of pixels with similar suitability scores and the same
distance to the nearest urban area. In this context, the aggregation starts with small to
larger pixel sizes to allow further comparison.

3. Results and Discussion
3.1. Suitability Maps

Figure 4 shows the urban suitability maps as well as the difference among the
proposed scenarios.

Visually, scenario 3 is very similar to scenario 2 and hence its suitability map was
omitted. However, the difference between the suitability map of scenario 2 and scenario 3
is included. The main difference between scenarios 2 and 1 is linked to the hypothesis
of an increase in oil prices and a decrease in wealth. As expected, the potential urban
development is more concentrated around the rail lines in scenario 2.

Moreover, the center of the agglomeration is becoming too expensive. The differences
observed between the suitability maps of scenarios 3 and 2 are local. The EuropaCity area
is indeed very attractive for new settlements.

However, the attractiveness of the new transit lines differs spatially, according to the
nature of the existing neighborhoods. The existing transit lines have a much more attractive
effect on urban developments than the new ones in this simulation.

3.2. Projection of Urban Development

Figures 5 and 6 show the actual and the projected land use maps, under scenarios 1
and 2, for the years 2018 and 2050, respectively.
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Figure 6b is quite similar to Figure 6a; however, the development zones are a bit more
concentrated around the transit lines.

3.3. Analysis

The simulated urban change maps, for the three scenarios, between the years 2018 and
2050 show different characteristics of geographic and spatial distribution. These different
characteristics will induce dissimilar interactions with other land use classes, infrastructures
and services.

More closely, the accessibility to transport services and to green non-urban areas such
as forests, cultivation lands, and wetlands will only be discussed in this study.

In terms of distance, the accessibility of new urban areas, to be developed between the
years 2018 and 2050, were compared among the three proposed scenarios. Figure 7 shows
greater accessibility for scenarios 2 and 3, depicted as short distances, to highways and rail
lines characterized by more public transportation than other roads. In contrast, the average
accessibility to roads for urban areas in scenario 1 is more than the ones of other scenarios.

Generally, the accessibility to all transport modes (private vehicles, rail and road public
transport modes) for scenarios 2 and 3 is greater than that of scenario 1.

In addition, the proximity to green non-urban areas, such as forests/agricultural
land/wetlands, is lower for scenarios 2 and 3 relative to that of scenario 1, as indicated in
Figure 8, because the urban areas are potentially supposed to take place in the surroundings
of and in areas well served by public transport systems with low accessibility to green
non-urban areas.
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The obtained results are, reasonably, in conformity with the selected and modified
criteria when setting up the scenarios.

These calculated characteristics could give indications for planners and decision
makers on the possible tendencies of future urban development under different conditions.

These tendencies are explained in terms of spatial distributions and their correspond-
ing demands for service infrastructures and updates/new urban master plans. Based on
these methodic approaches of predictions and by inserting the scenarios, the decision mak-
ers, planners, and urban developers would anticipate changes of their subjects of interest,
plan and steer future urban development accordingly, and mitigate the perceived risks.



Sustainability 2022, 14, 6806 16 of 24

The decentralization as the development of new urban centers and the redevelopment
shapes as steering the previous urban development toward vertical expansion was not
investigated in this study; however, this information, when available, could give more
indicative information and allows to update, more precisely, the used methodology. More
precisely, the contiguity to old urban areas was taken into consideration in this study;
however, this could represent a limitation since this concept did not take into consideration
the development of new urban areas as new centers and not as an expansion of old zones.

Also, the integration of urban masterplans and their regulations, such as restricted/reserved
areas, the maximum allowable heights of buildings and buildings capacity, in addition
to the anticipated urban and economic projects could be studied further in the context of
future research directions.

Moreover, a comparative analysis of the methodological approaches of the used
methodology in this research and the Cellular Automata models need to be assessed.
The authors consider the CA, coupled with Markov Chain transitions, a good model
to replicate the previous urban development based on contiguity effects. However, the
limitations could be perceived as the limits of the predefined urban contiguity matrix
which could not necessarily, for the majority of cases, predict the future urban development.
In that context, the authors propose the development of a more sophisticated model
consisting of a 3D adaptive matrix that could be used to predict future development and
the interactions with other land covers/land use classes. The adaptiveness of this matrix
should be represented by the continuous calibration according to the spatial context, socio-
economic environment, the infrastructural services, policies, and strategies and the new
shapes of urban development.

Indeed, the proposed contiguity criterion differs from that of the CA models, which
is based on spatial changes according to a predefined contiguity matrix. Relying on a
predefined contiguity matrix could not always represent the reality of urban expansion
which in most cases does not follow a spatial shape/matrix. In other words, the CA-
MCM models were not used here to simulate the future land use distribution since these
models rely only on replicating the previous trend/s of land use evolution within a spatial
contiguity framework.

One of the already mentioned limitations of CA-MCM models is the difficulty to incor-
porate external factors. Different socio-economic factors, geo-topographic aspects in addi-
tion to the existence of infrastructure could determine the evolution of population growth
in addition to locations of future urban development and also the conversions/interactions
between different land use classes.

ML models do have the possibility to take into account external factors. However,
the lack of interpretability of the models impairs the possibility to discuss any step of
the models with local decision makers, as well as with researchers from other disciplines,
notably hydrology and environmental sciences.

4. Conclusions

Predicting the evolution of land cover is generally a difficult task, because of the
sparsity of historical data and the lack of clear causal effects between factors and land
use dynamics.

Many statistical approaches focus on minimizing, in terms of error, the difference
between the predicted evolutions and the actual ones. This possible drawback of these
approaches is that they cannot easily incorporate external factors, and tend to predict, more
or less, always the same dynamics.

On the other hand, the economic approaches are purely based on mechanisms. How-
ever, they only represent stylized facts and cannot easily be used to investigate the evolution
of actual territories. Spatial econometrics approaches are, indeed, data-based models but
tend to be rather complex and require much data.

Lastly, the classical geographical spatial models such as CA or CAMCM cannot always
integrate the urban development driving factors.
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Thus, developing a methodology that could integrate the driving factors for urban
development, as well as the corresponding scenarios, in a flexible and understandable
manner is exacted. The comprehension and the flexibility of introducing scenarios is
an essential part of the process of predicting land use distributions since the need to
examine the variations accompanied as a result of changing specific and defined param-
eters is important, especially when linking the strategies for land use with other socio-
economic/infrastructural/environmental plans.

As the approach developed in this paper is mainly targeted at supporting decision-
making, it is presented as simply as possible and tries to separate clearly between the
spatial urban attractivity and the dynamic evolution/interaction between land use classes.
In addition, it is enriched with mechanisms originating from spatial economics, along with
more detailed data on urban dynamics.

Certainly, simulating further the global strategies of residents, property developers
and local policy-makers would enable to add a feedback loop in the dynamics of land use
evolution. Moreover, special attention must be paid to the heterogeneity of the spatial
dynamics: privileged directions for growth, expansion rates, etc. This will be the objective
of future research.
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Appendix A

Table A1. Frequency Ratio of Urban development in the driving factors.

Elevation Revenues Population Density Employment Density

Interval (m) FR Interval
(Euro/Year) FR Interval

(per/km2) FR Interval
(Working per/km2) FR

11–41 2.3484 13,810–18,510 2.7828 0–150 0.3540 81–179 0.4015

41–62 2.1552 18,510–21,346 2.2816 150–372 0.9392 179–485 1.2085

62–81 1.5096 21,346–23,652 1.2436 372–749 1.4059 485–966 1.9465

81–98 1.2575 23,652–25,531 0.7171 749–1298 2.0038 966–1455 2.3307

98–115 0.7463 25,531–27,150 0.7305 1298–1966 2.3810 1455–2059 2.7513

115–131 0.5187 27,150–28,720 0.8941 1966–2928 2.7422 2059–2797 2.9381

131–146 0.3776 28,720–30,600 0.7617 2928–4356 3.0938 2797–3943 3.3722

146–161 0.4139 30,600–33,307 1.0044 4356–6644 3.4046 3943–5579 3.4520

161–178 0.6616 33,307–37,439 0.9484 6644–10,479 3.5236 5579–9058 3.5146

178–231 0.2198 37,439–46,280 1.6258 10,479–21,465 3.1129 9058–17,556 3.0981

https://data.mendeley.com/datasets/2mvpr7vdb3/2
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Table A2. Frequency Ratio of Urban development in the driving factor.

Built-Estate Values
(Millions Euros/Hectares) Distance to Highways (m) Distance to Roads (m)

Interval FR Interval FR Interval FR

0.11 0.1187 0–1217 1.5930 0–21 1.8608

0.11–10.80 0.8907 1217–2583 1.3869 21–48 1.3145

10.80–26.84 2.6277 2583–4131 0.9892 48–78 0.5678

26.84–42.87 2.9493 4131–5892 0.5869 78–111 0.2456

42.87–77.62 3.3867 5892–7894 0.4400 111–148 0.1374

77.62–120.38 3.4375 7894–10,230 0.3776 148–190 0.0967

120.38–192.54 3.4839 10,230–13,013 0.4539 190–239 0.0842

192.54–296.77 2.3792 13,013–16,223 0.3624 239–301 0.0851

296.77–515.92 3.2531 16,223–19,817 0.3830 301–391 0.0724

515.92–681.62 3.2820 19,817–25,841 0.1466 391–774 0.0381

Table A3. Frequency Ratio of Urban development in the driving factor.

Distance to Rail Lines (m) Distance to High Voltage Electric Lines (m)

Interval FR Interval FR

0–821 1.9904 0–715 0.9702

821–1759 1.3216 715–1501 1.2039

1759–2802 0.7219 1501–2343 1.1307

2802–3974 0.5270 2343–3259 1.0446

3974–5314 0.3736 3259–4278 0.9853

5314–6828 0.2823 4278–5445 1.0297

6828–8582 0.2861 5445–6906 0.7051

8582–10,639 0.2559 6906–8781 0.3449

10,639–13,304 0.3276 8781–11,195 0.2193

13,304–19,171 0.1964 11,195–16,158 0.2547
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Figure A2. Correlative changes of urban and non-urban areas relatively to (a) Population density;
(b) Employment density; (c) Distance from streams; (d) distance to roads.
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