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Abstract: Globally, grasslands are affected by climate change and unsustainable management prac-
tices which usually leads to transitions from stable, degraded and then to desertification. Spatial
vegetation patch configurations are regarded as key indicators of such transitions. Understanding the
relationships between this grass-land vegetation and its environment is key to vegetation restoration
projects. Spatial vegetation patch patterns were chosen across different soil and topographic con-
ditions. Patch numbers, perimeter, and cover of each patch were measured along transects of each
patch type. Using field surveys and multivariate statistical analysis, we investigated the differences
in vegetation biomass and distribution and soil properties of four typical alpine plant species patches
along with a range of environmental and topographic conditions. It was found that topographic
conditions and soil properties, particularly soil moisture explained most of the variation in spa-
tial patch vegetation characteristics and thus control vegetation restoration in the alpine grassland.
The Kobresia humilis, Blysmus sinocompressus and Iris lactea patches under the drylands recorded small
patch sizes, large patch numbers, low connectivity, and large total perimeter per unit area. Generally,
species within the high moisture sites recorded small patch numbers, a large fraction of vegetation
cover and a small total perimeter per m2. Patches in limited soil moisture areas recorded patch
configurations indicating they are unstable and undergoing degradation and therefore need urgent
restoration attention to forestall their further degradation and its resultant effect of desertification.
These results would provide quantitative easy-to-use indicators for vegetation degradation and help
in vegetation restoration projects.

Keywords: environmental factors; grassland degradation; patch configurations; spatial; vegetation patch

1. Introduction

Alpine grasslands are exceedingly delicate ecosystems that are highly susceptible
to global climate change [1] as a result of weather conditions such as low temperature,
little rainfall, and low concentrations of oxygen at high elevations [2]. In addition, the Qing-
hai Tibetan Plateau (QTP) area has been battling substantial climate warming for over five
decades which has led to the depletion of the grassland vegetation [3]. Moreover, the alpine
grasslands of the QTP have been subjected to anthropogenic activities that led to their
serious degradation [4].
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Environmental factors such as soil parent material, topography, climate, vegetation,
and anthropogenic activities have a major impact on the spatial variability of soil properties
in an ecosystem [5]. Topographic-induced microclimate differences can lead to major
variations in vegetation characteristics and soil properties which could in turn have drastic
effects on the soil structure and functions of the ecosystem [6,7]. To enhance ecological
restoration efficiency, it is vital to have a full understanding of the relationships between the
typical plant species and the native environment and to recognize major actors that impact
their growth, adaptation, and distribution in the fragile alpine grassland ecosystem [8].
Temperature tends to decrease with increasing elevation while moisture increases with
increasing elevation because of high precipitation on high altitude.

Several studies on variations in vegetation cover [9], mechanisms and levels of plant
adaptation, soil properties, and restoration methods and their impacts have been under-
taken [10]. However, most studies concentrated on one component, such as soil quality,
slope aspect, or elevation, examining its consequence on vegetation to a large extent,
and few examined more factors and looked at the qualitative effect [11]. There has not been
any integrated studies on the effects of environmental factors on these typical plants of the
alpine meadow grassland ecosystems.

In addition, spatial vegetation patch patterns are indicators of ecosystem stability and
health, particularly in the context of climate change and monumental human modifica-
tions [12,13]. The stability of alpine grassland ecosystems has a significant role in global
carbon cycles and the maintenance of biodiversity [14,15]. Nonetheless, it is delicate and
susceptible to external influences, and patchiness is common in the alpine grassland [16,17].
Patchiness is regarded as a reflection of the state and functioning ability of ecosystems [12].
Patch sizes and types indicate major variations in soil attributes, plant biomass, and soil
moisture [18,19]. Unequal distribution of water and nutrients and the impact of both
livestock and wild animals are the major factors influencing the formation of vegetation
patches [20]. There are proven records that patch features such as number, size, area,
and connectivity could indicate the degree of stress from external disturbances and signify
the degradation stage of grasslands [21,22]. Larger inter-patch distances decrease the ability
to hold back propagules for regeneration, hence maximizing erosion hazard [23,24]. Stable
patches tend to have large size, small patch numbers, high connectivity, and small total
perimeter per unit area. Detecting signs of regime changes is important to foresee and take
measures to prevent the desertification of grasslands by developing recovery processes
that enhance their sustainability [25,26]. Thus, getting an insight into the features and
determining factors of patchiness is a vital step in unveiling the processes and mechanisms
of grassland deterioration [16]. However, scientific information concerning the spatial
distribution and the factors that drive vegetation patch patterns in the alpine grassland is
nonetheless rare.

In this study, field data were obtained regarding changes in the spatial vegetation
patch patterns of typical alpine grassland patches across slope aspects and climatic and soil
characteristics via field surveys to assess the differences in their attributes and configura-
tions. This study aimed to measure the patch numbers, cover, and perimeter per unit area of
four typical alpine species patches (Kobresia humilis, Elymus nutans, Blysmus sinocompressus,
and Iris lactea) to discover the relationship between patch attributes and selected environ-
mental variables. We hypothesized that vegetation patch attributes would vary across
the environmental gradients due to variations in soil moisture. Detrended correspon-
dence analysis (DCA) was also used to estimate spatial vegetation patch distribution.
The results would provide scientific information that is helpful for grassland restoration
projects in the alpine meadow grassland of the QTP. The study was guided by the following
research questions:

1. How soil moisture affects spatial vegetation patch patterns;
2. How topographic conditions affect spatial vegetation patch patterns.

By answering these questions, we aim to gain a better understanding of the effects of
soil moisture and topographic conditions on spatial vegetation patch patterns.
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2. Materials and Methods
2.1. Site Description

In this study, field experiments were conducted in the alpine grasslands of the Qilian
Mountains in Zhuaxixiulong Township in the Tianzhu Tibetan Autonomous County of
Gansu Province of China. The area has a typical alpine climate and is usually cold and wet
for most parts of the year. It also has weather conditions such as thin air with low oxygen
concentrations, high solar and high ultraviolet radiation. The area has an average annual
temperature of 0.13 ◦C, and average annual rainfall of 414.98 mm, which usually falls from
July to September. The growing season is about 120 days, ranging from May to September.
The soil is typical alpine chernozem. Typical alpine plant species include Kobresia humilis,
Elymus nutans, Koeleria pers, and Blysmus sinocompressus. Major grass species within the
selected patches with their important values are presented in Table 1. Important values of
vegetation species were calculated as follows; Important value (IV) = (Relative coverage +
relative height + relative density + relative weight)/4.

Table 1. Major grass species and their important values within the selected patches.

Patch Species Family Important Value

BS Blysmus sinocompressus Cyperaceae 1
Pedicularis kansuenis Scrophulariaceae 0.03

Potentilla anserina Rosaceae 0.13
Puccinia chinensis Pucciniaceae 0.19
Rheum pumilum Polygonaceae 0.06

ES Elymus nutans Poaceae 1
Medicago ruthenica Fabaceae 0.25

Artemisia sphaerocephala Asteraceae 0.23
Oxytropis ochrocephala Fabaceae 0.11

Polygala tenuifolia Polygalaceae 0.1
Silene gallica Caryophyllaceae 0.14
Poa araratica Poaceae 0.28
Koeleria pers Poaceae 0.38

Kobresia humulis Cyperaceae 0.2
IL Iris lactea Iridaceae 1

Elymus nutans Poaceae 0.41
Polygonum viviparum Polygonaceae 0.23

Thalictrum var. sibricum Ranunculaceae 0.077
Leontopodium nanum Asteraceae 0.15

Sphallerocarpus gracilis Apiaceae 0.09
Gentianopsis paludosa Gentianaceae 0.14
Ranunculus tanguticus Ranunculaceae 0.1

Rheum pumilum Polygonaceae 0.14
Potentilla anserina Rosaceae 0.11
Saussurea japonica Asteraceae 0.058

KH Kobresia humilis Cyperaceae 1
Medicago ruthenica Fabaceae 0.3

Plantago asiatica Plantaginaceae 0.27
Elymus nutans Poaceae 0.45

Taraxacum mongolicum Asteraceae 0.11
Potentilla multifida Rosaceae 0.099

Leontopodium nanum Asteraceae 0.098
Aconitum carmichaelii Ranunculaceae 0.074
Astragalus licentianus Fabaceae 0.09

Potentilla discolor Rosaceae 0.027
KH = Kobresia humilis patch, IL = Iris lacteal patch, EN = Elymus nutans patch, BS = Blysmus sinocompressus.

2.2. Experimental Design and Field Sampling

Field surveys were carried out in 4 plant species patches in wetlands (Kobresia humilis,
Iris lactea and Blysmus sinocompressus), drylands (Kobresia humilis, Blysmus sinocompressus and
Iris lactea), Shady slope (Elymus nutans), and sunny slopes (Elymus nutans). Representative
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samples sites were selected according to the selected grass species patches in wetlands,
drylands, and sunny and shady slopes. A total of 10 random sampling quadrats (1 m × 1 m)
were established in each site with three replications for a total of 30 quadrats per species
patch per site (wet, dry, sunny slope, and shady slope). Figure 1 is a diagram showing how
the field sampling was done. Along a transect of 2 m by 30 m in each area, 2 m-by-2 m
quadrats were used to record the vegetation patch numbers, perimeter, and percentage
cover of vegetation patches. A total of 3 transects were randomly demarcated at each
site. Ten adjacent quadrats were laid in each transect. All of the sample plots were evenly
distributed from the wet, dry area to the top of the mountains, and included shade slopes
and sunny slopes. Landscape pattern analysis was done for patches within the dry and
wetlands. GPS was used to obtain the elevation, longitude, and latitude of each sampling
site. Quadrats of 1 × 1 m were placed, and plant species, cover, height, and density of
each species, as well as above- and belowground biomass were examined. Aboveground
biomass was trimmed above the root level by species and collected from each quadrat.
Labeled aboveground samples were dried right away at 65 ◦C until a constant weight was
reached. The total C and N contents in the aboveground green biomass of each sample
were determined using an elemental combustion analyzer. After collecting the plants, soil
samples (10 cm per layer) were collected from 0–30 cm in each quadrat using a soil auger
(10 cm internal diameter) to estimate root biomass. Roots were then isolated from soil
samples by washing the samples in a 0.5 mm mesh wire. The root samples were dried
forthwith in an oven at 65 ◦C until a constant weight was reached. The bulk density of
the soil (10 cm per layer) was measured using a core sampler in each harvested quadrat.
In addition, five random soil samples at each depth were collected using a 3.5 cm internal
diameter auger, taken from each harvested quadrat and mixed into a single composite
sample, and then air-dried for laboratory analysis.
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Figure 1. Diagram showing how sampling was carried out.

2.3. Soil Physical and Chemical Property Analysis

Soil moisture was examined using the oven drying method. Air-dried soil samples
were sieved through a 2 mm mesh sieve. The dichromate oxidation method was used
to determine soil organic carbon, total N by the Kjeldahl method, total phosphorus by
the HClO4–H2SO4 method, and available phosphorus and available potassium by the
molybdenum blue method. All these analyses were carried out as described by Bao [27].
The temperatures at the depths of 0–10 cm, 10–20 cm, and 20–30 cm were measured using a
thermocouple probe (LI-8100-203 probe).
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Soil pH and EC (soil/water = 1:5) were estimated using a PHS-3C digital pH meter
and a DDS-307 conductivity meter, respectively. Soil microbial biomass C and N were
determined using the fumigation-extraction method [28]. A 20 g of wet soil (dry weight
basis) was fumigated by placing it in a sealed vacuum desiccator containing alcohol-free
CHCl3 vapor for 24 hrs. The fumigated base was repeatedly discharged in an aseptic,
empty desiccator until the scent of CHCl3 was no longer detectable, and then extracted
with 80 mL of 0.5 M K2SO4 (soil: K2SO4 = 1:4) for 30 min. The extraction of non-fumigated
soil was the same as that of fumigated soil. Soil microbial biomass C and N were calculated
as the difference between total organic C and total N in the fumigated and non-fumigated
extracts, respectively, with a conversion factor (KEC) of 0.38 and (KEN) of 0.45 [29,30].
NO3-Nand NH4-N: 2 mol KCl in 1 L water, weighed 5 g wet soil, 50 mL KCl was added to
the soil and shaken at 180 rpm for 30 min, filtered and pipette 15 mL for analysis.

2.4. Statistical Analysis

Vegetation species distribution data were used for biodiversity, and Detrended cor-
respondence analyses (DCA) and Redundancy analysis (RDA) were used to examine
relationships between vegetation and environmental parameters. Both were done using
the statistical software R.3.6.0 (R Development Core Team, 2016). Multivariate ordination
was used to assess the effects of environmental, and soil properties on species composition.
The species composition was analyzed and related to 20 variables (soil properties, slope,
vegetation cover) using Detrended Correspondence Analysis (DCA). The DCA produced
a first axis gradient length of 2.97 SD. We tested its correlation with measured environ-
mental factors using Spearman correlation coefficients. Statistical analyses were also done
using the SPSS software program, ver.20.0. Statistically significant differences were set
at p values < 0.05. One-way analyses ANOVA were followed by multiple comparisons
of least significant differences (LSD test) to compare differences between mean values of
vegetation and soil properties within each treatment.

3. Results
3.1. Patch Distributions

The first two Detrended correspondence analyses (DCA) axes explained 12.9% and
11.9% of the variation in species distribution of the selected grassland patches (Figure 2).
The species distribution showed that most of them were clustered in the upper part of the
quadrant. Kobresis humilis (KH) patch formed species plot 1, and Blysmus sinocompresuss
patch was species plot 2. Species plots 1 and 2 were vegetation patches found within
wetlands. There was then graduation from species plots 1 and 2 to species plot 5 made up
of Kobresia humilis (Kh) patch within drylands. Species plots 3 and 4 were Iris lactea (IL)
patches. Whereas species plots 6 and 7 were Elymus nutans patches. Species plot 6 was EN
within the shady slope whiles that of 7, En within the sunny slope and graduated from the
top of the quadrant to the lower-left negative end of the DCA axis. Species scores along the
first DCA axis are shown in Table 2. The Iris lacteal, Blysmus sinocompressus, Elymus nutans,
and Kobresia humilis species recorded the highest species scores of above 6. On the other
hand, Pedicularis kansuenis recorded the least score of −0.8768. Only species with a weight
greater than 5 were used.
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Figure 2. Plots of first two axes of DCA of the selected patches. KH, Kobresia humilis patch within
wetlands; Kh, Kobresia humilis patch within drylands; IL, Iris lactea patch within drylands; EN,
Elymus nutans patch within shady slope; En, Elymus nutans patch within sunny slope; and BS,
Blysmus sinocompresuss patch within wetlands.

Table 2. Species scores along the first DCA axis. Species with weight greater than 5 were used.

Species Score

Pedicularis kansuenis −0.8768
Saussurea japonica −0.1569
Rheum pumilum −0.1534

Thalictrum var. sibricum 0.2365
Aconitum carmichaelii 0.2856
Sphallerocarpus gracilis 0.7895
Astragalus licentianus 0.8257
Leontopodium nanum 0.9854

Potentilla multifida 1.2980
Polygala tenuifolia 1.4216

Ranunculus tanguticus 1.5465
Oxytropis ochrocephala 1.5980
Taraxacum mongolicum 1.6870

Potentilla anserina 1.8452
Silene gallica 1.9673

Gentianopsis paludosa 2.1093
Artemisia frigida 2.2451
Puccina chinensis 2.3852

Stipa aliena 2.4170
Poa pova 2.4862

Polygonum viviparum 2.6214
Artemisia sphaerocephala 2.7452

Medicago ruthenica 3.0289
Poa araratica 3.4538

Potentilla discolar 3.6832
Plantago asiatica 3.8945

Aster alpinus 4.1268
Kobresia pygmea 4.4320

Poa annua 4.5021
Potentilla bifurca 4.7358

Iris lactea 6.2138
Blysmus sinocompressus 6.4350

Elymus nutans 6.5842
Kobresia humilis 6.6085
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3.2. Numbers, Cover, and Perimeters of Vegetation Patches within Selected
Environmental Gradients

Generally, species within the high moisture sites recorded small patch numbers, large
fraction of vegetation cover, and small total perimeter per m2. The IL patch within the
high soil moisture area recorded the highest patch number per m2 and total perimeter
per m2. Species within the low moisture sites had high patch numbers, low fraction of
vegetation cover, and large total perimeter per m2 indicating low connectivity. Within the
low moisture sites, the KH patch had the highest patch number, and the IL patch recorded
the highest fraction of vegetation cover and the largest total perimeter per m2. The EN
patch under the sunny slope had a high patch number and total perimeter per m2 while
the shady slope recorded a low patch number per unit area and a small total perimeter.
Generally, within the same species across the environmental gradient, those in the high soil
moisture site recorded small patch numbers, large fraction of vegetation cover, and small
total perimeter per unit area indicating they are in stable states (Figure 3). In addition,
patches within the high soil moisture sites referred to as wetlands recorded high mean patch
sizes compared to the low soil moisture sites referred to as drylands. On the other hand,
patches within the drylands recorded larger perimeter- area ratio distribution (PARA_MN)
(Table 3).
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not different at p < 0.001 level. KH; Kobresia patch, BS; Blysmus sinocompressus, IL; Iris lactea, EN;
Elymus nutans. Sites with inadequate soil moisture are referred to as drylands and vice versa.
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Table 3. Landscape pattern indices for the selected sites.

Site Index Min Max Mean Std Coefficient of
Variation (%)

Wetlands MPS 0.98 2.50 1.74 0.17 8.62
PARA_MN 24.68 148.09 84.29 20.01 23.74

SHAPE_MN 1.34 2.94 1.67 0.1 5.98
PAFRAC 1.32 1.75 1.53 0.08 5.23

Drylands MPS 0.26 1.27 0.76 0.13 17.11
PARA_MN 28.15 182.95 105.55 25.06 23.74

SHAPE_MN 1.33 2.95 1.69 0.27 15.98
PAFRAC 1.45 3.78 2.63 0.15 5.70

MPS—Mean patch size; PARA_MN—Mean perimeter- area ratio distribution; SHAPE_MN—Mean shape index
distribution; PAFRAC-Perimeter—area fractional dimension index.

3.3. Impact of Slope Aspect on Vegetation Patch Distribution

The plant coverage on the shady slope was significantly higher than that of the sunny
slope. Vegetation density, above and below-ground biomass was higher on the shady slope
than on the sunny slope. The KH patch under the dryland recorded the highest values of
the Shannon–Wiener diversity index and Simpson’s index of diversity. The lowest value
of Shannon diversity index was recorded at the BS patch under the dryland site while the
lowest Simpson’s index of diversity was equally recorded at the same site (Table 4).

Table 4. Vegetation parameters and biodiversity of selected grassland patches.

Site P Height Coverage Density BGB AGB Shannon Simpson Evenness Richness

Wet land KH 20.40 ±
4.20 de

94.66
1.20 b

775.33 ±
82.10 b

82.00 ±
4.92 a

167.57 ±
25.22 a

2.65 ±
0.22 ab

0.92 ±
0.17 a

0.83 ±
0.05 a

9.11 ±
2.66 a

Wet land BS 14.23 ±
0.31 f

96.16 ±
1.45 b

1495.66 ±
95.71 a

70.29 ±
4.80 b

93.68 ±
2.01 c

1.98 ±
0.22 c

0.85 ±
0.03 ab

0.63 ±
0.02 b

7.33 ±
2.35 bc

Wetland IL 62.41 ±
0.45 b

97.22 ±
0.38 b

99.56 ±
0.74 d

44.63 ±
0.48 c

150.12 ±
0.89 ab

2.71 ±
0.12 ab

0.93 ±
0.04 a

0.84 ±
0.07 a

9.0 ±
2.76 a

Dryland BS 11.21 ±
0.67 f

81.34 ±
0.75 c

98.18 ±
0.59 d

50.67 ±
0.84 bc

79.82 ±
0.84 d

1.81 ±
0.14 c

0.78 ±
0.06 c

0.66 ±
0.08 ab

7.34 ±
2.45 bc

Dry land IL 51.36 ±
0.54 c

95.66 ±
1.85 b

99.00 ±
9.45 d

38.77 ±
0.90 d

133.11 ±
11.30 b

2.60 ±
0.18 ab

0.92 ±
0.13 a

0.85 ±
0.07 a

9.22 ±
1.86 a

Dry land KH 26.38 ±
2.09 d

75.66 ±
2.90 d

56.66 ±
8.87 e

28.41 ±
0.96 e

90.37 ±
24.68 c

3.12 ±
0.01 a

0.95 ±
0.10 a

0.82 ±
0.08 a

9.05 ±
2.65 a

Shady slope EN 76.93 ±
2.06 a

100.00 ±
9.7.00 a

125.33 ±
11.46 c

24.53 ±
0.42 e

150.81 ±
3.50 ab

2.44 ±
0.12 ab

0.91 ±
0.01 a

0.76 ±
0.06 ab

7.55 ±
1.24 bc

Sunny slope EN 74.35 ±
2.31 a

89.00 ±
6.24 bc

99.00 ±
9.45 d

23.29 ±
0.81 e

133.11 ±
0.30 ab

2.45 ±
0.16 ab

0.91 ±
0.01 a

0.79 ±
0.89 ab

7.68 ±
1.35 bc

Note: Data are presented as the mean ± SD; Different small letters in the same column mean significant difference
at 0.05 level. P = patch type; KH = Kobresia humilis; BS = Blysmus sinocompressus; IL = Iris lactea; EN = Elymus nutans;
BGB = below ground biomass; AGB = above ground biomass; Shannon = Shannon–Wiener diversity index;
Simpson = Simpson’s index of diversity.

3.4. Changes in Vegetation Biomass as a Result of Soil Moisture

The maximum coverage was found in the BS patch which was located in an elevated
moisture environment and the lowest was found in the KH patch within the low moisture
site. Within the wetland sites, the BS patch had a significantly higher density compared to
KH. KH patch however had significant aboveground biomass. The maximum Shannon–
Weiner and Simpson’s index of diversity were found in the KH patch (Table 4).

Redundancy analysis (RDA) was used to elucidate the connections between the soil
properties, topographic features, and vegetation distribution. Vegetation parameters were
set as response variables while soil properties and topographic features were set as indepen-
dent variables for the RDA analysis (Figure 4). Soil TK, SOC, TN, and EC were positively
correlated and contributed immensely to the first RDA axis. AGB was positively correlated
with TK whilst vegetation coverage was positively correlated with SOC. BGB and MC
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were positively correlated and both were positively correlated with density. Porosity and
temperature were positively correlated with elevation.
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Figure 4. RDA for the relationships between vegetation parameters, soil, and topographic features.
Note; TN, total nitrogen; TK, total potassium; AP, available phosphorus; AK, available potassium; TP,
total phosphorus; MBC, soil microbial biomass carbon; MBN, soil microbial biomass nitrogen; EC,
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NO3-N, pH, MBC, TP, MBN, AP, and NH+
4-N were positively correlated and had

a positive correlation with plant height. Temperature, AK, porosity, and elevation had a
negative correlation with vegetation parameters. Soil moisture explained most of the varia-
tions in vegetation properties while BGB explained most of the variations in soil properties
(Table 5). MC was significantly positively correlated with BGB and vegetation density.

Table 5. Contribution of the various variables to the variations in vegetation and soil properties.

Name Explains % Pseudo-F p

MC 33.4 8 0.002
BGB 32.7 7.8 0.002
MBC 30.1 6.9 0.002
pH 25 5.3 0.002

TEMP 24.7 5.3 0.004
TP 24.4 5.2 0.002
AK 23.1 4.8 0.004

NO3-N 22.8 4.7 0.004
MBN 21 4.3 0.008

EC 19.3 3.8 0.006
SOC 16.6 3.2 0.008
BD 11.5 2.1 0.082

POROSITY 11.5 2.1 0.08
NH4-N 10.3 1.8 0.126

TK 10.1 1.8 0.132
TN 8.4 1.5 0.226
AP 5.5 0.9 0.438

Note: Significance is at p = <0.01. MC = soil moisture content, BGB = below ground biomass, MBC = soil microbial
biomass carbon, TEMP = soil temperature, TP = total phosphorus, AK = available potassium, NO3-N = Nitrate,
MBN = soil microbial biomass nitrogen, EC = soil electrical conductivity, SOC = soil organic carbon, BD = bulk
density, NH4-N = ammonium nitrogen, TK = total potassium, TN = total nitrogen, AP = available phosphorus.
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3.5. Variations in Soil Properties within the Selected Sites

Soil chemical properties for the various sites are shown in Table 6. The highest pH
was found in the IL patch and the lowest in the BS patch. The highest mean value of SOC
was found in the EN patch on the shady slope whilst the lowest was found in the KH
patch under the dryland site. There was generally a reduction in mean values of SOC with
respect to increasing soil depth. The maximum mean values of NH+

4-N were found in the
KH patch in the wetlands site and the EN patch on the shady slope. TN was significantly
higher in the KH patch within the wetland site. Mean values of NO3-N and TP were
significantly higher in both the sunny and shady slopes than in the rest of the sites. TK and
AP were significantly higher in the KH patch under the wetland than in the rest of the sites.
Comparable to the rest of the treatments, significantly higher values of AK, MBN and MBC
were recorded in the EN patch under the shady slope. The KH patch within the wetland
site recorded the highest mean value of EC.

Table 6. Spatial distribution of soil chemical and microbial properties within the selected patches.

Depth
(cm) Site P pH SOC

(g/kg)
NH4-N
(mg/kg)

TN
(g/kg)

NO-3N
(mg/kg)

TP
(g/kg)

TK
(g/kg)

AP
(mg/kg)

AK
(mg/kg)

MBN
(mg/kg)

MBC
(mg/kg) EC(dS/m)

0–10

Wet
land KH 7.93 ±

0.09 b

103.87
±

0.93 c

35.42
±

0.11 e

5.65 ±
0.06 a

16.53
±

0.03 a

0.55 ±
0.01 a

12.7 ±
0.07 d

24.43
±

0.11 e

127.48
±

1.09 c

12.52 ±
0.13 c

259.79 ±
0.71 a

211.67 ±
24.45 a

Wet
land BS 7.39 ±

0.05 a

95.26
±

0.20 b

21.37
±

0.04 a

4.77 ±
0.09 b

21.28
±

0.06 d

0.52 ±
0.01 a

8.03 ±
0.08 b

15.48
±

0.11 b

118.24
±

0.50 b

12.42 ±
0.02 c

312.91 ±
0.41 b

175.33 ±
35.84 a

Dry
land IL 8.09 ±

0.00 b

77.02
±

0.55 a

26.67
±

0.09 b

4.06 ±
0.03 bc

16.84
±

0.03 a

0.55 ±
0.01 a

6.94 ±
0.11 a

14.73
±

0.08 a

101.96
±

1.02 a

10.89 ±
0.06 a

348.52 ±
0.96 d

173 ±
26.35 b

Dry
land KH 8.00 ±

0.01 b

76.53
±

0.77 a

32.4 ±
0.12 d

4.54 ±
0.03 cd

19.12
±

0.05 b

0.57 ±
0.01 a

7.82 ±
0.02 b

20.34
±

0.09 c

243.44
±

1.81 e

11.89 ±
0.06 b

321.06 ±
0.81 c

120.67 ±
6.98 a

Shady
slope EN 8.05 ±

0.01 b

110.56
±

0.24 e

35.26
±

0.11 e

5.14 ±
0.04 d

23.67
±

0.13 d

0.74 ±
0.03 b

12.68
±

0.14 d

23.57
±

0.04 d

252.99
±

2.69 f

18.48 ±
0.10 e

505.69 ±
2.08 e

154.33 ±
1.86 a

Sunny
slope EN 8.03 ±

0.02 b

90.31
±

0.14 b

30.48
±

0.12 c

4.93 ±
0.02 e

24.12
±

0.07 e

0.78 ±
0.02 b

10.68
±

0.07 c

23.88
±

0.01 d

234.46
±

1.52 d

17.78 ±
0.09 d

510.83 ±
1.03 e

119.67 ±
2.91 a

10–20

Wet
land KH 7.94 ±

0.07 b

83.82
±

1.39 d

26.71
±

0.07 c

4.68 ±
0.01 b

15.08
±

0.06 a

0.38 ±
0.01 a

11.49
±

0.08 d

17.31
±

0.18 c

102.74
±

1.10 c

9.83 ±
0.05 c

204.58 ±
1.67 a

195.67 ±
12.71 c

Wet
land BS 7.49 ±

0.03 a

82.41
±

0.04 cd

18.51
±

0.13 a

3.97 ±
0.07 ab

18.28
±

0.09 c

0.38 ±
0.00 a

8.5 ±
0.13 b

11.3 ±
0.12 b

90.98
±

0.17 b

9.39 ±
0.09 c

287.2 ±
0.98 c

99.33 ±
10.47 a

Dry
land IL 8.1 ±

0.01 b

60.03
±

0.09 a

23.65
±

0.11 b

3.81 ±
0.02 a

15.42
±

0.06 a

0.38 ±
0.01 a

6.95 ±
0.08 a

9.89 ±
0.04 a

86.73
±

1.06 a

7.69 ±
0.11 a

256.83 ±
1.98 b

164.67 ±
16.34 bc

Dry
land KH 7.99 ±

0.00 b

68.22
±

0.24 b

29.44
±

0.02 d

3.90 ±
0.01 ab

16.63
±

0.13 b

0.38 ±
0.00 a

7.3 ±
0.29 a

17.26
±

0.04 c

190.27
±

0.17 e

8.80 ±
0.07 b

258.97 ±
1.16 b

146.33 ±
11.05 abc

Shady
slope EN 8.05 ±

0.02 b

90.41
±

0.10 e

26.60
±

0.10 c

4.49 ±
0.06 c

18.58
±

0.26 c

0.45 ±
0.02 b

12.55
±

0.03 e

17.5 ±
0.06 cd

199.46
±

0.23 f

14.56 ±
0.13 e

417.55 ±
8.81 d

145.67 ±
4.09 abc

Sunny
slope EN 8.04 ±

0.01 b
80.34
± 0.07 c

26.50
±

0.15 c

4.09 ±
0.02 b

19.91
±

0.07 d

0.49 ±
0.00 b

10.69
±

0.05 c

17.71
± 0.13

d

180.95
±

0.13 d

13.45 ±
0.09 d

400.82 ±
1.04 d

130.33 ±
7.05 ab

20–30

Wet
land KH 7.89 ±

0.09 b

46.57
±

1.51 b

25.33
±

0.14 a

3.56 ±
0.08 b

13.07
±

0.02 b

0.30 ±
0.00 a

10.74
±

0.12 e

10.12
±

0.04 c

95.24
±

0.73 b

5.38 ±
0.11 bc

188.90 ±
0.23 a

217.33 ±
9.68 d

Wet
land BS 7.47 ±

0.03 a

56.54
±

0.26 d

16.72
±

0.15 a

3.22 ±
0.04 a

15.33
±

0.06 e

0.31 ±
0.01 a

7.34 ±
0.13 c

9.39 ±
0.07 e

74.85
±

0.41 a

5.23 ±
0.04 bc

203.90 ±
1.20 c

106 ±
8.54 a
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Table 6. Cont.

Depth
(cm) Site P pH SOC

(g/kg)
NH4-N
(mg/kg)

TN
(g/kg)

NO-3N
(mg/kg)

TP
(g/kg)

TK
(g/kg)

AP
(mg/kg)

AK
(mg/kg)

MBN
(mg/kg)

MBC
(mg/kg) EC(dS/m)

Dry
land IL 8.06 ±

0.02 b

40.02
±

0.17 a

15.14
±

0.07 a

3.17 ±
0.03 a

12.84
±

0.01 a

0.31 ±
0.00 a

6.13 ±
0.04 a

8.73 ±
0.01 a

74.67
±

0.95 a

4.86
0.04 a

200.27 ±
0.24 b

198 ±
12.52 cd

Dry
land KH 8.02 ±

0.00 b

45.07
±

0.30 b

27.61
±

0.14 a

3.18 ±
0.03 a

13.55
±

0.02 c

0.31 ±
0.01 a

6.76 ±
0.18 b

10.31
±

0.10 c

100.26
±

0.19 c

5.28 ±
0.03 bc

200.74 ±
0.30 bc

159.33 ±
15.49 bc

Shady
slope EN 8.09 ±

0.01 b

53.05
±

1.39 cd

22.18
±

0.07 ab

3.45 ±
0.01 b

14.12
±

0.04 d

0.34 ±
0.02 ab

11.88
±

0.01 f

11.26
±

0.05 d

120.08
±

0.07 e

5.49 ±
0.11 c

298.94 ±
0.97 d

129.66 ±
2.33 ab

Sunny
slope EN 8.06 ±

0.02 b

50.76
±

0.13 c

24.53
±

0.21 ab

3.93 ±
0.01 c

15.92
±

0.01 f

0.37 ±
0.00 b

9.80 ±
0.04 d

11.57
±

0.10 d

117.08
±

0.70 d

5.31 ±
0.05 bc

300.43 ±
0.43 d

135.00 ±
2.64 ab

Note: Data are presented as the mean ± SD; Different small letters in the same column mean significant
difference at 0.05 level. P = patch type; KH = Kobresia humilis; BS; Blysmus sinnicompressus, IL; Iris lacteal,
EN; Elymus nutants, SOC; TN = total nitrogen; NO3N; NH4N; TP = total phosphorus; TK = total potassium;
AP = available phosphorus; AK—available potassium; MBN = soil microbial biomass nitrogen; MBC = soil
microbial carbon; EC = electrical conductivity.

Soil physical properties for the various sites are shown in Table 7. Compared to all
the other treatments, the EN patch in the sunny slope recorded a significantly higher mean
temperature. Undoubtedly the KH and BS patches under wetland sites recorded elevated
soil moisture content (MC) significantly higher than the rest of the sites. However, MC
within the KH patch decreased with soil depth but that of BS increased with soil depth.
The IL patch recorded a significantly higher BD value and lowest porosity. The KH patch
under the dryland site had a significantly higher value of porosity and a significant lower
value of BD as compared to the rest.

Table 7. Spatial distribution of soil physical properties within the selected patches.

Depth
(cm) Site P TEMP (◦C) MC (%) BD (g/cm3) Porosity (%)

0–10

Wet land KH 14.33 ± 1.65 a 65.7 ± 1.70 c 1.29 ± 0.06 b 51.19 ± 2.31 b

Wet land BS 15.9 ± 0.88 a 64.67 ± 0.33 c 1.27 ± 0.04 b 51.95 ± 1.40 b

Dry land IL 16.67 ± 0.82 ab 20.24 ± 1.36 a 1.77 ± 0.03 c 33.33 ± 1.20 a

Dry land KH 20.23 ± 0.26 bc 29.93 ± 1.67 b 0.97 ± 0.05 a 63.14 ± 1.83 c

Shady slope EN 18.37 ± 0.41 ab 29.7 ± 1.58 b 1.23 ± 0.06 b 53.71 ± 2.18 b

Sunny slope EN 24.47 ± 0.75 c 19.54 ± 1.18 a 1.13 ± 0.04 a 57.36 ± 1.52 bc

10–20

Wet land KH 13.3 ± 0.50 a 66.06 ± 0.90 c 1.38 ± 0.12 ab 47.93 ± 4.47 ab

Wet land BS 13.8 ± 0.40 a 68.67 ± 0.33 c 1.35 ± 0.05 ab 48.91 ± 1.74 ab

Dry land IL 14.53 ± 0.12 ab 19.27 ± 1.03 a 1.49 ± 0.13 b 43.77 ± 4.95 a

Dry land KH 17.20 ± 0.60 bc 29.55 ± 1.67 b 1.04 ± 0.08 a 60.38 ± 2.72 b

Shady slope EN 18.53 ± 0.59 c 21.91 ± 1.62 a 1.28 ± 0.04 ab 51.7 ± 1.52 ab

Sunny slope EN 19.10 ± 0.87 c 19.56 ± 1.65 a 1.25 ± 0.03 ab 52.83 ± 0.99 ab

20–30

Wet land KH 12.56 ± 0.34 a 60.83 ± 2.33 c 1.48 ± 0.14 b 44.15 ± 5.30 a

Wet land BS 12.93 ± 0.20 a 67.00 ± 0.00 d 1.32 ± 0.06 ab 50.06 ± 2.50 ab

Dry land IL 12.96 ± 0.20 ab 13.65 ± 0.89 a 1.40 ± 0.05 ab 48.30 ± 3.35 ab

Dry land KH 15.56 ± 0.56 bc 27.19 ± 1.63 b 1.08 ± 0.03 a 59.24 ± 1.43 b

Shady slope EN 19.93 ± 0.91 d 18.86 ± 0.64 a 1.34 ± 0.06 ab 49.43 ± 2.56 ab

Sunny slope EN 16.23 ± 0.69 c 15.28 ± 1.22 a 1.23 ± 0.03 ab 56.85 ± 2.13 ab

Note: Data are presented as the mean ± SD; Different small letters in the same column mean significant dif-
ference at 0.05 level. P = patch type; KH = Kobresia humilis; BS = Blysmus sinnocompressus; IL = Iris lactea;
EN = Elymus nutans; TEMP = temperature; MC = moisture content; BD = bulk density.



Sustainability 2022, 14, 6738 12 of 17

4. Discussion
4.1. Effect of Habitat Conditions on Spatial Vegetation Patch Patterns

Alpine grasslands are exceedingly delicate ecosystems that are highly susceptible to
global climate change [1]) as a result of weather conditions such as low temperature, low
rainfall, and low concentration of oxygen at high elevations [2].

The study showed major differences in soil moisture among the various topographic
areas like shady and sunny slopes which are consistent with previous studies [31]. The soil
moisture at the sunny slope was lower than on the shady slope which could be attributed to
differences in evapotranspiration as a result of differences in solar radiation. Soil moisture
was higher at sites near the watercourse. The results also indicate variations in vegetation
biomass along elevation gradient and aspect. EN patch tended to have more biomass on the
shady slope than on the sunny slope probably due to the differences in soil moisture. Vege-
tation biomass was significantly affected by topographic features that result in areas of high
soil moisture due to their proximity to watercourses than those with low moisture content.
The intricate and different connections between soil properties and topographic conditions
impact the constitution and biodiversity of grassland vegetation community [32,33] and
offer a clear understanding of the features that will make plant species fit or not for local
vegetation restoration.

The RDA results indicate that topography and soil properties explain more of the veg-
etation variation especially soil moisture. In high mountain areas, topographic conditions
could explain local vegetation distribution and composition very well [34]. Topographic-
induced microclimate differences can lead to major variations in vegetation distribution
and soil properties which could in turn have drastic effects on the soil structure and func-
tions of the ecosystem [6,35]. It is therefore not surprising that soil moisture which had
the greatest impact on vegetation density was spatially distributed within the study area,
interspersed with areas of low and high soil moisture content. Pei et al. [36] found close
relationships between elevation, soil moisture, and vegetation. The RDA analysis (Figure 4)
showed that vegetation coverage was significantly correlated with SOC. Soil moisture
explained 33.4% of the vegetation variation within the study area. Hence understanding
the spatial distribution of soil moisture at each site will be central to fruitful grassland
restoration of the alpine grassland. Below-ground biomass explained most of the variations
in soil properties probably due to its impact on soil bulk density, soil pore space, increasing
soil porosity, and hence increase in soil water infiltration rate. Roots have an important
function in plant nutrition and water intake, as well as minimizing soil erosion due to
rill and gully erosion and increasing soil infiltration ability [37]. They are a significant
carbohydrate sink, and their senescence and breakdown release vast quantities of carbon
into the soil [38]. Substantial below-ground productivity results in a large supply of organic
matter into the soil, which accounts for some of the organic carbon storage in grassland
chernozem soils [39]. Below-ground C inputs have a greater impact on SOC formation than
above-ground C inputs [40]. Root-derived SOC was around 2.3 times greater than SOC
from above-ground crop residues in a long-term agricultural experiment in Sweden [41].
The efficiency of below-ground C inputs into the organic matter pool was 7 to 10-fold
higher than that of above-ground C inputs.

The results of the study demonstrate that vegetation patches in areas of high soil
moisture had large vegetation patch cover, small patch numbers, and total perimeters per
unit area while the reverse holds for areas with low soil moisture. The sunny and shady
slopes though did not have elevated soil moisture and also recorded patch attributes closed
to the patches located in areas of elevated soil moisture. Apart from grazing being a vital
driver of spatial configurations of vegetation patches, less soil water and nutrients also
play an important role [20]. Elevated resource limitation leads to spatial reorganization
of plants and nutrients in ecosystems with unpleasant environmental conditions and this
brings forth the development of localized patterns such as gaps, stripes, and spots [20].
Systematic spatial patterns usually have a small perimeter per unit area and low edge
exposure, hence minimizing the hazard of large patches being degraded. Furthermore,



Sustainability 2022, 14, 6738 13 of 17

regular patch patterns tend to reduce inter-patch distances, hence promoting connectivity
and enhancing favorable feedback between vegetation patches [42]. As soon as resource
limitation reaches a threshold the ecosystem switch towards a homogeneous state leading
to the complete loss of plants [43]. Abiotic factors, as well as plant-plant interactions, have a
role in affecting patch-size distributions, just as they do with regularity. Large patches that
facilitate the formation of power-law patch size distributions are encouraged via facilitative
interactions [44,45].

Other elements, in addition to plant-plant interactions and aridity, influence vegetation
spatial patterns. Even in the absence of more deterministic processes, increases in cover
may favor mechanical vegetation clumping due to a shortage of space ([46]. Some abiotic
factors, such as rainfall seasonality or soil texture, might exacerbate water stress [47]
and hence influence infiltration rates, influencing regional patterns [48,49]. Furthermore,
species-specific characteristics may influence spatial pattern formation in a variety of ways.
Large species, for example, have a strong influence on the establishment of patch size
distributions [50]. Similarly, clonal plants produce predictable patterns [51]. In the IL, KH,
and BS patches under declined soil moisture and nutrients had small patch sizes, large
patch numbers, and total perimeter per unit area. This implies these patches under the low
soil moisture are in an unstable state and undergoing degradation.

Landscape metrics can be used to assess the spatial information of landscape pattern
composition, arrangement, and land use/land cover changes [52,53]. Various landscape
metrics have been backed by many fields for decades and are extensively employed by
researchers and policy-makers in evaluating, monitoring, and predicting landscape trends
and land-use changes [12,54]. Because of the more fragmentation of patches within the
dryland sites, it is seen that they recorded patch configurations indicating they are unstable
and undergoing degradation. This is equally seen in landscape pattern analysis where the
mean patch size in the wetlands is larger than those in the drylands. The patches within
drylands had a bigger perimeter-area ratio distribution indicating they are unstable and
hence have high perimeter and small patch size. The Iris lacteal, Blysmus sinocompressus,
Elymus nutans, and Kobresia humilis species recorded the highest species scores from the
DCA, and this is so because they were the dominant species and the research objects.
Therefore, urgent restoration attention must be given to the dry sites which recorded spatial
vegetation patch configurations indicating they are unstable and undergoing degradation
to prevent them from further degradation and its resultant effect of desertification.

4.2. Impact of Soil Properties on Vegetation Patches

Insufficient soil nutrients and moisture bring about stress on vegetation and hence
lead to its degradation. Besides grazing as the major biotic driver, the chief abiotic drivers
underlying the spatial configurations of vegetation patches are regarded to be limited
resources, such as soil water and nutrients [43]. Increased resource scarcity results in
spatial reorganization of plants and nutrients in ecosystems with adverse abiotic conditions,
and ecosystem states develop with localized structures, such as gaps, labyrinths, stripes,
and spots [55,56]. Once resource scarcity reaches a threshold, the ecosystem shifts toward
a homogeneous state following the complete loss of plants [43]. In the early stages of
vegetation fragmentation, patches are composed of large size, small patch numbers, high
connectivity, and small total perimeter per unit area. Then an increase in environmental
pressure causes continuous fragmentation of large patches into regular patch patterns
made of large patch numbers, moderate size, and large total perimeter. Finally, still heavier
environmental pressure drives the collapse of patches. Patches will disappear rapidly and
a few small patches with small perimeters remain.

Slope position and aspect are considered among the most key abiotic factors influenc-
ing the spatial variability of soil properties via the pedogenic process on a large scope [57].
Slope position and aspect, therefore, lead to factors like heat, light, air, and water, which
tend to affect soil properties. Temperature and precipitation along elevation gradients are
the major factors affecting the carbon budget by controlling carbon inputs from plants



Sustainability 2022, 14, 6738 14 of 17

biomass and decomposition and this affects the stability of soil aggregates. Increased eleva-
tion improves precipitation thereby enhancing water availability and potentially aiding
vegetation development. High moisture and low temperature decrease microbial activity
and hence slow decomposition and mineralization rate of SOC. SOC was significantly
higher on the shady slope than on the sunny slope in the study area. This could be at-
tributed to the low mineralization of soil organic matter (SOM) due to the relatively low
temperature, high humidity, and high moisture content on the shady slope. This is in line
with [58]. The wetlands site under the KH patch also recorded a significantly high SOC
content, and this is attributable to the elevated moisture content which reduces temperature
and also tends to reduce microbial activity, and hence, there is a reduction in the rate of
SOM mineralization rate. Under normal conditions, SOC distribution is affected by environ-
mental conditions such as climate, vegetation, and soil texture [32]. The results also showed
that soil moisture was high on the shady slope compared to the sunny slope. However,
the soil temperature on the sunny slope was higher than on the shady slope. This likely is
related to weak solar radiation on the shady slope and therefore less evapotranspiration.
Changes in soil moisture have an impact on microbial activity [59]. Drought causes osmotic
stress in soil microorganisms in dry pores; bacteria in saturated soils have better access
to soil organic carbon and nutrients because of the well-connected soil pore network [60].
In field-moist soils, when the hydrologic connection is reduced and certain pores remain
unconnected, this free exchange is reduced [61].

The results of this study equally showed that soil microbial biomass C and N signifi-
cantly increased with increasing SOC and TN which is consistent with previous studies [62].
Variations in environmental conditions can influence C and N processes both via changes
in abiotic actors and via changes in microbial community structure [63]. An induced switch
in soil microbial community composition occurs by maximizing water and nutrient avail-
ability [64]. It can be seen from the results that the IL, KH, and BS patches under the low
soil moisture sites recorded low levels of SOC, TN, NO3-N, and NH+

4-N among others.
It is therefore not surprising that sites with low soil nutrients recorded patch configurations
indicating they were unstable and undergoing degradation because inadequate nutrients
and soil moisture put stress on vegetation resulting in its degradation.

5. Conclusions

To sum up, the study without a doubt indicates that topography and environmental
conditions had significant effects on soil properties and spatial vegetation patch patterns
and their configurations. RDA analysis showed that soil moisture is one of the most single
factors that explained most of the variation in vegetation characteristics. Soil moisture is
undoubtedly affected by elevation and slope aspects and should be taken into consideration
in the selection and planning of vegetation restoration processes. The Iris lactea patch within
the high soil moisture sites recorded the highest patch number per m2 and total perimeter
per m2. Within the low soil moisture sites, Kobresia humilis patch had the highest patch
number, and the Iris lactea patch recorded the highest fraction of vegetation cover and the
largest total perimeter per m2. The Elymus nutans patch under the sunny slope had a high
patch number and total perimeter while the shady slope recorded a low patch number
and small total perimeter. The Iris lactea, Kobresia humilis, and Blysmus sinnocmpressus
patches under low soil moisture sites recorded patch configurations that show they are in
unstable states and undergoing degradation. Therefore, urgent restoration attention must
be given to those sites to prevent them from further degradation and its resultant effect
of desertification. The Kobresia humilis patch under the low soil moisture areas recorded
the highest values of Shannon–Wiener diversity index and Simpson’s index of diversity
probably due to the low plant coverage which allowed less competitive species to survive
and grow. The highest value of soil organic carbon was recorded in the Elymus nutans
patch located on a shady slope which could be attributed to the impact of elevation on
soil-organic carbon. Temperature and precipitation along elevation gradients are the major
factors affecting the carbon budget by controlling carbon inputs from plants’ biomass
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and decomposition. Increased elevation improves precipitation thereby enhancing water
availability and potentially aiding vegetation development. Plant coverage on the shady
slope was significantly higher than that of the sunny slope. This could be because of
evapotranspiration within the sunny slope which is higher than that of the shady slope,
and hence, species within the shady slope have adequate moisture for plant growth.
The results would provide quantitative easy-to-use indicators for vegetation degradation
and help in vegetation restoration projects. It would be essential to do more studies
to fully comprehend the water balance in the study area on the connections between
vegetation, soil properties, and topography to enhance the selection of suitable species for
restoration programs.
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